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26 1. Rudiments of Group Theory

FURTHER EXERCISES

Let N and H be groups. An extension of N by H is a group E along
with a monomorphism i: N — E and an epimorphism 7: B — H such
that i(IN) = kerm (so that N imbeds in E as a normal subgroup, with
the quotient group being isomorphic with H ). We shall usually refer to an
extension (E,,T) simply by the group E; however, the nature of the maps
i and 7 are important in distinguishing between extensions. We identify
N with its image under 4, and H with the quotient of Eby N. Asan
example, let ©: H — Aut{N) be a homomorphism; then the sernidirect
product N x, H is an extension of N by H in an obvious way, taking ¢ to
be the inclusion map sending n € N to (n,1} and 7 to be the projection

map sending (n, k) to k-

11. We say that an extension E of N by H is a split extension if
there is a homomorphism &: H — E (called a splitting map for
the extension) such that 7o t is the identity map on H, in which
case t(H) will be a transversal for N in E. Show that E is a split
extension iff it is & semidirect product of N by H.

12. (cont.) Let @ be the quaternion group of order 8. (We can consider
@ as the set {+1,X, +4, £k} with multiplication given by the rules
2= =k =-landij= k = —i.) Show that Q can be realized

as a non-trivial extension in four ways—thrice as an extension of

Z4 by Za, and once as an extension of Zz by Zz X Zs—but that

none of these extensions is split. {In other words, Q cannot be

written non-trivially as a semidirect product.)

If E is an extension of N by H, then we cannot expect to find a homo-
morphism ¢: H — E such that t{H)} will be a transversal for N in E, for
if such a ¢ existed then £ would be split. However, since H = E/N, we
can always find a set map ¢ H — E whose image is a transversal for N;
such a map is called a section of the extension. Moreover, we can always
choose ¢ so that ¢(1) =1, in which case we say that £ is normalized. (We
use normalized sections instead of arbitrary sections in order to keep the
notational complexity to a minimum.}

13. {cont.) Let ¢ be a normalized section of an extension E. Let
¥: E — Aut(E) be the homomorphism sending an element of E to
the corresponding inner automorphism of E. We shall, for z € E,

@ regard ¥(z) as being an automorphism of NV, which is possible since

N < E. Define set maps f:HxH—N and @: H — Aut(N) by
fla,B) = tHa)t(B)E(eB)
olo) = T(Ee))-
We call {f,) the factor pair arising from ¢. Show that (f, @) has
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the following properties:
1 fle,1) = f(l,a) = 1 for every o € H, and (1) is the
identity in Aut(N).
2 p(a)p(B) = U(f(a, 8))p(ap) for o, € H.
8 flo, ) f(abB, ) = p(a)(F(B,7)) f (e, By) for o, 8,7 € H.

14. (cont.) Just as we were able to externalize the notion of semidirect
product, so should we be able to externalize the notion of extension;
that is, given groups N and H and appropriate additional data,
we should be able to construct an extension of N by H. Using

Exercise 13 as a guide, formulate such an external construction
and prove that it works.

We shall return to these ideas in the further exercises to Section 9.

3. Group Actions

Let G be an arbitrary group. A (left) action of G on a set X is a
map from G x X to X, with the image of (g, z) being denoted by gz,
which satisfies the following conditions:

® lx = for every z € X.

* (g192)z = g1(g,) for every g1, ¢ € Gand z € X.
(Right actions are defined analogously and are used in lieu of left
actions by many authors; however, in this book virtually all actions
considered will be left actions.) If we have an action of (7 on X, then
we say that G acts on X or that X is a G-set. If X is a G-
X is also an H-set for any H < G, as the action of G on X
to give an action of H on X.

For example, let H < G and consider the coset space G/H. We
have an obvious map from G x /H to G/H, namely the left mul-
tiplication map sending (g,zH) to gzH. This is easily seen to be a
left action of G on G/H. Whenever we refer to a coset space G/H
as being a G-set, it is this action of G on ¢ /H that we have in mind.

