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1. INTRODUCTION

This paper will eventually have an introduction !

Editorial note: The main results of this paper are due to John Enyang. The contributions of
the second author were largely editorial and expository.

At one point, we we intended to use the detailed description of the seminormal representa-
tions of the Brauer algebra obtained here as an aid to understanding Murphy type bases for the
quotients of the Brauer algebras acting on tensor space. However, as it turned out, our approach
in [1] did not require using the results of this paper.

2010 Mathematics Subject Classification. 20G05; 05SE10.
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2. PRELIMINARIES

2.1. Definition of the Brauer algebras. The Brauer algebras were defined by Brauer [3].
Wenzl [18] showed that the Brauer algebras are obtained from the group algebra of the sym-
metric group by the Jones basic construction, and that the Brauer algebras over a field of char-
acteristic zero are generically semisimple. Cellularity of the Brauer algebras was established
by Graham and Lehrer [10].

Let S be an integral domain with a distinguished element . The Brauer algebra B, =
B,(S;6) is the free S—module with basis the set of (n,n)-Brauer diagrams. The product of
two Brauer diagrams is obtained by stacking them and then replacing each closed loop by a
factor of d; see [3] or [18] for details. By convention By(.S;9) = S.

The generic ground ring for the Brauer algebras is R = Z[z], where z is an indeterminant.
We write I for the field of fractions Q(z) of R. For any specialization By (S;0), one has
By (S;0) = Bi(R; z) ®pg S, with z acting on .S by multiplication by §, z® 1 = 1 ® 6. We will
commonly write By, for By (R; z) and By (z) for Bi(F; z).

The involution * on (n,n)-Brauer diagrams which reflects a diagram in the axis y = 1/2
extends linearly to an algebra involution of B,,(S;d). Note that the Brauer diagrams with only
vertical strands are in bijection with permutations of {1,...,n}, and that the multiplication of
two such diagrams coincides with the multiplication of permutations. Thus the Brauer algebra
contains the group algebra SG,, of the permutation group &,, as a unital subalgebra. The
identity element of the Brauer algebra is the diagram corresponding to the trivial permutation.
We will note below that SG,, is also a quotient of B, (S J).

Let s; and e; denote the following (n, n)-Brauer diagrams:

P T T B e P

1 1+ 1 1 1+ 1
It is easy to see that eq,...,e,_1 and sq,...,s,_1 generate B, (S;0) as an algebra. We have
e? = de;, so that e; is an essentlal 1demp0tent if § # 0 and nilpotent otherwise. Note that

ef =e¢;and s7 = s;.

The products ab and ba of two Brauer diagrams have at most as many through strands as
a. Consequently, the span of diagrams with fewer than n through strands is an ideal J, in
B, (S;0). The ideal J,, is generated by ¢e,,_;. We have B, (S;0)/J, = S&,, as algebras with
involutions; in fact, the isomorphism is determined by v + J,, +— v, forv € G,,.

2.2. Generic semisimplicity, branching diagram, and standard tableaux. Let H denote
Young’s lattice, i.e. the directed graded graph with vertices at level k the set Hk of Young
diagrams of size k, and directed edges A — pu connectlng A€ H k-1 and p € H e 1f pis
obtained from A by adding one node. For p € Hk, the set A(u) of addable nodes of y is
the set of @ = (j, p; + 1) such that ;o U {o} is a Young diagram. Likewise, the set R(y) of
removable nodes is the set of a = (7, uj) such that i \ {a} is a Young diagram. The addable
nodes correspond one—to—one w1th NeH x+1 such that p - Xin H, and the removable nodes
correspond one—to—one with v € H x—1 such that v — p in H.

If K is a field of characteristic zero, then the group algebra K G, is split semisimple for all
k>0, and H is the branching diagram for the tower of split semisimple algebras (K Sy)x=o.

It is well known that standard Young tableaux of a given shape \ € H % can be identified
with paths on H from () to A, i.e. sequences (A))o <) such that \0) € H,;, A\®) = X, and
A=) 5 A0 in H for 1 < j < k.

We are going to define Brauer algebra analogues of Young’s lattice and standard tableaux.
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For k > 0, let Ek be the set of pairs (A, ), where 0 < I < |k/2] and ) is Young diagram of
size k — 2l. EO has a unique element ({),0), which we also denote by (). Define B to be the
directed graded graph with:

(1) vertices at level k: Ek, and
(2) a directed edge (\,l) — (u, m) connecting (A, [) € By_1 and (u,m) € By, if r p is
obtained either by adding a node to A, or by deleting a node from .

According to Wenzl [18], Theorem 3.21 and Corollary 3.3, if K is a field of characteristic
zero and 0 € K is not an integer, then the algebras B, = By (K;0) are split semisimple, and
the branching diagram for the sequence (B )x>o is B. This applies in particular to By(z) =
Bk (IF, Z) .

Next we discuss the analogue of standard tableaux.

Definition 2.1. A path on B from (N1 € Ej to (u,m) € By, (for j < k) is a sequence
t = (t0 0D f®)) with ) = (A1), t®) = (u,m), £ € B, for all s, and &) — ¢+
in B for all s < k. The set of all paths from 0 to (\,) € B, is denoted by BM 1t t € BOMY,
we write Shape(t) = (), 1). Write BY for the set of all paths from () to some (A1) € B,.

The set BS\™" is the Brauer algebra analogue of the set of standard tableaux of fixed shape in
the representation theory of the symmetric group. The set B is the Brauer algebra analogue
of the set of all standard tableaux of fixed size n. These paths are often called “up—down

tableaux”.

Remark 2.2. For a path t = (A1), AV, 5y),..., (AW 1)) € B the sequence
(MO AL AB)) suffices to reconstruct t, since [; = (5 — |AY)|)/2. Therefore, we will
sometimes also write t(j) = AU,

Notation 2.3 (Operations on paths).

e (Concatentation) A path s from (A, /) to (1, m) and a path t from (u, m) to (v,n) can be
concatenated in the obvious sense; we denote the concatenation by s o t.

e (Truncation) If tis a path from ) to (\,1) € En, and 0 < k < £ < n, write g for the
path (t*) ... t)). Write t,; for ty ;. Write t’ for t;,,_; and t” for t;,,_o.

e (Shifting) If t = (A9, [;))o<;< is a path on B, let )21] = (A9, i+ 1))o<j<k-

2.3. Markov trace and conditional expectation. Let B, = Bj(S;J) be any specialization
of the Brauer algebras, where 0 is assumed to be invertible in S. There exists a conditional
expectation €, : By — DBj_1, thatis, a unital By_;—Bj_; bimodule map, defined on k—strand
Brauer diagrams by €;_1(b) = (1/6) cl(b), where cl(b) is obtained by joining the k—th upper
and lower vertices of b, and replacing any closed loop by a factor of . For z € By, one has

erxer = 0c,_1(x)ex. (2.1)
Lemma 2.4. The map x — xey from By, to By 1 is injective.
Proof. One has e (zeg) = (1/9)x. O

There exists an S—valued trace 7 on By, defined inductively by 7(1) = 1 and 7(b) =
T(eg-1(b)) for b € By. By definition 7(.(b)) = 7(b) where ¢ denotes the embedding of By
in By1,and T oe,_1 = 7. The trace 7 is called the Markov trace. See [18], Proposition 2.2 for
details.

According to Wenzl [18], if K is a field of characteristic zero and 6 € K is not an integer,

then the Markov trace 7 is non—degenerate on B, = B (K;0); that is, for each x € By, there
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exists y € By such that 7(xy) # 0. This entails that 7(p) # 0 for each minimal idempotent
pE By.

We conclude this subsection with some observations about minimal idempotents. Assume
K is a field of characteristic zero and § € K is not an integer, as above. For (\,[) € B\k, let
2,1y denote the corresponding minimal central idempotent in By, = By (K;9).

Lemma 2.5. Let (\,]) € §k,1. If p is a minimal idempotent in By,_1z(x 1), then (1/0)eyp is a
minimal idempotent in By 12()141)

Proof. By the proof of Theorem 3.2 in [18], Jyr1 = Biyiex By is isomorphic to the Jones
basic construction for the pair By_; C Bj. The result now follows from [18], Proposition
1.2. O

Lemma 2.6. Let p be a minimal idempotent in By, and ( a minimal central idempotent in By,
such that p( # 0. Then ex_1(pC) = (1(pC)/7(p)) p.

Proof. We have ;_1(p() = per_1(p¢)p, by the bimodule property of €51, and since p is a
minimal idempotent, this is equal to ap for some o € K. Applying 7, we get 7(p () = at(p),

soa =T1(p¢)/7(p). O

2.4. Weights of the Markov trace. Wenzl has determined the weights of the Markov trace 7
on By (z) = Bi(F, z), that is, the values of 7 on minimal idempotents.

Notation 2.7. For a Young diagram g, let i denote the transposed diagram. Thus fi; is the
length of the j—th column of u. If (7, j) is a node of the Young diagram ., the associated hook
length is

Let H (1) denote the produce of all the hook lengths, H () =[]
is over all nodes « of f.

acy (@), where the product

Definition 2.8 ([4]). The El Samra—King polynomial associated to a Young diagram g is

Puz)=(HW) [ G+m+m—i-i) [ G-pm—-f+i+i-2)
(i:5)€p (ij)€p
127 1<)

Theorem 2.9 ([18], Theorem 3.2). Let p be a minimal idempotent in the minimal ideal of By,(z)
labelled by (u,l) € By. Then

7(p) = Pu(2)/2".

2.5. A Murphy basis for the Brauer algebras. Introduced by Graham and Lehrer as a device
for studying non-semisimple representations of a class of algebras that includes Hecke alge-
bras, Schur algebras and Brauer algebras [10], cellular algebras are defined by the existence
of a cellular basis and a cell datum, which have combinatorial properties analogous to the
“Robinson—Schensted correspondence” in the group algebra of the symmetric group. Cellular-
ity of 3; was established using a tangle type basis in [10, Theorem 3.11]. This paper will use
the cellular basis for By, given in [6, Section 6], which is a Brauer algebra analogue of Murphy’s
cellular basis [15, Theorem 4.17] for the Iwahori-Hecke algebra of the symmetric group. We
will adhere closely to the notation established in [6]. For further details on cellular algebras in

general, the reader is referred to [10, 12, 13, 8, 9].
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For:=0,1,...,let

1, ifl=0and: < 2,
o ) Gim21€i-o43 G if1 <1< |i/2],
Z 1 N~
[ factors
0, if [i/2] < L.

For (A1) € By, define

0) — Z w and CAl) = C(A,O)el(gl)_y
weS )

If 1 <a <1,define
Wai = SaSat1- " Si-1 = (i,i—1,...,a)

and w;, = w} ;. If b i—1land A b4, with A = U {(j, A -)},1eta=2£:1Aranddeﬁne

d®

u—A Weq,i and N_>)\ = Wj,q E Wq,q—r-

The elements dSL , and USL , are “branching factors” for restriction and induction of cell mod-
ules of the symmetric group algebras Z&,,. They are related to the Murphy basis of the sym-
metric group algebras as follows. Forn > 0 and A € H,, identify a standard tableau t of shape
A with a path (A\9))o<;<,, on Young’s lattice H and define

(n) (n—1) (1)
dt =d Aln— 1)_»\(n)d (n—2) 5 (n—1) * d/\(o>_>>\(1)-

Then d; € &, is the permutation such that t*d; = t, where t" is the “row reading” tableau in
which the entries 1, ... n are entered in order along the rows. Murphy’s basis is recovered as
Mey = d:C()\jo)dt.

