FURTHER EXERCISES

Let N and H be groups. An extension of N by H is a group E along with a monomorphism $i\colon N\to E$ and an epimorphism $\pi\colon E\to H$ such that $i(N)=\ker\pi$ (so that N imbeds in E as a normal subgroup, with the quotient group being isomorphic with H). We shall usually refer to an extension (E,i,π) simply by the group E; however, the nature of the maps i and π are important in distinguishing between extensions. We identify N with its image under i, and H with the quotient of E by N. As an example, let $\varphi\colon H\to \operatorname{Aut}(N)$ be a homomorphism; then the semidirect product $N\rtimes_{\varphi}H$ is an extension of N by H in an obvious way, taking i to be the inclusion map sending $n\in N$ to n to be the projection map sending n to n.

11. We say that an extension E of N by H is a split extension if there is a homomorphism $t \colon H \to E$ (called a splitting map for the extension) such that $\pi \circ t$ is the identity map on H, in which case t(H) will be a transversal for N in E. Show that E is a split extension iff it is a semidirect product of N by H.

12. (cont.) Let Q be the quaternion group of order 8. (We can consider Q as the set $\{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by the rules $i^2 = j^2 = k^2 = -1$ and ij = k = -ji.) Show that Q can be realized as a non-trivial extension in four ways—thrice as an extension of \mathbb{Z}_4 by \mathbb{Z}_2 , and once as an extension of \mathbb{Z}_2 by $\mathbb{Z}_2 \times \mathbb{Z}_2$ —but that none of these extensions is split. (In other words, Q cannot be written non-trivially as a semidirect product.)

If E is an extension of N by H, then we cannot expect to find a homomorphism $t\colon H\to E$ such that t(H) will be a transversal for N in E, for if such a t existed then E would be split. However, since $H\cong E/N$, we can always find a set map $t\colon H\to E$ whose image is a transversal for N; such a map is called a section of the extension. Moreover, we can always choose t so that t(1)=1, in which case we say that t is normalized. (We use normalized sections instead of arbitrary sections in order to keep the notational complexity to a minimum.)

13. (cont.) Let t be a normalized section of an extension E. Let $\Psi \colon E \to \operatorname{Aut}(E)$ be the homomorphism sending an element of E to the corresponding inner automorphism of E. We shall, for $x \in E$, regard $\Psi(x)$ as being an automorphism of N, which is possible since $N \preceq E$. Define set maps $f \colon H \times H \to N$ and $\varphi \colon H \to \operatorname{Aut}(N)$ by

$$f(\alpha, \beta) = t(\alpha)t(\beta)t(\alpha\beta)^{-1},$$

$$\varphi(\alpha) = \Psi(t(\alpha)).$$

We call (f,φ) the factor pair arising from t. Show that (f,φ) has

ES

V by H is a group E along morphism $\pi \colon E \to H$ such s a normal subgroup, with We shall usually refer to an ever, the nature of the maps een extensions. We identify protect of E by N. As an phism; then the semidirect , an obvious way, taking i to and π to be the projection

by H is a split extension if 7 (called a splitting map for dentity map on H, in which in E. Show that E is a split t of N by H.

of order 8. (We can consider Itiplication given by the rules Show that Q can be realized ys-thrice as an extension of of $\mathbf{Z_2}$ by $\mathbf{Z_2} \times \mathbf{Z_2}$ —but that n other words, Q cannot be product.)

annot expect to find a homoa transversal for N in E, for Iowever, since $H \cong E/N$, we image is a transversal for N; ion. Moreover, we can always say that t is normalized. (We sections in order to keep the

tion of an extension E. Let ism sending an element of E to ism of E. We shall, for $x \in E$, sm of N, which is possible since $\rightarrow N$ and $\varphi \colon H \rightarrow \operatorname{Aut}(N)$ by

 $\beta)t(\alpha\beta)^{-1},$

)).

g from t. Show that (f, φ) has

the following properties:

- 1 $f(\alpha,1) = f(1,\alpha) = 1$ for every $\alpha \in H$, and $\varphi(1)$ is the identity in Aut(N).
- **2** $\varphi(\alpha)\varphi(\beta) = \Psi(f(\alpha,\beta))\varphi(\alpha\beta)$ for $\alpha,\beta \in H$.
- 3 $f(\alpha,\beta)f(\alpha\beta,\gamma) = \varphi(\alpha)(f(\beta,\gamma))f(\alpha,\beta\gamma)$ for $\alpha,\beta,\gamma \in H$.
- 14. (cont.) Just as we were able to externalize the notion of semidirect product, so should we be able to externalize the notion of extension; that is, given groups N and H and appropriate additional data, we should be able to construct an extension of N by H. Using Exercise 13 as a guide, formulate such an external construction and prove that it works.