We now provide an alternate perspective on group actions.

set, then
restricts

PROPOSITION 1. There is a natural bijective correspondence be-
tween the set of actions of & on a set X and the set of homomor-

. phisms from G to Lx.
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3. Local Structure

EXERCISES

Throughout these excrcises, p denotes 2 prime.

1.

2.

The
the Frattini subgroup of

8.
9.

Let G = GL{n,p), and let

 Let U be the

_ Show that a finite group

10.

Show that if P is a non-cyclic finite p-group: then P has a normal

subgroup N such that P/N & Zp ¥ Zp-

Let P be a group of order p. Show that P has a normal sub-
group Ne of order p® for every p<esn, and that these subgroups
can be chosen sO that N is contained in Np whenever ¢ < b.

P be a Sylow p-subgroup of G. What
of Z(P/Z(P))? If we let

is the order of Z(P 2 What is the order
Z(P/Z(P)) and continue

Zo(P) < P be such that Za(P)/Z(P) =
in this way, what happens”

Let U be the subgroup of GL(n,p) consisting of the upper uni-
triangular matrices, and let @ be the subgroup of U consisting of
all matrices Whose (1,)-entry is zero whenever 1 < i< <
Determine Z(@), and show that @ 1Z2(Q) 18 abelian.

_ Ghow that subgroups and quotient groups of finite nilpotent groups

are nilpotent, and that direct products of finite nilpotent groups

are nilpotent.
upper uni-

then U is &
order p2. If

consisting of the
is an odd prime,
no elements of
U isomorphic?

subgroup of GL(3,p)
triangular matrices. Show that if p
non-abelian group of order p° having
p =2 with which group of order 8 is

FURTHER EXERCISES

(! has a largest nilpotent normal subgroup,
in the sense that it contains all nilpotent normal subgroups of G.
(This subgroup is called the Fiiting subgroup of G

intersection of all maximal subgroups of a finite group G is called
¢ and is denoted by &(G).

Show that ®(G) s 2 nilpotent pormal subgroup of G.
Show that g € 3(G) iff whenever G =<8> and ¢

G =<8 —{g}>
Show that if Pisa finite p-group, then P/®(P) is an elementary

abelian p-group-

e 8, then
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FURTHER EXERCISES

These exercises are a continuation of the further exercises to Section 2.
Let N and H be groups. A factor pair of N by H is a pair (f, @) of set
maps f: H x H ~» N and ¢: H — Aut(N) satisfying properties 1, 2,
and 3 listed on page 27. Let £ be the set of extensions of N by H, and
let F be the set of factor pairs of N by H. In what follows, we will always

use “extension” to mean an element of £, and “factor pair” to mean an
element of F.

3. Let (f, ¢} be a factor pair, and define

(z,0) - (1, 8) = (wp(a)(y)f(a, B), o)

for (z,a),(y,B) € N x H. Show that this gives a group structure
on N x H; call this group E;,,. Show further that (Efpiym) is
an extension, where i(z) = {z, 1) and 7(z, &) = @, and that (fy0)
is the factor pair arising from some normalized section of E; ..
(Observe that this construction generalizes the notion of external
semidirect product.)

We have seen in Exercise 2.13 that an extension gives rise to a factor pair
via a choice of normalized section, and we have just given an explicit con-
struction of an extension from a given factor pair. We view these processes
as giving maps between £ and F, and we now investigate the relationship
between these maps. We must first consider the relation between factor
pairs arising from different normalized-sections of the same extension.

4. (cont.) Suppose that ¢ and u are normalized sections of an exten-
sion E, and let (f, ) and (g, ) be the factor pairs arising from
t and wu, respectively. Let ¢: H — N be the set map such that

u(a) = c(a)t(a) for every o € H. Show that the following proper-
ties hold:

4 pla) = ¥{c(a))p(a) for a € H, where ¥(c(a)) is the inner
automorphism of N coresponding to e(c).

5 gla, ) = c(a)p(a)(c(B8)) f(a, B)e(aB) ! for o, 3 € H.