See [6, Section 4].
For future reference we recall from [6, Lemma A.2] that the d— and u— branching factors for
the symmetric groups satisfy the compatibility relation

d,(HA = (U,(;LA)*C(;L,O)- (2.2)

It is shown in [6] that the branchmg factors for the symmetric group algebras can be lifted
to branching factors for the Brauer algebras, and that an analogue of Murphy’s cellular basis is
obtained by takmg ordered products of d- branching factors along paths on B as follows:

For (11, m) € Bi_y and (A, 1) € By, with (,m) — (X, 1) in B, define

dE e, ifl=m
1 (m
k—

(h2m=b)plm) i L = m o 1.

A=

4®)

(ym)—(\0) = (23)

If (11,m) € By and t = (1, mp), ..., (1™, my)) € B¥™, define
d, = d*) (k—1) (1)

(1D ) a8 ) 20 i) () i) " P ) (1) )
We now extend the usual dominance order &> on partitions to an order on the set By.

Definition 2.10. Let (\, 1), (1, m) € By. Write (A1) & (1, m) if either [ > m, or [ = m and
A .
5



Proposition 2.11 ([6, Theorem 6.19]). The set
By = {msy = dcopdy | 5,6 € B (A1) € By} (2.4)
is an R-basis for By, and (B, *, Ek,, >, By) is a cell datum for By,

One also has u-branching factors for the Brauer algebras defined as follows: For (u, m) €
Bi—1 and (A1) € By, with (u, m) — (A, 1) in B, define

(k=2m) _(m) o7
u(kz) _ Uysn 1> it i =m, (2.5)
Um0 @m0 i = m 41
The d— and u—branching factors satisfy the following compatibility relation:
(k) (k) «
oD um—ou) = Umys o) Clum)s (2.6)

see [6, Appendix A]. This relation will be used frequently.
We recall for convenience some basic properties of the bases (2.4) derived from the general

theory of cellular algebras (for details, see [10, 9, 8, 6]). For (\,[) € Ek, let BE(’\’” denote
the R—span of {mg | (,m) = (X, 1) ands,t € BY™} and BE™" the R-span of {m,; |
(u,m) > (A1) and s, t € B*™}. Then these are two sided ideals in B. Indeed, one has

BE(AJ) = Z Bkc(p,,m)Blm

(pm)B= (A1)
and similarly for BE(A’Z). For (\, 1) € By and s, t € E,(f’l), and b € B, one has
Meih = Z ru(b;t)mg, mod B,‘:(/\’l), 2.7)

u

where the sum is over u € E,(c)"l), and the scalars 7,(b;t) € R depend only on b and t, and not
on s. Evidently, one has m, = my,, and it follows that

bmgy = Z ru(b%; $)my¢  mod Bz(’\’l). (2.8)

The cell module Agj’l) is the free R-module with basis {m | t € E,(f’l)} with right Bj-action

mb = Zru(b; t)ym,, forb € By,

where the scalars 7,(b;t) € R are determined by the relation (2.7). The opposite cell module
(A,(C’\’l))* is the free R—module with basis {m} | s € B,i’w } and left action

bms = Zru(b*; s)ymy, forb € B.

u

It follows from the definitions that the map oy : BE(’\’”/BE(’\J) — (A,(g’\’l))* QR A,(c’\’l) deter-
mined by my ¢ + BE(A’” = mi®my, fors te B\,iA’l), is a By—B;, bimodule isomorphism.
For (\,1) € By and s,t € B,E,’\’l), the map (,) : A,(C’\’l) X A?’l) — R, defined by
(M, M) Mg ¢ = MgyMyy  mod BE(/\’Z) foru,v € B\,(C)"l), (2.9)
is a symmetric bilinear form on A,(C’\’l). It is shown in [10, Sect. 2] that the form defined by the
relation (2.9) is independent of the choice of s and t. It does depend, however, on the choice of

the cellular basis %), = {ms} of B;.
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The basis for A,(C’\’l) realises an explicit filtration by cell modules for B;_; of the restriction
(AD)
of A, to By_;.

Proposition 2.12 ([6, Lemma 3.13]). Assume that (\, 1) € B\k and (p,r) € Ek,l, where
(p,r) = (\ 1) in B. Let N2 C A,(j’l) and N>7) C A,(C’\’l) denote the R-submodules
respectively generated by

{m € A,(:"l) | Shape(tjx—1) &= (p,7)} and {m € A,(CM) | Shape(t;x_1) > (p,7)}.

Then the linear map N@") [N>@r) s AP given by

mg + NZ0 s my, ifs € BM te BY" and sy, =t,

is an isomorphism of Bj,_1-modules.

2.6. A partial order on paths, and a maximal path. The following partial order on paths
will play a crucial role:

Definition 2.13 ([9, Definition 2.16]). Consider paths 5 = (A, y),..., (A% 1;)) and t =
(1, mg), ..., (1™ my)) in E,g) We say that s precedes t in reverse lexicographic order
(denoted t 3= s) if s = t, or if for the last index 7 such that (A, 1;) # (u®,m;) we have
(D my) > (A9 1;). Write t = s5if t = 5 and 5 # t.

Next, we define two distinguished paths in E,(:"l)

. Recall the “row reading” standard tableau
t* for A € H,,, namely the standard tableau in which the numbers 1, ..., n are entered in order
from left to right along the rows of \. Regarded as a path on H, t* = (\9)o;<,, where

AU\ AU~ is the node in A(AU~Y) N A with least row index.

Definition 2.14.
(1) For (\,1) € By, define t = t*) by

2 = (0,r) for

0
) = ((1),r)  for 0
and t[QZ,k] = ((/\(j), l))ogjgk—zl, where f/\ = ()\(j))ggjgk_gl.

(2) Let (A1) € Bk Let p be the Young diagram obtained by adjoining to A its lowest addable
node, p = AU {(¢ + 1,1)}, where / is the length of . Define u = u®! ¢ E,(:"l) by o =
tX0)and

uk=2020) — () ) for

0
u(k—2l+2r+1) 0

NN

=

NN
|

\'H

=(p,r)  for

Remark 2.15. For (1) € By, t is characterized as the unique maximal element in E,E,’\’l)

with respect to reverse lexicographic order. Note also that t?) = u(@) and tM) = @D o
tA0[21).

Notation 2.16. For x € B; and r > 1, define z[r| € B,,, to be x shifted by r strands to the
right. For the generators ¢;, s;, we have ¢;[r| = e;., and s;[r] = s;4,.

The following consequence of the contraction identity for the e;’s will be used frequently.

Lemma 2.17. For!l > 1and k > 3,

) (I-1) (-1 l
DDl = )
7



Proof. This is evidentif [ = 1. For [ > 1,

@ (-1 _(-1) _ (-1 (-1 _(-1) _ (@)
€k €1 € T CkCL 9 Cp 1'€Cp o9 = E .

Lemma 2.18. Let k > 1, (\,]) € ék and t € é,(:"l). Then the following statements hold.:
(1) condynn = e
(2) dyroy = land, forl > 1,
e,({jl)_Qe,(f)_3 e egll)_l, if\#0andk > 2,
diry = 61(61:21)61(6[:31), ifX\=0andk > 2,
1 ifk = 2.

(3) Forl > 1and x € Bj_g,

H ! R I
welgzlelgzZ T egl)fl = 61(61161(612 T eéllﬁ[%]-

Proof. (1) Letu = uM)_ If | = 0, then u = t*9), and d, = 1. So assume | > 0, and proceed
by induction on /. Write u” = u;_.

Note that d(;:le) = u&lc_:slﬂ) = 1. Therefore dilf,z,lHu(k) = d%’;?l_l)ﬁ(/\l) = 6,({:[__21). Like-
. (k—1) o (k=1) -1
wise, d, o) 1) = Ay 1) s(pi-1) = €3 - Hence,

k k—1 ) (1-1) (-1 !
C(A,l)dfwz—l)_m(k) diw—z))_m(k—l) = C(A,O)ei(gzﬁ/(gfz)ei(cf?)) = C(A,O)ei(c)q = D>

using Lemma 2.17. Thus, writing u” = u;_o,
oy = cnydyr

The result follows from the induction hypothesis, since c(x ;) = ej—1c(;—1) and u” = uM=1),
(2) Compute directly that d,w,1) = 1 and dyw.2) = egey. Forl > 3,

_ (-1 (-1) _ (=1 _(-1) _(-2) (-2) __ _(-1) (I-1)
dyon) = €y 5 o g dywi-1) = €y o€y 5y Sy 5 =€y 5€y 5.

by the appropriate induction hypothesis and Lemma 2.17. When A # () and k& > 2, tM) =
00 o (A0[2]], and

dt()\,l) == dt(A,O) [QZ]dt((A,l) = 65!126](!13 cee €§ll)_1dt(®,z).
If | = 1, dyo.y = 1 and the desired formula for dy.,) follows. If I > 2, dyo.y = el _Yell ™)) and
the formula follows from applying Lemma 2.17.
(3) The element e,(f)_le,(cl)_Qe,(fl:% , egl)_l is a Brauer diagram with vertical strands connecting

the top vertex j and the bottom vertex j + 21 for 1 < j < (k — 2l). Therefore, assertion (3)
follows from diagramatic computation. U

Notation 2.19. For (), 1) € Ek, write 1) = dio) Con e -
Remark 2.20. It follows from Lemma 2.18 parts (2) and (3) that

M) = ey 1600 [21). (2.10)
8



3. JUCYS—MURPHY ELEMENTS AND THE SEMINORMAL BASIS

3.1. Nazarov’s Jucys—Murphy elements. Nazarov [16, Sect. 2] has defined a family of JM
elements (L;);>o for the tower (13;);>0 by the relations

LO = L1 = O, and Li+1 =8, —€; + SiLiSi, for ¢ = 1
Let .2} denote the subalgebra of By, generated by {L; | 1 < i < k}.

Proposition 3.1 (See [16, Sect. 2]). Let k € Z=1. Then the following statements hold:

(1) Lo+ Ly + -+ Ly is central in B.
(2) L;, commutes with By,_1.
(3) The subalgebra &), C B, is commutative.

Recall that if a is a cell in a Young diagram, the content ¢(a) of a is the column index
of a minus the row index of a. The Brauer algebra analogue is the following: for an edge
(A1) — (,m) in B, let
c(a), if p =AU {a},
1—z—c(a), ifp=A\{a}.
For (\, 1) € Ek and t € LA?](CA’I), and for 1 < 7 < k, define

(i) = c(tD — ),

The following is the crucial property of the Jucys—Murphy elements and the Murphy bases
of the cell modules.