We shall return to these ideas in the further exercises to Section 9.

3. Group Actions

Let G be an arbitrary group. A (left) action of G on a set X is a map from $G \times X$ to X, with the image of (g, x) being denoted by gx, which satisfies the following conditions:

• 1x = x for every $x \in X$.

• $(g_1g_2)x = g_1(g_2x)$ for every $g_1, g_2 \in G$ and $x \in X$.

(Right actions are defined analogously and are used in lieu of left actions by many authors; however, in this book virtually all actions considered will be left actions.) If we have an action of G on X, then we say that G acts on X or that X is a G-set. If X is a G-set, then X is also an H-set for any $H \leq G$, as the action of G on X restricts to give an action of H on X.

For example, let $H \leq G$ and consider the coset space G/H. We have an obvious map from $G \times G/H$ to G/H, namely the left multiplication map sending (g, xH) to gxH. This is easily seen to be a left action of G on G/H. Whenever we refer to a coset space G/Has being a G-set, it is this action of G on G/H that we have in mind.

We now provide an alternate perspective on group actions.

PROPOSITION 1. There is a natural bijective correspondence between the set of actions of G on a set X and the set of homomorphisms from G to Σ_X .

EXERCISES

Throughout these exercises, p denotes a prime.

1. Show that if P is a non-cyclic finite p-group, then P has a normal subgroup N such that $P/N \cong \mathbf{Z_p} \times \mathbf{Z_p}$.

2. Let P be a group of order p^n . Show that P has a normal subgroup N_a of order p^a for every $0 \le a \le n$, and that these subgroups can be chosen so that N_a is contained in N_b whenever $a \leq b$.

3. Let G = GL(n, p), and let P be a Sylow p-subgroup of \overline{G} . What is the order of Z(P)? What is the order of Z(P/Z(P))? If we let $Z_2(P) \leq P$ be such that $Z_2(P)/Z(P) = Z(P/Z(P))$ and continue in this way, what happens?

4. Let U be the subgroup of $\mathrm{GL}(n,p)$ consisting of the upper unitriangular matrices, and let Q be the subgroup of U consisting of all matrices whose (i, j)-entry is zero whenever 1 < i < j < n. Determine Z(Q), and show that Q/Z(Q) is abelian.

5. Show that subgroups and quotient groups of finite nilpotent groups are nilpotent, and that direct products of finite nilpotent groups

6. Let U be the subgroup of $\mathrm{GL}(3,p)$ consisting of the upper unitriangular matrices. Show that if p is an odd prime, then U is a non-abelian group of order p^3 having no elements of order p^2 . If p=2, with which group of order 8 is U isomorphic?

FURTHER EXERCISES

7. Show that a finite group G has a largest nilpotent normal subgroup, in the sense that it contains all nilpotent normal subgroups of G. (This subgroup is called the $Fitting\ subgroup\ of\ G.$)

The intersection of all maximal subgroups of a finite group G is called the Frattini subgroup of G and is denoted by $\Phi(G)$.

8. Show that $\Phi(G)$ is a nilpotent normal subgroup of G.

9. Show that $g \in \Phi(G)$ iff whenever $G = \langle S \rangle$ and $g \in S$, then

10. Show that if P is a finite p-group, then $P/\Phi(P)$ is an elementary abelian p-group.

t A be an abelian group write an action of H as automormorphism from H to $\operatorname{Aut}(A)$. g the cocycle identity given in of the pair (H,A). The set d by $Z^2(H,A)$, and if we determine (H,A) for (H,A) and if we defunction (H,A) and an abelian group. A 2-cocycle function (H,A) and (H,A) for all (H,A) and is a subset (H,A) and is a subset (H,A) and is denoted by (H,A) and (H,A) and

normal Hall subgroup of a fiproof of the Schur-Zassenhaus (A, A) was a 2-coboundary, or The difference of sign between above and what was established re, we showed that this fact imo A in G. We attempt to make cohomology group of (G/A, A)A in G more transparent in the

ssenhaus theorem asserts that if group G, then not only does N ich complements are conjugate neept of solvable groups, which se [22, pp. 246-8] for further

SES

o such that $G = N \rtimes H$, where H d |H| are relatively coprime, then conjugate. umption that H is nilpotent rather

FURTHER EXERCISES

These exercises are a continuation of the further exercises to Section 2. Let N and H be groups. A factor pair of N by H is a pair (f, φ) of set maps $f: H \times H \to N$ and $\varphi: H \to \operatorname{Aut}(N)$ satisfying properties 1, 2, and 3 listed on page 27. Let \mathcal{E} be the set of extensions of N by H, and let \mathcal{F} be the set of factor pairs of N by H. In what follows, we will always use "extension" to mean an element of \mathcal{E} , and "factor pair" to mean an element of \mathcal{F} .