The above exercise motivates the following definition: We say that two
factor pairs (f,¢) and (g, p) are equivalent if there is a map c: N — H
such that properties 4 and 5 hold. (Verify that this is an equivalence
relation on F.) Let F denote the set of equivalence classes of factor pairs;
we will use [f, ] to denote the class of the factor pair (f,). We have
a well-defined map from £ to F which sends an extension to the class of
a factor pair arising from any normalized section. We must now consider
what happens when we pass from F back to £ via the construction in
Exercise 3. Here we will need to recall the exact definition of an extension.
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5. (cont.) Let (f,) and (g, p) be factor pairs, with [f.¢] = lg, 0]
Let i: N — Ej, and j: N — Eg, be the natural inclusions {of
N into the underlying set N x H), and let m: Ef, — H and
r: By, — H be the natural projections (of the underlying set
N x H onto H). Show that there is an isomorphism £: Ef, — Eg,p
such that £oi=jand 70§ = .

Motivated by the above exercise, we say that two extensions (F, ,7) and
(F,j,7) are equivalent if there is an isomorphism £: E — F such that
£oi = jand Toé = m. (Verify that this gives an equivalence relation on £}
We let £ denote the set of equivalence classes of extensions, and we let [E]
denote the class of an extension E. In this context, Exercise 5 asserts that

there is a well-defined map from F to &, sending [f, @] to [Es,p]-

6. {cont.) If pis an odd prime, show that Z,z can be realized inp—1
nonequivalent ways as an extension of Zp by Zy,.

7. (cont.) We have already obtained a map from £ to F, sending
an extension E to the class of the factor pair arising from any
nol:_t_nalized section of E. Show that this map induces a map from €
to F.

8. (cont.) Show that the map from £ to F obtained in Exercise 7
is inverse to the map from F to £ sending [f, ] to [Ef]. Con-
clude that there is a bijective correspondence between the set of
equivalence classes of extensions and the set of equivalence classes

of factor pairs.

Exercise 8 implies that in order to study extensions up to equivalence, it
suffices to study equivalence classes of factor pairs. The next two exercises
give a slight refinement of the correspondence just obtained.

9. (cont.) Let n: Aut(N) — Out(N) be the natural map. Show
that if (f,) and (g, p) are any two factor pairs arising from an
extension E, then 70 @ =7 o p, and this map from H to Out(lV)
(which we denote by 1) is a homomorphism. Conclude that there
is a well-defined map from £ to the set of homomorphisms from H
to Out(N), sending E to Y.

10. (cont.) Let ¢: H — Out(N) be a given homomorphism. Show
that there is a bijective correspondence between the set of classes
[E} of T for which ¥g = 9 and the set of classes {f, ¢l of F for
which 5o @ = 9, where n: Aut(N ) — Out(N) is the natural map.

We now consider the case where the group N is abelian; we write A
instead of N, and we will use additive notation for A. Observe that
Out(A) = Aut(4). We fix a homomorphism @: H — Aut(4), and we
write za in lieu of o(z)(a) for z € H and a € A, We would like to study
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those equivalence classes [E] of extensions of N by H for which YE = @
we say that such extensions respect the action of H on A. By Exercise 10,
it suffices to study equivalence classes [f, ] of factor pairs of A by H. We
suppress ¢ in our notation, so that we are studying functions f: HxH — A
such that f(z,1) = f(1,2) = 0 for all z € H and which in addition satisfy

f2,9) + flzy,2) = 2f(y,2) + f(z,y2)

for all z,y,z € H, with two such functions f and g being equivalent if there
is a map c: H — A such that ¢(1) = 0 and

g, y) = f(2,y) + c(z) + zc(y) — c(zy)

forall z,y € H. Asdiscussed in the section, the set H2(H, A) of equivalence
classes of such functions forms an abelian group that is called the second
cohomology group of (H, A). It now follows from Exercise 10 that there
is a bijective correpondence between the group H?%(H, A) and the set of
equivalence classes of extensions of A by H which respect the action of &

on A. In particular, if B 2(H, A) = 0, then every extension of A4 by H is
split.

11. (cont.) Suppose that H and A are both finite. Show that the order
of each element of H?(H, A) divides both |H| and the exponent
of A. (This implies that H2(G/A, A) = 0 when A is an abelian
normal Hall subgroup of a finite group , which we established in
proving the Schur-Zassenhaus theorem.)