Proposition 3.2 (See [9, Section 6.4]). Let (A1) € By and t = (A®,ly),...,(A®) 1)) €

(A1) = (1,m)) = { G.1)

E,(C’\’l). Ifi=1,..., k, then there exist scalars v, € R, for s € E;i/\’l)a such that
miL; = c(i)my + erms.
s>t

Use of the reverse lexicographic order Proposition 3.2 repairs an error in [5].

The conclusion of Proposition 3.2 still holds for any specialization By (S;d) of the Brauer
algebras, where the variable z in (3.1) has to be replaced by . It follows from this that
{L1,..., Lg} is a family of Jucys—Murphy elements for By (S;¢) in the sense of Mathas [13,
Definition 2.4]. One says that the Jucys—Murphy elements { L1, ..., L} separate paths (over
S) if for s # tin E,(c) there exists a j such that ¢(j) # ¢s(j); see [13, Definition 2.8]. Ev-
idently, a sufficient condition for this is that S has characteristic zero and ¢ is not an integer.
In particular, this holds for By (FF; z). Mathas shows [13, Corollary 2.9] that if K is a field and
if the the Jucys—Murphy elements {L, ..., Ly} separate paths over K, then By (K;J) is split
semisimple.

Remark 3.3. This suggests a different proof of Wenzl’s theorem: if K is a field of characteristic
zero and 9 € K is not an integer, then By (K;J) is split semisimple. The proof relies on [9,
Section 6.4] and [13, Corollary 2.9], and avoids the determination of the weights of the Markov
trace, as in [18]. We omit the details as the alternative proof is neither more efficient nor more
elegant than the original proof from [18].

3.2. Seminormal bases. Let ' = Q(z) denote the field of fractions of R = Z[z]. For the
remainder of Section 3, we denote By (F; z) = Bi(z) ®g F by By. Later in the paper where
we need to deal with several specializations of the Brauer algebras in the same context, we
will write By,(2) for By(F, z). For (\,1) € B, denote the specialization of the cell module
Ag:’l) ®R F by A](ﬁ)’\ﬂ}l)

9



For each i > 1 let Let C(i) denote the set of Brauer contents associated to edges from level
i — 1tolevel 7 in B,

C(i) = {c((\ 1) = (um)) | (A1) € Bioy, (u,m) € By, and (A, 1) = (11, m)}.
Equivalently C(7) is the set of Brauer contents ¢(7) for paths t from () to level & for any k > i

Definition 3.4. Let (), 1) € By and s, t € B\(A’l) Define

HH

1<i<k ceC(i

ce(i )750
Definition 3.5. Let ft = tht and Fst = Fsmngt.

Since the JM elements L, ..., L satisfy the separation condition of [13, Definition 2.8], as
noted above, we obtain the following statements from [13, Sect. 3].

Proposition 3.6. Let k > 1and (), 1), (1, m) € By,
(1) Ift € E,Ef\’l), then there exist vy € I, fors € E,g’\’l), such that

fo=me+ ) rems. (3.2)
st
2) {fi|te B\,EA’Z)} is an F-basis for A,(Cf‘ﬁll).
(3) {Foi| (\, 1) € By and s, te E}iA,l) } is an F-basis for By,.
(4) fili = (i) fy, forallte B,(C)"l) andi=1,... : k.
(5) F,F, = 5tF andstt = 0stfs, foralls,t e B'
(6) Fors, tEB (fs,ft)%Ozfandonlylfs—t

(7) Fors,t € B;ﬁ and u,v € B,ﬁ ), FoiFyy = 5tu<ft7 ft> so and fiFy, = 5tu<ft7ft>fn
(8) Fy = (fi, fi) " Fiy is a minimal indempotent, and z(, ;) = ZseBW) F, is a minimal central
k

idempotent. The ideal z ;) By, is a full matrix algebra with matrix units
{{fo )" For | s,t € B

The bases given in (3) and (4) above are the seminormal bases for Bj, and Alg”\]’Fl ) respectively.
Observe that, as eigenvectors for the action of the JM family in B, the seminormal bases for

A}(;\},; ) and By, are uniquely determined up to scaling factors in F.

Because the transition matrix between the m—basis and the f—basis of the cell module A (» l)

is unitriangular with respect to the reverse lexicographic order >, the inverse matrix has the
same property:

me= fit Y rife (3.3)

-t
Recall the Bj,—B;, bimodule isomorphism ay ) : BE(’\’Z)/BD(M) — (A,(C’\]’Fl))* A,(CAI’FZ deter-
mined by a(x ) @ Ms¢ + BD(A Dy mk ® mq. One has a(_;?l)(f ® fi) = Fse+ BD(’\ D 1t follows
from Proposition 3.6 parts (3) and (7) that {F, | (A1) € Byand s, t € Bku } is a cellular
basis of Bj. Moreover, from [7, Lemma 2.3] or from [13, Lemma 3.3] we have that
By™ = spang{Fy¢ | (1, m) & (A1) and s, t € BY™)

(A0

and similarly for BE . From Proposition 3.6 parts (7) and (8), we have

2o BEM =o. (3.4)
10



Consequently if a,b € BE(’\’” anda = b mod B,f(k’l), then az(y ;) = bz ).

Lemma 3.7. Let (\,1) € By
(1) For fixed s € E,(:"l), I; = spang{msF; : t € E,(C)"l)} is a right ideal of By, and f; — mgF}
is a By—module isomorphism from A,(C’?\]’Fl ) onto 1.

210
(2) Fors,t € B,

msFymy s = <ft, ft>m552'(,\,1)- (3.5)

(3)
con i 2o = condionn Fiow - (3.6)

(4)
Ft(A,Z)m()\’l) = m(/\’l)Ft(A,l) = MDA\ = Ft(x,z) D) - (3.7)

Proof. (1) (Compare [13, Corollary 3.10].) The map =z — oz(_)\ll) (mi ® x) is a By—module
isomorphism from A;?]’Fl) into BE(A’Z)/BIT(’\’Z). The image of f; under this map is mﬁtFt—l—BkD(A’l).

Therefore, for b € B, if fib = >_r,f,, then
msFib = Z ToMsoly + U,
withy € B,':(’\’l). Now multiply by z(, ;) and use (3.4) and Proposition 3.6 part (8) to get
ms Lib = Z ToMs o Fy,

which proves the claim.
(2) Forany b € By, and u, v € B,(CU), we have

Mo bMys = (Myb, My)Mmss = (My, Mpb*)mgs  mod B,f(’\’l).
In particular,
meiFimes = (fi, fomss +y,
where y € B,': D), Multplying by z(» ;) gives the result.
(3) We have mxn = fion = myon Fioon, and hence

C(M)dt(x,z) = C(,\,l)dt(x,z) Foon + v,

where y € BE(A’”. Multplying by z(» ) gives the result.

(4) It follows from part (3) that my ;2\1) = M0 Fiow . Hence
m()\J)Ft()\,l) = (m()\,l)Ft(A,l))* = E(A,Z)m()\,l).
Now we have

mmnLa) = Ft(A,l)m(/\,l)Ft(/\,l) = Ft(A,l) D) -
U

We record the following special case of (3.5), which will be used repeatedly:
conddidicogy = (fo, foconzo, (3.8)

fort € E,(:’l). Indeed, according to Lemma 2.18 part (1), this is the special case with s = uM.
In the remainder of this subsection, we present some useful alternative expressions for the
idempotents ;. The following terminology is due to Vershik and Okounkov (find reference).

Definition 3.8. Fix £ > 1. The Gelfand Zeitlin subalgebra of Bj is the maximal abelian

subalgebra generated by the centers of By, By, ..., By. For 7 < k and for t a path on B to level

j, the Gelfand Zeitlin idempotent F”'(t) is defined as [ ], 2.
11



Proposition 3.9 ([9], Proposition 3.11). The Jucys—Murphy elements L, ..., L, generate the
Gelfand—Zeitlin subalgebra of By, and the minimal idempotents F} coincide with the Gelfand—
Zeitlin idempotents F).

Corollary 3.10. Ler 1 < j < k, let t € By and s € B)). Then F\F, = 6, .F, and f,F, =
5t¢j,5ft'

Recall that C(i) denotes the set of Brauer contents associated to edges from level i — 1 to
level 7 in B. For fixed (\, 1) € B;_1, let C(\,7) C C(i) denote the set of Brauer contents

C\ 1) = {e((A\ 1) = (;m)) | (1,m) € B, and (A1) = (4, m)}.
Lemma 3.11. Fix an edge (\, 1) — (i, m) from level i—1 to level i in B. Write ¢y = c((ND) —

(p1,m)). Then
z(\ 1) H Lize_ z(\ 1) H Lize_ z2(A Dz(pw,m). 3.9
) o —c ’ o —c ) )
ceC(A3) c€eC(i)
coF#c coF#c

Proof. Lets € §(') Multiplying any of the three expression in (3.9) on the left by F; gives Fj if
s(=D = (\,1) and s = (u, m), and zero otherwise. Since >__ F, = 1, the result follows. [

Corollary 3.12. Forany t € E,i)

Li—C . / Lk—Cs(k‘)
= 11 H ct(i)—c_Ft Hct(k:)—cs(k:)'

1<i<k ceC(t(i—1),i) s#£t
ce(d )#C /=t
Proof. This follows from Lemma 3.11 and Proposition 3.9. U

3.3. Seminormal representations and restriction. The seminormal representations are the
representations of the Brauer algebras with respect to the seminormal bases of the cell modules.
In this subsection, we consider the restriction of a seminormal representation of B, to B; and
to the relative commutant of B; in By, for j < k.

In the following, for j < k, write By, N B; for the set of x € B}, such that x commutes with
ally € B;.

Lemma 3.13. Let 1 < j < k. Let (\,]) € By and t € E,?’”. Let (1, m) € éj and u,v €
Blm, Write t, = tyo ;) and ty = 1), so t = t; o ty. Then

J
feFuo = 0gu(fuors f) foot

Proof. We can embed the cell module A “) in By, identifying f; with c(y;d¢F;, using
Lemma 3.7 part (1) and taking s = ulkd, erte F, = Hj<n<k Zyny; then Fy = Fy F, and
F, € BN B;. Thus,

fe= C(A,l)tht = C()\,l)dtgdtlﬂlﬂz'
Using (2.6) and induction, we have an element u, € By, such that c(y ;ydy, = ug, ¢ . Inserting
this, and using that /¢, commutes pointwise with B;, we get

ft = uj:z EQ Ct(j) dtl Ftl .
Applying Lemma 3.7 to B;, we have

feFuo = 04 u(for ft1>uf2FtQCt<] dy Fy.
Now we can reverse the steps taken above to rewrite this as

ftFun = 5t1 u<ft1 ) ft1 >C()\,l)dtlot2 FUO{Q .
12



U
Proposition 3.14. Let 1 < j < k, (A1) € By, andt € B, Write t; = tj and t;, = t;49,
50t = t; o ty. Write (11, m) for tV).
(1) If v € Bj, then

ftx = Z r5f80f27
5

where s ranges over BJ(” m)

(or k).
(2) If v € By N B, then

, and the coefficients r; € F depend only on x and t; and not on t,

ftx = Z rsf’qua
5

where s ranges over paths on B Sfrom (u,m) to (A1), and the coefficients r, € F depend only
on x and t and not on t;.