3. Let (f, φ) be a factor pair, and define

$$(x,\alpha)\cdot(y,\beta)=(x\varphi(\alpha)(y)f(\alpha,\beta),\alpha\beta)$$

for $(x,\alpha),(y,\beta)\in N\times H$. Show that this gives a group structure on $N\times H$; call this group $E_{f,\varphi}$. Show further that $(E_{f,\varphi},i,\pi)$ is an extension, where i(x)=(x,1) and $\pi(x,\alpha)=\alpha$, and that (f,φ) is the factor pair arising from some normalized section of $E_{f,\varphi}$. (Observe that this construction generalizes the notion of external semidirect product.)

We have seen in Exercise 2.13 that an extension gives rise to a factor pair via a choice of normalized section, and we have just given an explicit construction of an extension from a given factor pair. We view these processes as giving maps between $\mathcal E$ and $\mathcal F$, and we now investigate the relationship between these maps. We must first consider the relation between factor pairs arising from different normalized sections of the same extension.

- 4. (cont.) Suppose that t and u are normalized sections of an extension E, and let (f,φ) and (g,ρ) be the factor pairs arising from t and u, respectively. Let $c\colon H \to N$ be the set map such that $u(\alpha) = c(\alpha)t(\alpha)$ for every $\alpha \in H$. Show that the following properties hold:
 - 4 $\rho(\alpha) = \Psi(c(\alpha))\varphi(\alpha)$ for $\alpha \in H$, where $\Psi(c(\alpha))$ is the inner automorphism of N coresponding to $c(\alpha)$.

5 $g(\alpha, \beta) = c(\alpha)\varphi(\alpha)(c(\beta))f(\alpha, \beta)c(\alpha\beta)^{-1}$ for $\alpha, \beta \in H$.

The above exercise motivates the following definition: We say that two factor pairs (f,φ) and (g,ρ) are equivalent if there is a map $c\colon N\to H$ such that properties 4 and 5 hold. (Verify that this is an equivalence relation on \mathcal{F} .) Let $\overline{\mathcal{F}}$ denote the set of equivalence classes of factor pairs; we will use $[f,\varphi]$ to denote the class of the factor pair (f,φ) . We have a well-defined map from \mathcal{E} to $\overline{\mathcal{F}}$ which sends an extension to the class of a factor pair arising from any normalized section. We must now consider what happens when we pass from $\overline{\mathcal{F}}$ back to \mathcal{E} via the construction in Exercise 3. Here we will need to recall the exact definition of an extension.

5. (cont.) Let (f,φ) and (g,ρ) be factor pairs, with $[f,\varphi]=[g,\rho]$. Let $i\colon N\to E_{f,\varphi}$ and $j\colon N\to E_{g,\rho}$ be the natural inclusions (of N into the underlying set $N\times H$), and let $\pi\colon E_{f,\varphi}\to H$ and $\tau\colon E_{g,\rho}\to H$ be the natural projections (of the underlying set $N\times H$ onto H). Show that there is an isomorphism $\xi\colon E_{f,\varphi}\to E_{g,\rho}$ such that $\xi\circ i=j$ and $\tau\circ \xi=\pi$.

Motivated by the above exercise, we say that two extensions (E,i,π) and (F,j,τ) are equivalent if there is an isomorphism $\xi\colon E\to F$ such that $\xi\circ i=j$ and $\tau\circ \xi=\pi$. (Verify that this gives an equivalence relation on $\mathcal E$.) We let $\overline{\mathcal E}$ denote the set of equivalence classes of extensions, and we let [E] denote the class of an extension E. In this context, Exercise 5 asserts that there is a well-defined map from $\overline{\mathcal F}$ to $\overline{\mathcal E}$, sending $[f,\varphi]$ to $[E_{f,\varphi}]$.

6. (cont.) If p is an odd prime, show that $\mathbf{Z_{p^2}}$ can be realized in p-1 nonequivalent ways as an extension of $\mathbf{Z_p}$ by $\mathbf{Z_p}$.

7. (cont.) We have already obtained a map from \mathcal{E} to $\overline{\mathcal{F}}$, sending an extension E to the class of the factor pair arising from any normalized section of E. Show that this map induces a map from $\overline{\mathcal{E}}$ to $\overline{\mathcal{F}}$.

8. (cont.) Show that the map from $\overline{\mathcal{E}}$ to $\overline{\mathcal{F}}$ obtained in Exercise 7 is inverse to the map from $\overline{\mathcal{F}}$ to $\overline{\mathcal{E}}$ sending $[f,\varphi]$ to $[E_{f,\varphi}]$. Conclude that there is a bijective correspondence between the set of equivalence classes of extensions and the set of equivalence classes of factor pairs.

