
  

Exercises for March 25

Take a look at the (recently revised) last few pages of section 3.5 on the web page, about
similar matrices and similar linear transformations. Also look at the first couple of pages
of the new section M.6, about invariant subspaces and block triangular or block diagonal
matrices.

In the following V is an n–dimensional vector space over a field K, T ∈ EndK(V ), A ∈
Matn(K), and E is the n–by–n identity matrix. We write x − A for xE − A and x − T for
x id − T .

1. Define χA(x) = det(x − A). Show that χA(x) is a monic polynomial of degree n.
Show that χA(x) is a similarity invariant of matrices; i.e., it doesn’t change if A is
replaced by a similar matrix. We call χA(x) the characteristic polynomial of A.

2. Define χT (x) = χA(x), where A is the matrix of T with respect to some ordered basis
of V . Show that χT (x) is well–defined (doesn’t depend on the choice of the basis) and
is a similarity invariant of linear transformations. We call χT (x) the characteristic

polynomial of T .
3. Since χA(x) is a similarity invariant, so are all of its coefficients. Show that the

coefficient of xn−1 is the negative of the trace tr(A), namely the sum of the matrix
entries on the main diagonal of A. Conclude that the trace is a similarity invariant.

Assume now that the field K contains all roots of the polynomials χA(x) and χA(T ). That
means that the polynomials factor as a product of n linear factors in K[x]. This will always
be true, for example, if K is the field of complex numbers. In general, if you start out with
a polynomial in K[x], there is always a field F ⊇ K such that the polynomial has all of its
roots in F .

We say that an nonzero vector v ∈ V is an eigenvector of T with eigenvalue λ, if Tv = λv.
(These are half-translated German words. The German Eigenvektor and Eigenwert mean
“characteristic vector” and “characteristic value.”)

4. Show that λ is a root of χT (x) if, and only if, T has an eigenvector in V with
eigenvalue λ. Show that v is an eigenvector of T for some eigenvalue if, and only if,
the one dimensional subspace Kv ⊆ V is invariant under T .

5. Let V0 ⊆ V be any invariant subspace for T . Show that there is a linear operator T
on V/V0 defined by

T (v + V0) = T (v) + V0

for all v ∈ V . Suppose that (v1, . . . , vk) is an ordered basis of V0, and that

(vk+1 + V0, . . . , vn + V0)

is an ordered basis of V/V0. Suppose, moreover, that the matrix of T|V0
with respect

to (v1, . . . , vk) is A1 and the matrix of T with respect to (vk+1 + V0, . . . , vn + V0) is
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A2. Show that (v1, . . . , vk, vk+1, . . . , vn) is an orderd basis of V and that the matrix
of T with respect to this basis has the form

[

A1 B
0 A2

]

,

where B is some k–by–(n − k) matrix.
6. Use the previous two exercises, and induction on n to conclude that V has some basis

with respect to which the matrix of T is upper triangular; that means that all the
entries below the main diagonal of the matrix are zero.

7. Suppose that A′ is the upper triangular matrix of T with respect to some basis of V .
Denote the diagonal entries of A′ by (λ1, . . . , λn); this sequence may have repetitions.
Show that χT (x) =

∏

i
(x − λi).

8. Let (v1, . . . , vn) be a basis of V with respect to which the matrix A′ of T is upper tri-
angular, with diagonal entries (λ1, . . . , λn). Let V0 = {0} and Vk = span({v1, . . . , vk})
for 1 ≤ k ≤ n. Show that T − λk maps Vk into Vk−1 for all k, 1 ≤ k ≤ n. Show by
induction that (T −λk)(T −λk+1) · · · (T −λn) maps V into Vk−1 for all k, 1 ≤ k ≤ n.
Note in particular that (T − λ1) · · · (T − λn) = 0. Using the previous exercise, con-
clude that χT (T ) = 0, the characteristic polynomial of T , evaluated at T , gives the
zero transformation.

9. Let A ∈ Matn(K) and let T ∈ EndK(Kn) be the linear transformation given by
multiplication by A. Show that χA(A) = 0

You have proved the theorem: χT (T ) = 0, the characteristic polynomial of T , evaluated
at T , gives the zero transformation. This is under the assumption that all roots of the
characteristic polynomial lie in K, but this restriction can be removed, as follows:

Let K be any field, and let A ∈ Matn(K). If F is any field with F ⊇ K then A can
be considered as an element of Matn(F ). The characteristic polynomial of A is the same
whether A is regarded as a matrix with entries in K or as a matrix with entries in F .
Moreover, χA(A) is the same matrix, whether A is regarded as a matrix with entries in K or
as a matrix with entries in F . Since there exists a field F ⊇ K such that all roots of χA(x)
lie in F , it follows that χA(A) = 0.

Now let T ∈ EndK(V ) and let A be the matrix of T with respect to some ordred basis B.
Let p(x) = χT (x) = χA(x). We have p(A) = 0. But p(A) is the matrix of p(T ) with respect
to B, so p(T ) = 0 as well.