Proof. Because {F,}, where u, v are paths of length j with the same shape, is a basis of B;,
part (1) follows immediately from Lemma 3.13.
)

Now suppose that z € By N B). Write fir = ) ryfy, where the sum is over u € éz?’l .
Since x commutes with B;,

fix = ftFtlx = fthh = Zruqutm

which shows that r, = 0 unless u; = t;. Therefore, we rewrite the expansion of fiz as
Jir = Z Ts fty0s,
S

where now the sum is over paths s from (x, m) to (A, [). It remains to show that the coefficients
rs do not depend on t;. If b € B](“ ™ then

fnoth = (1/7)ftF’t1 vl = (1/7)f’t$Ff1U
= (1/7) Z Tﬁfflostl 0 = Z Ts foos

5 S
where we have written v = (fy,, fi,) and applied Lemma 3.13. O
Corollary 3.15. Assume that (\,1) € By and (p,r) € By_1, where (p,7) — (A1) € B. Let

N C A,(;\I’Fl) denote the subspace with basis { f; € A;C)"]ﬁl) | Shape(s;,_1) = (p,7)}.

(1) The linear map N7 — A,(f_’Tl),F given by fs — fo is an isomorphism of By_1(z)-modules.
(2) These maps induce an isomorphism of right By,_1(z)-modules

A~ im
AYE D ATk

(rsm) = (A1)
where the sum is over (1, m) € By_1 such that (1, m) — (A, 1) in B.

Proof. Immediate from Lemma 3.14 part (1). ]
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3.4. Preliminary results on matrix coefficients of the generators. Let (\, 1) € §k+1 and
te B,(cill For 1 < i < Fk, define structure constants e;(s, t), s;(s, t) € F by

ftei = Zei(57t)fs and ftsi = Zsi(57t)f5~

5 5

Definition 3.16. Let (A1) € B, and s,t € BM). Write s  t, and say that s and t are is
i—equivalent, if s) = t) whenever j # i.

The following statement is an immediate consequence of Proposition 3.14.

Lemma 3.17. The coefficients e;(s,t) and s;(s,t) are zero unless s L t. Moreover the coeff-
cients depend only on $j;_1 ;1) and t;;_1 ;1 1).

Lemma 3.18. For (\,1) € By1 and s,t € E,(;_\Fll) and for 1 < i < k, we have s;(s,t) = 0 &
si(t,5) = 0and e;(s,t) =0 < ¢;(t,s) = 0.

Proof. We give the proof for e;. Since ef = e;, we have (fse;, fi) = (fs, fie;). Using the
orthogonality of the basis { f,}, this gives e;(t,8)(f;, fi) = ei(s,t)(fs, fs). Since (f, f;) and
(fs, [s) are non—zero, the assertion follows. d

In preparation for the next results, let us recall a notational convention. If (\,[) € §k+1 and

t= (A1), ...\ ) € B,E,H , we write t) for (AU, 1;) and t(j) for A,

Lemma 3.19. Assume that (A1) € Bjoyy withk > 1, and t € B,(:F? Then ci(k) + c(k+1) =
1—zifandonly if t(k — 1) = t(k + 1).
(

Proposition 3.20. Assume that (\,1) € §k+1 withk > 1, and t € E,iill) Then the following
Statements are equivalent:

(1) t(k—1)=t(k+1).

(2) Fiep # 0.

(3) fiex # 0.

(4) ex(t,t) £ 0.

Proof. The implications (4) —> (3) = (2) are evident. Assume that t(k — 1) # t(k + 1).

Then ¢((k)+c(k+1) # 142, by Lemma 3.19. We have Fy(Ly+ Liy1) = (c(k)+c(k+1))F,
by Proposition 3.6, and (Ly, + Li11)er = (1 + z)ey, by [16, Proposition 2.3]. Thus

(Ct(lﬂ) + Ct(k' —+ 1))Ftek = Ft(Lk + Lk+1)€k = (1 -+ z)Eek.

It follows that Fie;, = 0. This give the implication (2) = (1).

Now assume that t(k — 1) = t(k + 1). Write t' = ¢, and " = t;;,_;. We have Fye, =
> {Fsex, : § = '}, using Proposition 3.9. By the previous paragraph, when s # tand s’ = ¢,
it follows that F,e;, = 0. Thus Fye, = Fiey,.

Note that Fiy = zw Fyr, by Proposition 3.9. Therefore, using Lemma 2.6, ¢_1(Fy) =
(1(Fy)/7(Fy))Fe. Multiplying the equation Fie, = Fyey by e, on the left yields

ekFtek = €kFt/€k = ng—l(Ft/)ek = Z(T(F’L’)/T(Ft”))Ft”ek-

But Fyre, # 0 by Lemma 2.4, so this this shows in particular that Fie;, # 0. Multiplying the
displayed equation on the left by F; gives

€k<f, t)Ftek = Z(T(Fy)/T(Fw))Ftek.

Since Fiep # 0, we have e (t,t) = 27(Fy)/T(Fy) # 0. This shows (1) = (4). O
14



Remark 3.21. A slightly different approach to this Proposition would use Lemma 2.5 instead
of Lemma 3.19.

For the following corollary, recall that the weights of the Markov trace 7 on By(z) are given
by the El Samra—King polynomials P,(z), see Theorem 2.8.

Corollary 3.22. Let (\,1) € Byyy and t € BYY}, with

t= ( e ’()‘J - 1)’ (M?m)v ()" l))
Then

(1) ekthek = €k(f, t)ekFy/, and
(2) ex(t,t) = z7(Fy)/7(F) = P.(z)/Pa(2)

Proof. The first statement and the first equality in (2) is contained in the proof of Proposi-
tion 3.20. The second equality in (2) results from applying Theorem 2.8. U

Corollary 3.23. Let (), 1) € By1and st € E,ii‘rll) The matrix entry ey (s,t) = 0 unless s Lt
and t(k — 1) = t(k + 1).

Proof. This follows from Lemma 3.17 and Proposition 3.20. U

Lemma 3.24. Let (\, 1) € By, and s, t,u € E,ii‘rll) where s(k — 1) = s(k+ 1) and s,t, and u

are k—equivalent paths.

(I) Gk(ﬁ,t)fsek - ek(Bvﬁ).ftek-
(2) ek(uvﬁ)ek(ﬁat) = Ck(ﬁ,ﬁ)Qk(u, t)
(3) er(s,t) #0

Proof. From Corollary 3.22, we have e Fie;, = e (s, 5)exFyr. As in the proof of the previous

lemma, apply this to f;, but now observe that fiF,,» = f since s X t. This yields the equal-
ity ex(s,t)fser. = er(s,s)fiex. Multiplying this on the right by F, gives ex(s, t)ex(u,s) fu
= eg(s,5)ex(u, t) fy, hence the second assertion. In particular, we have ex(s, t)ex(t,s) =
€k(5,5>6k(f, t), SO ek(s, t) 75 0. U

4. SEMINORMAL REPRESENTATIONS

We continue to work over F and to write By, for B, ([F, z). In this section, we obtain formulas
for the matrix entries of the generators e; and s; with respect to the seminormal basis { f; } of the
cell modules A,(Q;ll)ﬁ of the Brauer algebras, as well as a branching rule for the inner products
(fi fo)-

According to Lemma 3.17, for fixed ¢« < k the matrix coefficients of e; and s; with respect
to the seminormal basis of A,&?F depend only on the initial portion of the paths indexing the
seminormal basis, up to level 2 + 1. Therefore, it suffices to find the matrix entries for e; and
Sk.

We begin by recalling Nazarov’s formula [ 16, Corollary 3.10] for the diagonal matrix entries
ex(t, t) of the contractions e;. Let t € E,iill) with t*=D = (\,1 — 1) and t*) = (u, m). Write
bo=(z2—1)/24+ c((A\,1—1) = (i, m)). Let B denote the set of elements

(z—=1)/24+ c((N\ I —=1) = (0,9)),

where (o, s) € By, and (A\,l—1) — (0,s). Thus B is the set of eigenvaues of L} = (z—1)/2+
Ly, and by the eigenvalue corresponding to the eigenvector f;.
15



Proposition 4.1 ([16], Corollary 3.10). Let t € E,(C’_\Fll) with t#=1) = (X 1—1) and t*) = (u, m).
With the notation as in the previous paragraph,

bo + b
er(t)=(2b+1) [] sz_rb 4.1

beB\{bo}

Note that e (t, t) is non—zero (by Lemma 3.20) and depends only on A and u. For example,
if t*) = (u,1 — 1) and pp = A\ U {a}, Nazarov’s formula (4.1) translates to

[Tocapy(z = 1+ ca) + ¢(@)) [Tacroy(cla) = c(a))

e — (s cla aFa . .
(1) = (z+2c(a)) HaeR(A)(Z —1+c(a) + c(a)) Haéi(/\)(c(a) —c(a))

A similar formula holds in case t*) = (u,1) and = X\ \ {a}.

Remark 4.2. Recall that we already have an alternative formula for e, (t, t) as a ratio of El
Samra—King polynomials, ex(t,t) = P,(z)/P\(z), see Corollary 3.22 (2).

Lemma 4.3. Let (A1) € By and t = (A9, 1y), ..., (A& [,,1)) € E&? Assume that
AED & \ED — {a, 5}

(1) If o and B are neither in the same row nor the same column, then there exists s = tsy €
E,(gill) such that {u € E,(Cill) | u L t} = {s,t}. Moreover, cs(k + 1) = c(k) and cs(k) =
Ct<k' + ].)

(2) If a and B are in the same row or the same column, then {u € E,gill) | u i t} = {t}.

Definition 4.4. Let A be a partitions and a = (4, j) be an addable or removable node of \.
(1) Let ROV <> = {(r,\r) € R(\) | r > i}.
(2) Let A< ={(r,\, +1) € A(\) | r > i}.

The quantities in the following definition were used by James and Murphy [11] and Mur-
phy [14] to compute the determinant of the Gram matrices for Specht modules for the symmet-
ric groups. They will appear in the formulas for the matrix coefficients of the contractions e;
with respect to the seminormal basis in Theorem 4.11.

Definition 4.5. Let A\ C p be partitions with 4 = A U {«}. Define
y B H,BEA(,\)m (cla) = c(B))
Ay = .
e HﬂeR()\)<a (c(a) = c(B))

Recall that 2# denotes the hook length of a node « in a Young diagram p, see Notation 2.7.

4.2)

Lemma 4.6.
(1) Let A\ C p be partitions with it = AU {«a}, where o = (j, j1;). Then
Rt
(k)
Mop = H 7 - 1 *3)

hy'.
1<k<py (J:k)

(2) Let o be a partition with addable nodes «, [ in different rows and columns, and with \ =
oU{a}l>p=0cU{p}. Write p = o U{a, B}. Then

o= 1
RE R [ — (4.4)
Yosp (c(a) = ¢(P))?