Exercise 8 implies that in order to study extensions up to equivalence, it suffices to study equivalence classes of factor pairs. The next two exercises give a slight refinement of the correspondence just obtained.

9. (cont.) Let $\eta: \operatorname{Aut}(N) \to \operatorname{Out}(N)$ be the natural map. Show that if (f,φ) and (g,ρ) are any two factor pairs arising from an extension E, then $\eta \circ \varphi = \eta \circ \rho$, and this map from H to $\operatorname{Out}(N)$ (which we denote by ψ_E) is a homomorphism. Conclude that there is a well-defined map from $\mathcal E$ to the set of homomorphisms from H to $\operatorname{Out}(N)$, sending E to ψ_E .

10. (cont.) Let $\psi \colon H \to \operatorname{Out}(N)$ be a given homomorphism. Show that there is a bijective correspondence between the set of classes [E] of $\overline{\mathcal{E}}$ for which $\psi_E = \psi$ and the set of classes $[f, \varphi]$ of $\overline{\mathcal{F}}$ for which $\eta \circ \varphi = \psi$, where $\eta \colon \operatorname{Aut}(N) \to \operatorname{Out}(N)$ is the natural map.

We now consider the case where the group N is abelian; we write A instead of N, and we will use additive notation for A. Observe that $\operatorname{Out}(A) = \operatorname{Aut}(A)$. We fix a homomorphism $\varphi \colon H \to \operatorname{Aut}(A)$, and we write xa in lieu of $\varphi(x)(a)$ for $x \in H$ and $a \in A$. We would like to study

factor pairs, with $[f,\varphi]=[g,\rho]$. g,ρ be the natural inclusions (of H), and let $\pi\colon E_{f,\varphi}\to H$ and ojections (of the underlying set an isomorphism $\xi\colon E_{f,\varphi}\to E_{g,\rho}$

that two extensions (E, i, π) and morphism $\xi \colon E \to F$ such that ves an equivalence relation on \mathcal{E} .) sees of extensions, and we let [E] s context, Exercise 5 asserts that sending $[f, \varphi]$ to $[E_{f, \varphi}]$.

that $\mathbf{Z_{p^2}}$ can be realized in p-1 on of $\mathbf{Z_p}$ by $\mathbf{Z_p}$.

ed a map from \mathcal{E} to $\overline{\mathcal{F}}$, sending the factor pair arising from any at this map induces a map from $\overline{\mathcal{E}}$

 $_{1}$ $\overline{\mathcal{E}}$ to $\overline{\mathcal{F}}$ obtained in Exercise 7 $\overline{\mathcal{E}}$ sending $[f,\varphi]$ to $[E_{f,\varphi}]$. Conrespondence between the set of and the set of equivalence classes

y extensions up to equivalence, it tor pairs. The next two exercises lence just obtained.

(N) be the natural map. Show two factor pairs arising from an and this map from H to $\operatorname{Out}(N)$ nomorphism. Conclude that there he set of homomorphisms from H

e a given homomorphism. Show ndence between the set of classes the set of classes $[f, \varphi]$ of $\overline{\mathcal{F}}$ for $V \to \operatorname{Out}(N)$ is the natural map.

group N is abelian; we write A notation for A. Observe that phism $\varphi \colon H \to \operatorname{Aut}(A)$, and we d $a \in A$. We would like to study

those equivalence classes [E] of extensions of N by H for which $\psi_E = \varphi$; we say that such extensions respect the action of H on A. By Exercise 10, it suffices to study equivalence classes $[f,\varphi]$ of factor pairs of A by H. We suppress φ in our notation, so that we are studying functions $f\colon H\times H\to A$ such that f(x,1)=f(1,x)=0 for all $x\in H$ and which in addition satisfy

$$f(x,y) + f(xy,z) = xf(y,z) + f(x,yz)$$

for all $x, y, z \in H$, with two such functions f and g being equivalent if there is a map $c \colon H \to A$ such that c(1) = 0 and

$$g(x,y) = f(x,y) + c(x) + xc(y) - c(xy)$$

for all $x, y \in H$. As discussed in the section, the set $H^2(H, A)$ of equivalence classes of such functions forms an abelian group that is called the second cohomology group of (H, A). It now follows from Exercise 10 that there is a bijective correpondence between the group $H^2(H, A)$ and the set of equivalence classes of extensions of A by H which respect the action of H on A. In particular, if $H^2(H, A) = 0$, then every extension of A by H is split.

11. (cont.) Suppose that H and A are both finite. Show that the order of each element of $H^2(H,A)$ divides both |H| and the exponent of A. (This implies that $H^2(G/A,A)=0$ when A is an abelian normal Hall subgroup of a finite group G, which we established in proving the Schur-Zassenhaus theorem.)