Proof. Part (1) is a straightforward exercise and part (2) follows since p and p differ only in the

node [. O
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The next definition gives the Brauer algebra analogue of the branching coefficients yy_, ..
Definition 4.7. Let (), 1) € By and (1, m) € Byyq, with (A, 1) — (y, m) in B, Define

’7/\—> ’ lfl =1m,
(k+1) o H
T = (um) — { 4.5)

ex(t, )yumy, fl=m—1,

where, in the second case, t € E,(g’ﬂ”) is any path which satisfies t*=Y) = (1, 1) and t*) = (\, 1).

As noted above, the structure constant ey (t, t) in (4.5) is non-zero and completely determined

by A and p. Therefore fy(kﬂ)

o) %(%m)depends only on A and p and not on m.

4.1. Statement of the main results. We are now ready to state the main results of this section.
Theorem 4.8 and Theorem 4.11 together give complete formulae for the matrix entries of the
generators s; and e; with respect to the seminormal basis of the cell modules A&?F. Some
of these formulae were known. The diagonal entries are due to Nazarov (references). The
expressions for structure constants (4.6) and (4.7) associated with the generator sj, are due to
Rui and Si [17, Theorem 3.18(a)]. The formulae for the off-diagonal structure constants (4.10)
and (4.11) associated with e, and sj appear to be new. Theorem 4.9 gives a recursion for the
bilinear form (f;, f;). This result is of independent interest, but is also needed for the proof of
Theorem 4.11. Finally, Theorem 4.10 gives a recursion for the determinant of the Gram matrix
of the bilinear form (2.9) on the cell modules of the Brauer algebras.

Theorem 4.8 ([17], Theorem 3.18(a)). Let (), 1) € ]§k+1 and s,t € Ei’yl) where 5 % 1.
(1) If t*+=1 £ (X, 1 — 1) and tsy, does not exist, then
55‘:

Sk(s,t) = : 4.6
(5,1 ek + 1) — (k) (46)
(2) IfFt*=Y £ (X, 1 — 1) and ts, exists, then
ct(k+1§—ct(k)7 ifs =t
sp(s,t) =<4 1 — m, ifs =ts,and s = t, 4.7)

1, ifs =tspand t > s.

Theorem 4.9. Let (A, 1) € By and (1, m) € By, where (A1) — (u,m) € B. If s € E\,(g’jr;n)
with 5% = (X 1), then

<f57 f5> _ ’}/(k+1) (48)

(fo, for) A= (wm)”
If (\1) € By, let G,E;\’l) denote the Gram matrix of the bilinear form (2.9) on A,(:"l) and
det (G,(C’\’l)) denote the determinant of G,(j"l). The next statement, which is an immediate corol-

lary of Theorem 4.9, gives a branching rule for the determinants det (G,(c’\’l)). For the rep-
resentations of the Brauer algebras which factor through the group algebra of the symmetric
group, the recursion (4.9) coincides with the branching formula for the determinant of a Specht
module given by James and Murphy [11, Sect. 2].

Theorem 4.10 (cf. [17, Theorem 4.11]). Let (1, m) € §k+1. Then
m Al k+1 dim(AMY)
det (GE1) = [T det (G (G pmy)r (4.9)

D= (kym)
17



~

where the product is taken over (\,1) € By, such that (\,1) — (i, m) in B.

Theorem 4.11. Let (A, 1) € By and s,t € E,(;\Fll) where s 2 t.

(1) If =Y £ (X, 1 — 1), then ex(s,t) = 0.
(2) Ifs*=Y = (\,1 — 1), then

::i_izek(h t)v lfﬁ(k (p [ — 1) and t(k) — (Nwl _ ]_)’
’YH—M’ i s(ki — 1 —=1) and t(k) _ ,l ’
e(s, ) = { 2o 4 . (p,l=1) ; (1.1) w0
P=ten(s s)en(tt), ifs®) = (p,1) and t = (u,1 - 1),
Tyﬁ;_:iek(ﬁaﬁ)a lf5(k (p, ) and t(k (M7 l)
(3) Ift*=Y = (X, 1 — 1), then
sp(s,t) = O — erl5, ) 4.11)

cs(k+1) — k)

5. PROOF OF THE BRANCHING FORMULAE THEOREM 4.9 AND THEOREM 4.10

In this subsection we verify the formula for the branching factors of the bilinear form (f;, f;)
on cell modules given in Theorem 4.9. As a corollary, we obtain a branching formula for the
Gram determinants of the cell modules.

Lemma 5.1. Let (A1) € By, and (11, m) € Byyq with (\,1) = p,m) in B. Consider paths s €
B,iH with s%) = (\,1). For any such path s, write 5' = s,;,. Then the ratio {f,, f.)/{f., f!) is
independent of s, i.e. it depends only on the edge (\,1) — (u, m).

k41)
AN = (p,m

(k+1)

Proof. Write d = d yand u =y, . Fixs € B,(fjrl ™ with s = (X, 1). We have

(far Jo) Cluam)Zum) = Cluym) s FadgCpum) = Cuym)ds Fy g Cpum) 2(,m)
using (3.8) and the equality F; = Fy 2(, ). Continuing,
C(mm)d Fsld*C(M m) (u,m) = u*c (A1 df/Fsld:/C(Al (lhm)
= (fo, fo)u"conzonuum) = (fsrs for) Cum) Q2000 U2 (um) -

Thus

(<fsa f5>/<f57 f >) (uym) % (p,m) = C(u,m)dz()\,l)uz(u,m)7
and the result follows since the right side depends only on the edge (\,1) — u, m). O

Lemma 5.2. Let (\,[) € Byyy ands € E,(:Fll) If t = ssy, exists and t >~ s, then

(b +1) — (k) —1
<f57f5> - (cs(k’—i—l)—cs(k))? <ft7ft>.
Proof. Apply the relation (f, fs) = (fsSk, fsSk) and the formula (4.7). O

The following combinatorial lemma plays a crucial role.

Lemma 5.3. Let (\,1) € By, and let o = (4,A;) € R(XA). Denote p = X\ {a}. Letd =
I Ama=2l+dandn =>" _.\. Then the following statements hold:

r=1 r>7
ph

(1) If 0 < r < m, then t, = (- (t*Ds,)50,1) - - )sa+r | exists in B,
(2) The sequence {t; | i =0,...,n} satisfies ty = t; = --- = t,.
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(3) Writes = t,,. Then 5,1 = th) gnd
ft(%l>5a5a+1 o Sp—1 = f5 + Z Tufua (51)

u>s
where the sum is over u € é,(:‘) such that Shape(uyx_1) # (u, ().

Proof. In case « is the lowest removable node of ), all the statements are trivial. So we assume
that « is not the lowest removable node, i.e., A\j 11 > 0

First we argue that we can reduce to the case [ = 0, so the statement actually has to do
with standard tableaux and the seminormal representations of the symmetric group. We have
t = O = 0 o {XO[2]]. Consider the set of paths P = {t®) o u[2[]}, where u € B,
The (partial) action of &{a,...,k} on paths preserves P, since the hypotheses imply that
a > 2l + 2. Moreover, it follows from (4.6) and (4.7) that the span of { f, : v € P} is invariant
under &{a, ..., k}, and the matrix coefficients for the action of &{a, ..., k} are independent
of [.

For the rest of the proof we suppose that [ = 0, and we deal with the partial action of the
symmetric group on standard tableaux, and the seminormal representation of &, corresponding
to the partition \. We have t; = t*, and for 1 < r < t, the standard tableau t, = t* w, o, is
obtained by cyclically permuting the entries a, . .., a-+7 in t}, so that t,(a) = a+r. Assertions
(1) — (2) are evident, as is the statement that (t,) ;1 = t".

We turn to the proof of the final assertion of (3). With s = t,,, we have

JoSa+ Sk_1 =MpSe - Sp_1 = Ms = fs + Zrufuv
ups
where > indicates dominance order on standard tableaux. On the other hand, it is evident
from the restriction rule for the seminormal representations, i.e. the symmetric group analogue
of Proposition 3.14, that those u which appear with non-zero coefficients in the sum satisfy
U1 = tja_l. It remains to verify that the u appearing in the sum satisfy node, (k) # «. We
prove this by induction on n. If n = 1, then fosp_ 1 = fs + Kfp, by (4.7), so the assertion is
valid. Suppose that n > 1. Let 8 denote nodep (k) = (¢, A\¢), where ¢ = length()\). By the
appropriate induction hypothesis and the restriction rule,

frsq - Sp—2 = f’tnﬂ + Z Ky fo
v

where the v appearing in the sum satisfy node,(k — 1) # «a, i.e., row,(k — 1) > j, and
node, (k) = . Now multiply both sides by s;_1. We have fi _ sp_1 = fs +vfi,_, by (4.7),
and nodey, ,(k) = . For the remaining terms on the right side, both £ — 1 and k have row
index > j in v, and therefore f,s;_1 is a linear combination of basis elements f, with the same
property. U

If A = (A1, Ao, ..., Ay) is a partition, let Al = TT._, (\)).
Lemma 54. If (\,]) € B\k, then (fion, fion) = Az
Proof. From (3.5) and (3.7),

m%mzw) = mogyFoomog = (fian, fion)monzo- (5.2)
On the other hand, m ;) = ejes---exy_1¢(x0)[2l], from which it follows that mal) =
Z'Nlmy ;). Multiply this by z( ;) and compare with (5.2). O

Lemma 5.5. Let (11,1 + 1) € Byyy and let v = p U {({ + 1,1)}, where { = length(y). Define

ue é,ﬁi’lﬁl) by the condition u;, = (D),
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(1) For x € By_g_1,
dizel"™Vd, = V) x[2)e, (5.3)
(2) In particular
Myy = dyClp 1)y = M1)€k (5.4)

Proof. We have d, = egildt@,l). If I = 0, then d, = 1, and assertion (1) is evident. If [ > 1
then (I+1) ©) 0 0+, (0 0
* + +1
dyey “dy =€y el e Twel eyl

! ) (+1) (1 l I
= egl)—l e el(c)—lel(c )6121 T eéz)—ﬂpl] = egl)_lx[2l]ek,

where we have used Lemma 2.18 part (3) and contraction identities. This completes the proof
of statement (1) and statement (2) follows. l

Proof of Theorem 4.9. Recall the notation in the statement of the theorem: We have s € Bk +1

with s = (\,1). We write s’ = s,;, and 5" = 5;,_,. We compute the quotient (fs, fs)/(fs, for)
in two cases below.

CASE 1. Suppose | = m and po = AU {a}, with @ = (j, ;). If s is maximal with respect
to =, then (fs, fs)/{fs, f¢) = p; by Lemma 5.4, and there is nothing further to show. We
therefore proceed by a double induction on k£ and ’=. If « is in the last row of p, then by
Lemma 5.1, we can assume that s = ™) which is the case already covered. We may
therefore assume that ;1;1; > 0, and again by Lemma 5.1, we may assume without loss of
generality that §' = ™). Since ;11 > 0, in particular, A # (), and thus s*=Y = (o, m),
where 0 = A\ {} and = (r, i) is the removable node in the last row of A. Let p = o U{«}
and t = s" o ((p,m), (u,m)) = ss;. Note that t > s. Let ¢’ = t|;. By the induction assumption
on >=, we have

<ft7ft> = ﬂr(ft’7ft’>- (5.5)
By Lemma 5.2 we have
1
sy Js) = 1 - 5 56
By the induction assumption on k, we have
—gj’ j}f) = and —gfi’ ?’/g = Yorp (5.7)
Combining equations (5.5) to (5.7) and using Lemma 4.6 part (2) yields
(fss fs) 1
=1 o— — 5.8
o)~ @)= @R T = Mo C9

as required.

CASE 2. Assume that m = [+ 1 and let A\ = U {(j,A;)}. By Lemma 5.1, there is no
loss of generality in assuming that s’ = tM) ¢ B( D Letv = pU{(l+1,1)}, where
¢ = length(yu). Define u € B,(giT) by the requirement u;, = ). We have d, = e,(gllldt(u,n,

and d;, = dgfl?_)( il _H)dt()\,z). Note that dy..y = d,».1), since these quantities depend only on &
and [. Thus,
* l (k+1) l (k+1)
Mys = d u)e/(ﬁ)1 Clu, l+1)d()\ D— (s, l+1)dt()‘ y = dio, z>€1(g)1<u(x D—(p, z+1)) coun oy

(k—21)

— d*)\l) (l) 6(l+1)(d#_>>\ ) C()\J)dt(k,l).

We claim that

Mys = €xWh aMM(N]) (5.9)
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where a = S A, + 21. The case [ = 0 1is easy to check. If [ > 1, then d,.y = e(l)_ - ~e(l)_ ,
=1 y t k—2 20—1

and

! 1) (141), (k=204 ! !
Mys = egl)—l T el(czlegc )<dua,\ ) C(/\,O)el(czl T eél)—l

= e e VD ) () 2 2]
= 6§ll)_lekwk,ac()\,0) 2[] = erwi.am(ry).-
We have
Mys Fsmsy = (fs; fo)MuuZ(m), (5.10)

by (3.5). On the other hand we compute, using Fy = Fy 2, ), Lemma 3.7 and equation (5.9),
My s FsMsy = €W oM ) FsmoWa ker = exWi,o M 1) Fsr M) 1) Wa k€RZ (1m)

= <f5’7 fs’>€kwk,am()\,l)Z()\,l)wa,kekz(p,m) = <f5’7 fs’>€kwk,aFﬁ/5’wa,kek2(,u,m)-

Lett = 5'5,S,41--Sx_1. By Lemma 5.3, t' € E,?’l) with t/ = t/uc—1 = ¢ and

fﬁ’wa,k = fv + Zrafaa
a

where the sum is taken over a € E,(C’\’l) such that Shape(a;x—1) # (u, ). It follows that

exWi o Fy g Woner = exFyver = (fv, fv)exFue.
Lett =t o ((u,m)). Using Fyz(,m) = Fi, we have

MysFsmsy = (for, for) (fe, ft/>ekFtekZ(u,m)
= <fs’: f5’> <f’t’7 f’c’>€k‘(tv t)F’t”ek’z(u,M)
<f’t’ ) ft'>
= f/,f/ — € t,f F// 1"eRZ m
< 5 5><ft//’ft//> k( ) 't k (,LL )
Note that
My Z(um) = M0 €k (pm) = M) €kZ () Z(um) = Forer€rZ(umy,
where the first equality is from Lemma 5.5, the second equality from Proposition 3.20, and the
last equality from (3.7), taking into account that t” = t*)), By Case 1 above, {fv, fo)/(fu, for)
= Yu—x, and hence we have
mustmsu = <fs’7 f5/>7,uﬁ)\€k<t; Jc)Tnuuz(u,m)- (5.11)

Comparing (5.10) and (5.11) gives the desired result,
<f57 fs>/<f5’a f5’> = 7u—>>\6k(t7 t)'

The proof of Theorem 4.11 requires the following observation.

Corollary 5.6. Let (1) € By and (1,1) € By_1, with X\ = U {(j, \;)}. Let t denote t)
anda =21+ "7 _ | \. Let s = tw, . Then

fswk,a = fy‘uﬁ)\ ft + Z rufu-
J

A
u=<t

Proof. By Lemma 5.3, s = tw, exists in é,(j’l), and (fswga, fi) = (fs, ftWar) = (fs, f5)-
Therefore, the coefficient of f; in the expansion of f,wy, in the seminormal basis is
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(fsr fo)/{fe, fO). Tt follows from Lemma 5.3 that s’ = t(*™), Therefore, using Theorem 4.9
and Lemma 5.4, we have

’}/M_»\z :u ’7u—>)\
<f57f5>/<fta ft> myl )\j .

Finally, we indicate how Theorem 4.10 follows from Theorem 4.9.

Proof of Theorem 4.10. The Gram determinant is the determinant of the matrix [(mg, m)]s ¢
Since the transition matrix from the basis {m} to the basis { f;} is unitriangular with respect
the partial order >, and the basis elements f; are mutually orthogonal with respect to the bilinear
form (-, -), this is the same as the product [[,(fi, f). Now the recursion formula (4.9) follows
from (4.8). O

6. PROOF OF THE FORMULAE FOR THE SEMINORMAL REPRESENTATIONS THEOREM 4.11

Proposition 6.1. Let (), 1) € §k+1, with A # () and | > 1. Let { denote the length of )\, and let
o=A\{(, )} andv = XU{({+1,1)}. Defines € Bk+1) by the conditions 5*) = (o,1)
and syj,_, = tM-Y. Define u € B,iill by the conditions u* = (v,1 — 1) and uy),_; = tM=1),
Then the following statements hold:

(1) fsex = Yosamy and fuer = ex(u, u)my,.

2) Ift £ s and t® = (1 — 1), where (1,1 — 1) € By, and (u,1 — 1) — (X, 1), then

M—u Vo=

ek(s, t) = ek(s,s)ek(t, t)

and ex(t,s) =
Yo—A %—m

(3) Ift £ s and t®) = (u, 1), where (u,1) € By, and (u, 1) = (A1), then

ek(57 t) - VM_)A 6k(5,5> and 6k(t75) = ,70'—>/\

Yo— Yu—A

ek(t, f)

Proof. Let P denote the set of paths v € B\ such that vy, ; = t*~). Remark that s
is the maximum element of P and u is the minimal element of P, with respect to reverse
lexicographic order.

(1) Note that
(k+1-21)
C(NO)“o:lA Y= AeC(x,0) = VYosAC(A0)5 (6.1)

because uf:j):zl) is the sum of )\, elements of the row group &,. Using the definitions,

() (kf1-2p
ds = e, u

(-1
Uy €4y i)

If follows from the commutation and contraction relations and (6.1) that

(k+1-21) (1)

CoNdser = CO0Ug_yy €1 dini=1) = Yo AERC(AI—1)dyn1-1) - (6.2)
Likewise,
d = e,(f 11)61(; 21)dt()\l 1),
SO

codu = excini—1)dyri-1). (6.3)

Comparing (6.2) and (6.3), we get mser = Yo_sAMy.
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Let mg = f; + .. 7o.fo. Then, Proposition 3.20 and the maximality of s in the set of paths
{UEB,(gill]Ukl (A1 —1)} give

Voo XMy = Mg, = fo€p + Zrnfnek = fs€p.

b>s
For the second equality, we evaluate f;exF,ex in two ways. On the one hand,
JsexFuer = Yooamulyuer = Yo fulk-
On the other hand,
fserFuer = ek(ua u)fﬁFu”@k = ek(u, u)fsek = €k<u>u)'70—>>\mua

where we used Corollary 3.10 and Corollary 3.22. Comparison of the two expressions gives
the result.

() Letp=AU{(j,u))}a =37 _pur,and a = o/ + 21 — 2. Let

u = U(k+1) = Wy’ e(l)
- (Nvl_l)_}(Avl) - a 7k_21+2 k -

Following the proof of Lemma 5.1, we have
<f£>ft><ft’ ft’> 2\ = U*C(u,z—l)Z(M,Z—l)UZ(/\ 1)- (6.4)

In the following, let v € Bk +1 be defined by the condition v}, = t*!~1. We consider two
cases:

CASE 1: 1 —1=0. Then dyu.0) = 1 and a = d/, so

C1,0)2(1,0) = C(1,0) D10 Z(1,0) = €(,0)Aitn0) L0,

using Lemma 3.7 part (3). Thus
<ft7 ft><ft’ ft’> C)R(N1) = U*C(u,o)dtw,o)Ft<u,o>wa,k€k2(,\,1)

(6.5)
= condoFywaperzn)-
CASE2: [ —1 > 1. Then dyui-1) = e,(cl 11) - egl ?, and
—
Clul-1) = C(ual—l)dt(ﬂl 1)€gl 12) T 6I(c—ll)'
Thus,
<ft, ft><ft’ ft’) CODRND

_ (-1 (-1 W (6.6)

= U (- 1) Ayui—1) 2 1-1) €3 " €1 War k—2142€}, Z(A1)
Because w, ;—212 is a permutation of {2,..., k — 2] + 2}, it follows from Lemma 2.18 part
(3) that

€ e ey Warkares = wapelyy e,

There are at least two factors in the product egll 12) : e,(f 11 ) since k — 21 +2 = lu| = 2, so

using Lemma 2.17,

-1 -1 -1 -1 1 -1
65172)' el(c 1)65’6) 6él 2)' el(s 2)616_616651 2)' '61(672)‘

Combining the last two displayed equations with (6.6), and also using Lemma 3.7 part (3), we
get
<ft, ft><ft’ ft’> CONDE(ND

= U C(y1—1)dyui—1) Fyui-nwe kekeél 12)' 6;&[ QI)Z(A ) (6.7)
(1-1) (1—1)

= condoFowa perey 5 € o5 Z(\1)-
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If we adopt the convention that egl 12) : e,(cl Iy )= 1if—1 =0, then formula (6.7) is also valid
in case 1, so we can treat both cases together.
By Lemma 5.3, we may write

fnwa,k = ft + Zrz,fz,a
k]

where the sum is over 3 € E,(fill) such that Shape(3),_;) # (A, 1 — 1). Using the embedding of
the cell module in By as in Lemma 3.7, as well as Proposition 3.20, we get

(fo fOfes o) eowzow = condiFrenes s ey 2o

Applying Lemma 3.24 and point (1) above,

(fo, O {fe, fo) e zon =

= ek((§ 0) NG Fekeéll 12)- e,(gl 21)20\ )
ek (s, t)
ek (s, 5)
Incase 1, d tel 12) . eg:;) = 1, while in case 2, d,, = e,(cljll) o, egll ?, and

copdues s el = cou-

(6.8)

(1-1) (1-1)
— N To=AC(\)D) d 621 9 €L 9" Z(\)0)-

Thus, in both cases we get

(fo folfe. fo) ™! Zal) =

By Theorem 4.9, we have

ek(ﬁvt)
——— Yo COA\DZ .
ek(s,s)v SACD) RN

(fo, ) {fe, fu) ™" = enlt, )Yy

Hence we obtain the stated formula for ex(s, t). The formula for e, (t, s) can now be obtained
from the relation ey (s, t)ex(t,8) = ex(s,8)ex(t, t).

(3) Lett e B,(Cill , where t £ 5 and t®) = (u,1). By part (1), fsex = v5—xm, and hence by

the orthogonality of the set of f,,
’70%)\<mu7ft> = <ft7f’t>ek(t75>' (69)

To compute the bilinear form (m,, f), it will be convenient to work with the elements m,,, and
myg, and we begin by computing these elements.

We have d, = ,(c 1)6](;_ 1)dt(xz 1. From Lemma 5.5 part (2), we have my, = m-1)€x
Write A = p U {(j,\))}, @/ = 37_, A\, and a = 2] — 2 + a. We have

(k+1) L e+1-20) (z) 0
d(u,l) —(\0) d;HA €1 = Wa! k+1-21€1 "1
and
K
d(k) o (kk1-2) (1) (1-1)
=D —= () = Upsn € = Wkt1-21,a’ Wa',a'—rCp—o -
r=0
Thus,
_ e1-2n) (1) (k12D (1—1)
d{ — dﬂﬁ)‘ ek_luuﬁ)\ ek_Q dt()\,lfl).

We consider two cases:
24



CASE1: 1 —1=0.Wehaved =a,d, = 1,and dy = W 165 1Wk_1.4 9 o0 Wa,a_r- Thus
Hj
Myt = C(x,0)Ckdt = M(0)EkWak—1€k—1Wk—1,q Z Wa,a—r- (6.10)
r=0
CASE 2: [ —1 > 1. Then dyri-1) = e,(f 31)- egll ?, with &k — 2l + 1 = |\| > 1 factors. We
compute my,

(k+1-21) (t1-20) (1—1) (I—1 -1
My = A€y dyn Gty Cha Oy ey
(1) ;(e+1-20) -1 1-1) (k+1-21)
= ducr0)€ )du—»\ Sc) 162 2)612 3) T eél—s)“u—»\ 21 — 2]
(k+1-21) (]— 1 (k+1—21)
s DD Ve ot~
(k+1-21) (k+1-21)
= ducy, O)eke,(f 21)6,(; 31) e ezll_?duj/\ 21— 2]ek_1uuj/\ 121 — 2] (6.11)
(k+1-21) (k+1-21)
= m(,\jl_l)ekd#:/\ [2[ - 2]€k_1u#:)\ [2[ - 2]
Hj
= M\ 1-1)CkWa k—1€k-1Wk—1,a Z Wa,a—r,
r=0

where we have used Lemma 2.18 part (3) in lines (2) and (4), commutation relations in line (3),
and contraction relations in line (5). The final expresssion is valid in both cases 1 and 2.
Now that we have expressions for m,,, and m,, we are ready to compute (m,, f;). By a
variant on Lemma 3.7 part (2),
<mua ft>muuz()\,l) = mutthuu
J (6.12)
= M(\1-1)€kWa k—1€k—1Wk—1,a Z wa,afrth()\,l—l)eh
r=0

J

Because F; commutes with m,;_1) by Lemma 3.7 part (4), and (D> )_ Waa—r)Mpi-1) =

Aimx1—1), the last expression reduces to
)\im(/\,lfl)6kwa,k71€k71wk71,ath()\,lfl)ek- (6.13)

In this last expression, we will rewrite F} as { fi, fi) ! Fi¢ and then use that f * +— [} determines

an isomorphism from the opposite cell module (A,(c +1) p)" tospang{Fy}, by Lemma 3.7 part (1).

By Lemma 5.3, the path v = tw, ;_ 1s defined in B,E;’_\Fll),

v = ( ’(:UJ_ )a()‘7l_ )a(ual)>()‘vl))'

Furthermore, we may write

and

ftwa,k—l = fot+ erfju

50
where the sum is over 3 € B! +1) such that 3(#=2) =£ (p, 1 — 1). It follows that
exer—1Wr—1.5 = (fi, f) 7" exer1wi_1..Fe

= (fo, ft>71€kek71(Fnt+Z7ﬁ;,F13t) (6.14)

30
= (fo fo erer1Fyr = (fo, fO) en—1(0,0)er Fyy,
where we have used Proposition 3.20 both for e;_; and for e;. Substituting this in (6.13), we
get

(fi f rer—1(0, 0)Aimon -1y €rWa k1 Fo mx1—1) k- (6.15)
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Now use that Fi¢ = 20\ 1)2(u1)2(r\i-1) Foe that 20y 1)2(u1)2(x,1—1) commutes with w,_o 31, and
that m - 1) 2000 2 2(\i—-1) = Mi—1)Fi by Lemma 3.7 part (4) to write (6.15) as
(fi, O er—1(0, 0)Niexmni—1) Fiwg g1 Fo ¢mx -1 k- (6.16)
Using Corollary 5.6, Fiwg —1Fve = %—>,\)\le££- Substituting this in (6.16) and again using
(fo, f ' Fie = Frand Fy = Fiz(yy yields
er—1(0, 0)Vumamo—nerFiermi—1)2()- (6.17)

Now use e,Fier, = eg(t, t)Fueg (where t' = t, = tO=Y) from Corollary 3.22, and
mo—1) Femog—) = (fer, fer)mi-1)2(r1-1), from Lemma 3.7 part (2), to rewrite (6.17) as

e (t, t)er—1(0,0) s (fer, for)mou—1)erz(ni—1)200)- (6.18)
It follows from Proposition 3.20 that e;2() 1—1)2(x,;) = €rZ(x,), and we know that my ;_1)e, =
(k+1)

myy. Moreover, ek—l(n7 U)/Vu—»\ = Yai=1)—=(u)> SO ek_1(U, U)'Vu—>)\<ft”a ft”> = <ft’7 ft’>, using
Theorem 4.9. Thus (6.18) becomes

ex(t, ) (fe, fo)muuzng- (6.19)
Comparing with our starting point (6.12), we arrive at
<mu7ft> = ek(ta t><ft’7ft’>' (620)
Finally, combining (6.20) and (6.9), and applying Theorem 4.9 once more
ex(t,s) = (fi, fO  vonen(t, (o, fu) = o er(t, 1), (6.21)
Yu—

which is the desired formula for e, (t,s) The formula for ej(s,t) is now obtained from the
relation ey (s, t)ex(t,5) = ex(s,5)er(t, t). O

Proof of Theorem 4.11.
(1) This follows from Proposition 3.20.

(2) We know from Corollary 3.17 that the matrix coefficients ex(s,t) depend only on
S[k—1,6+1] and €z_1 x41). The diagonal matrix entries ey (t, t) are determined by Nazarov’s for-
mula (4.1). If A = (), there are no off-diagonal matrix entries to be determined, so we assume

that \ # ). Denote (o,1) = max{(v,r) € By | (v,7) = (A1)} and v € B}"), where v X ¢
and v*) = (5, 1). We have four cases to consider.
CASE 1. Assume that t*) = (u,1 — 1) and s*) = (p,[ — 1). By Proposition 6.1(2),

M= o Yo

€k<U,U)€k(f, t) and ek(s,b) = .
T—A M—p

€k<U, t) =

Therefore, the relation ey (s, v)ex(v,t) = ex(v,0)ex(s, t) yields the required expression for
€k (5, t) .
CASE 2. Assume that t*) = (p, 1) and s*) = (p, 1 — 1). By Proposition 6.1,

Y= Yo

er(0,t) = er(v,0) and er(s,0) = :
Vo= Tr—=p

The relation e (s, v)ex (b, t) = ex(b, v)ex(s, t) now yields the required expression for ey (s, t).
CASE 3. Assume that t*) = (u,1 — 1) and s*) = (p,[). Using the second case above, we
obtain ex(t,5) = v, 27y, .- Hence the formula for ey (s, t) follows.

CASE 4. Assume that t*) = (p, 1) and s*) = (p, ). By Proposition 6.1(3),

f)/,uﬁx\ o VoA

ex(0,0) and ex(s,0) = ex(s,5).
o—A Vp—A
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The relation e (s, v)ex (b, t) = ex(b, v)ex(s, t) now yields the required expression for ey (s, t).

(3) We use the relation sy L1 — LS = 1 — ey, and the diagonal action of the Jucys—Murphy
elements on the seminormal basis.
O

7. THE SEMINORMAL REPRESENTATIONS AND TENSOR SPACE

Let n be a non—zero integer. In this section we give an explicit description of the sim-
ple By(n) modules which factor through Bf(n)/rad(7,), where rad(7,) is the radical of the
Markov trace. When n is a positive integer (resp. an even negative integer) B(n)/rad(r,) is
isomorphic to the the centralizer algebra of the orthogonal group (resp. the symplectic group)
acting on the f—fold tensor power of its vector representation.

We will be dealing with several specializations of the Brauer algebras simultaneously. We
recall the notation R = Z[z] and F = Q(z). We write B, = By (R, z) and By(z) = B(F, z).

Write R,, = Z|[z](,—y) for the localization of Z[z| at the prime z — n; i.e. R, C F is the
set of rational functions with denominators not divisible by z — n. R, is a discrete valuation
ring with maximal ideal (z — n)R,, and residue field Q; the maximal ideal is the kernel of the
evaluation homomorphism from R, to (Q determined by 2z — n.

Write By (n) for Bx(Q,n). Then Bi(n) = Bi(R,, z) ®g, Q; where R, acts on Q by the
evaluation homomorphism. The evaluation map from R,, to Q extends to an evaluation map
Bi(Ry,z) — Bg(n) given by a — a ® 1, or more concretely by >, fad — >, fa(n)d,
where the sum is over the basis of Brauer diagrams and f; € R,,. We will denote this map by
a — a(n). We will refer to By(R,,, z) C By(F, z) as the ring of evaluable elements.

Recall that 7 denotes the Markov trace on By(z). Let 7,, denote the Markov trace on By (n).
If a € Bi(z) is evaluable, then 7(a) € R, and 7,,(a(n)) = 7(a)(n). The radical of the Markov
trace 7, is the set of z € By(n) such that for all y € By(n), 7(zy) = 0; the radical of the trace,
denoted rad(,) or Ix(n), is a two sided ideal in By (n). It is observed in [18, Lemma 3.1], that

For a non—zero integer n, a Young diagram p is called n—permissible if for all Young di-
agrams A C p, P\(n) # 0, where P, is the El Samra—King polyomial. The following are
necessary and sufficient conditions for a Young diagram p be n—permissible ( [18], Corollary
3.5):

° Ifn>0,/]1+/12<n.
e If n = —2k is even and negative, 1 < k.
e If n is odd and negative, j1; + o < 2 — n.

We call an element (1, m) € B ¢ n—permissible if ; is n—permissible. A path t € E;)

n—permissible if ) is n—permissible for all j.

Let s, t be n—permissible paths. We will show that (f;, f;) is a unit in R,,, and that the matrix
entries e;(s, t) and s;(s, t) are in R,,. We will also show that the idempotents F and the basis
elements F are evaluable.

is called

Lemma 7.1. Let s, t € E;) be a n—permissible paths. Then

(1) Foralli < f,ife;(s,t) # 0, then e;(s,t) is a unit in R,,.
(2) {fi, fo) is a unit in R,,.

Proof. When ¢;(t,t) # 0, it is the ratio of El Samra—King polynomials of two n—permissible
Young diagrams by Corollary 3.22 part (2), hence e;(t, t) is a unit in R,,. For s # t, statement
(1) follows from Theorem 4.11 part (2).

Statement (2) follows from Definition 4.7 and the recursive formula (4.8) for { f, f;). O
27



Remark 7.2. Lets, t € B pe n—permissible. Then Fi is evaluable if and only if F} is evalu-
able, because Fyy = (fi, fo) F, and (f, fi) is a unitin R,. If F; and F} are evaluable, then so is

F, = FymgF,. Conversely, if Fy is evaluable, so are Fi; = F, and Fi, = (fs, fs) ' FisFst.
Following [13, Section 4], say two paths s,t € LA?IE)
if ¢s(j) = e«(j) mod (z —n) for all 5.

are residue equivalent, and write s ~ t

Lemma 7.3. Let t € é}is and write ty = t| ;. Suppose that Fy is evaluable. Let [t] be the set of
se BV

FisSuch that s\ p = to and and s ~ t. Then Fyy := ) iy Fi is an evaluable idempotent.

sE[H]

Proof. The proof of [13, Lemma 4.2] applies with minor changes. U

Lemma 74. Let t € é}il There is at most one path s € B\(il such that s # t, s = t and
s~ t

Proof. Two edges ¢((u,m) — (X, 1)) and ¢((u,m) — (N,I')) in B are congruent modulo
z — n only if one of the two edge involves adding a cell « to i and the other removing a
cell § from p. Moreover the condition for the the contents to be congruent modulo z — n is
c(a) + ¢(B) = 1 — n. Therefore, for a given edge (u, m) — (), 1), there is at most one other
edge (1, m) — (N, ') such that the contents of the edges are congruent modulo z — n. d

Lemma 7.5. Let f > 1 and t € E}) Suppose that ' = t,;_; is n—permissble. Then F is
evaluable.

Proof. The proof is by induction on f. The base case f = 1 is obvious. Suppose that f > 1,
and that t € §J(c) such that t’ is n—permissible. Write (u, m) = t/~1. By the appropriate
induction hypothesis, F} is evaluable.

By Corollary 3.12, F} is evaluable unless there exists a path s such that s # t, s’ = ¢/, and
¢s(f) = a(f) mod (z — n). There is at most one such path by Lemma 7.4, and if such a
path s exists then F; + F} is evaluable by Lemma 7.3. Thus Fj is evaluable if and only if F; is
evaluable. One of the two paths t, s has the form

(' ) (:Uﬁ m), (M—v m+ 1))7
and the other
(' o (:u? m)> (NJra m))>
where . is obtained by removing a cell from p and p by adding a cell. We can assume
without loss of generality that t is the first of these two paths, and in particular, that t is n—
permissible.
To prove that F} is evaluable, first consider an n—permissible path of the form

u= ( T (M*?m)a (:ua m)7 (/L,, m+1)).
By the induction hypothesis, F, is evaluable. We have Fyef_1Fyy = Fyep_i Iy, using Propo-
sition 3.20, so Fye;_1F, is evaluable. But F, = d 'F,e; 1F,, where d = e;_1(u,u) =
(P.(z)/P,_(z)), using Corollary 3.22. Hence Fj is evaluable, since d is a unit in R,,. Finally,
using Lemma 3.7 (1) and Corollary 3.13, we have

FowFyFuy = <fu’7 fu’>2Ftt = <fu’a fu’>2<fta ft>Ft
Using Lemma 7.1 and Remark 7.2, it follows that F} is evaluable. U

We will now construct a cellular basis {h,} of Bf(R,, z) indexed by pairs of paths in §J(c)

of the same shape, with the properties:

(1) If both s and t are n—permissible, then hs¢ = Fiq.

(2) The set of h,((n) where at least one of s, t is not n—permissible is a basis of rad(7,).
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The construction is a variant of the construction of the basis g, in [13, Theorem 4.5].

If t E;) is n—permissible, set [t] = {t}. If t € §](c) is not n—permissible, let (11, m) = t*)
be the first non n—permissible point on the path t and write t; = t|;. According to Lemma 7.5,
F, is evaluable. Let [t] = {s € Ej(c) | 5 = toand s ~ t} and let Fig = ) __;; Fs. Then the
idempotent F[g is evaluable by Lemma 7.3.

s€E[t]

Definition 7.6. For s,t € B, let hy, = Figms Flg and let by € AL be defined by
ht = th[t]-

Lemma 7.7.
(1) Let (\,1) € éf and t € B\}A’l). There exist coefficients Bs € R, fors € B\,(:"l), such that

he=me+ Y Bems. (7.1)

s>t

(2) {h| te B DY is an R,—basis of the cell module AfR and

{hst ‘ ()\, l) € Bf and57{ c BJ(C)\,Z)}
is a cellular basis of B¢(R,,, z).

Proof. For part (1), start with m¢ = f+ ZsH 7l fs (Where the coefficients are in IF) and multiply
with Fjg on the right. This gives hy = f + st sef] s ' fs. By applying (3.2), we obtain
(7.1), but with coefficients a priori in F. On the other hand since Fiy € By(Ry, z), we have
he = mFy = Y, vsms with coefficients in R,,. Matching coefﬁc:lents gives the the result. It
follows that {h | t € B}(c’\ l)} is an R,—basis of of the cell module A} ' Rn

For the moment, write A = Bf(R,,, z) for the sake of concision. With

a: APOD APOD o (AR Y g, AR

the A-A bimodule isomorphism determined by mg, + A*M) — (m,)* ® m,, we have
alhge + APODY = (hy)* @ hy. It follows from [7, Lemma 2.3] that {h,} is a cellular ba-
sis of B (R, z). O

Lemma 7.8. For f > 1, the set of hs(n) where s,t € EJ(C) and at least one of s,t is not
n—permissible is a Q-basis of rad(r,) C By(n).

Proof. Let M denote the span of the set of h,((n) where 5, t € E;) and at least one of s, t is
not n—permissible. We have to show that M = rad(r,).

For any k, let I;(n) denote the radical of 7,, on By (n).

First consider some (u, m) € Ek for k£ < f, with u not n—permissible. Let t, € E}Eﬁ ™)
be a path with t{, n—permissible. Then Fy, is evaluable by Lemma 7.5, and 7,,(F},(n)) =

P,(n)/n* = 0. Moreover Fi,(n)Bg(n)Fi,(n) = QF,(n), and it follows that Fi,(n) € I(n).

Now let t € B be a non n—permissible path. Let (u,m) € B, and t, be as in the
definition of [t| precedlng Definition 7.6. Then Fjy = F Fjy. Since Fi (n) € Iy(n) and
Iy (n) C Iy(n), we have Fig(n) € Iy(n). Finally if either s or t is not n permissible, then
het(n) = Fig(n)msi(n)Fig(n) € Ir(n). Thus we have M C rad(7,).

If both s and t are n—permissible paths in B B , then hyy = F,¢ and

To(Fs(n)Fis(n)) = <fsafs>( ){fe f)(m)Px(n) /0’ # 0,



so Fyi(n) & rad(7,). Finally, if € rad(r,), let
/
=Y als)F(n)+ Y A, 0)hy,,
5,t u,0

where the first sum is over pairs (s,t) with both paths n—permissible and the second sum is
over pairs of paths (u, v) with at least one of the paths not n—permissible. For any pair (s, t)
with both paths n—permissible, we have Fy(n)zFi(n) = a(s,t)Fs(n). The left side is in
rad(7,,) and since Fy(n) ¢ rad(r,), it follows that a(s,t) = 0. Thus we have shown that
rad(7,) € M. d

For © € By(n), write T for the image of x in By(n)/rad(r,). For (A1) € Ef, let agy )
denote the number of n—permissible paths of shape (A, ).

The following theorem provides an explicit construction of the simple modules of By(n)
which factor through By (n)/ rad(7,). The result recovers Theorem 5.4.3 of [?].

Theorem 7.9.
(1) The set
{Fst(n) | (\1) € Ef,ﬁ,t € EJ({\’Z) n—permissible}
is a Q-basis of Bf(n)/ rad(t,).
(2) The set

(o £)(0) " Fae(n) | (A1) € By,s,t € E}”’ n—permissible}

is a system of matrix units and a Q-basis of By(n)/rad(7,). Thus,

By(n)/rad(r,) GBMata(A o (

where the sum is over (\, 1) € B ¢ with A\ n—permissible.
(3) Let (A1) € B 7 with X n—permissible. For t EJ([\’I) n—permissible, set f, = Fu (n).
Then

Vo = SpanQ{ﬂ | te E}(cx,l) is n—permissible}

is a simple B;(n) module, with the module action fx = fT for x € By(n).

(4) For s,t n—permissible paths of the same shape, the matrix coefficients e;(s,t) and s;(s, t)
are in R,

(5) The structure constants of the generators e; and s; with respect to the basis { f.} are ob-
tained by evaluating the matrix entries e;(s,t) and s;(s,t) at z = n:

fie; = Zei(s,t)(n) fo and fis;= Zsi(s,t)(n) fs

S S

with the sums over n—permissible paths.

Proof. Point (1) follows from Lemmas 7.7 and 7.8. It follows from (1) and Proposition 3.6 part
(7) that {(fs, fa)(n) " Fy¢(n)} is a system of matrix units and a basis of B(n)/rad(r,), which
proves (2). Point (3) is immediate from (2).

It was already shown in Lemma 7.1 that the matrix entries e;(s, t) for s, t n—permissible are
in R,,. For u,t s all n—permissible paths of the same shape, we have F,s;F; = s;(s,t)Fs.
Since the left side of this equation is evaluable, so is the right side, and since F;(n) # 0, this
implies that s(s, t) € R,. This proves point (4).

Finally, for point (5), if fie; = >, a(s) fs, then fie;Fy = a(s) fs. This gives

@(B)Ft(/\,l)t(n) = Ft(A,l) teiFs(n) = 62'(5, f)(n)Ft(x,z){(n),
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SO

a(s) = e;(s,t)(n). The identical proof applies to the generators s;. O

Theorem 7.9 is equally valid over any field of characteristic zero, in particular over the

complex numbers. If n is a positive integer, there is a well known homomorphism ® from the
Brauer algebra B¢(C, n) onto the centralizer of the complex orthogonal group O(n, C) acting
on the f—fold tensor power of its vector representation. If n is an even negative integer, n =
—2k, then there is a homomorphism ® of B(C, n) onto the centralizer algebra of the complex

Sy

mplectic group Sp(2k, C) acting on the f—fold tensor power of its vector representation. In

both cases ker(®) = rad(r,), by [18, Corollary 3.5]. Thus Theorem 7.9 also describes the
structure of (B (C, n)).

10.
11.

12.

13.

14.

15.

16.

17.
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