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1. INTRODUCTION

This paper will eventually have an introduction !

Editorial note: The main results of this paper are due to John Enyang. The contributions of
the second author were largely editorial and expository.

At one point, we we intended to use the detailed description of the seminormal representa-
tions of the Brauer algebra obtained here as an aid to understanding Murphy type bases for the
quotients of the Brauer algebras acting on tensor space. However, as it turned out, our approach
in [1] did not require using the results of this paper.

2010 Mathematics Subject Classification. 20G05; 05E10.
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2. PRELIMINARIES

2.1. Definition of the Brauer algebras. The Brauer algebras were defined by Brauer [3].
Wenzl [18] showed that the Brauer algebras are obtained from the group algebra of the sym-
metric group by the Jones basic construction, and that the Brauer algebras over a field of char-
acteristic zero are generically semisimple. Cellularity of the Brauer algebras was established
by Graham and Lehrer [10].

Let S be an integral domain with a distinguished element δ. The Brauer algebra Bn =
Bn(S; δ) is the free S–module with basis the set of (n, n)–Brauer diagrams. The product of
two Brauer diagrams is obtained by stacking them and then replacing each closed loop by a
factor of δ; see [3] or [18] for details. By convention B0(S; δ) = S.

The generic ground ring for the Brauer algebras is R = Z[z], where z is an indeterminant.
We write F for the field of fractions Q(z) of R. For any specialization Bk(S; δ), one has
Bk(S; δ) ∼= Bk(R; z)⊗R S, with z acting on S by multiplication by δ, z⊗ 1 = 1⊗ δ. We will
commonly write Bk for Bk(R; z) and Bk(z) for Bk(F; z).

The involution ∗ on (n, n)–Brauer diagrams which reflects a diagram in the axis y = 1/2
extends linearly to an algebra involution of Bn(S; δ). Note that the Brauer diagrams with only
vertical strands are in bijection with permutations of {1, . . . , n}, and that the multiplication of
two such diagrams coincides with the multiplication of permutations. Thus the Brauer algebra
contains the group algebra SSn of the permutation group Sn as a unital subalgebra. The
identity element of the Brauer algebra is the diagram corresponding to the trivial permutation.
We will note below that SSn is also a quotient of Bn(S; δ).

Let si and ei denote the following (n, n)–Brauer diagrams:

si = · · · · · ·

i i+ 1

and ei = · · · · · ·

i i+ 1

It is easy to see that e1, . . . , en−1 and s1, . . . , sn−1 generate Bn(S; δ) as an algebra. We have
e2
i = δei, so that ei is an essential idempotent if δ 6= 0 and nilpotent otherwise. Note that
e∗i = ei and s∗i = si.

The products ab and ba of two Brauer diagrams have at most as many through strands as
a. Consequently, the span of diagrams with fewer than n through strands is an ideal Jn in
Bn(S; δ). The ideal Jn is generated by en−1. We have Bn(S; δ)/Jn ∼= SSn, as algebras with
involutions; in fact, the isomorphism is determined by v + Jn 7→ v, for v ∈ Sn.

2.2. Generic semisimplicity, branching diagram, and standard tableaux. Let Ĥ denote
Young’s lattice, i.e. the directed graded graph with vertices at level k the set Ĥk of Young
diagrams of size k, and directed edges λ → µ connecting λ ∈ Ĥk−1 and µ ∈ Ĥk if µ is
obtained from λ by adding one node. For µ ∈ Ĥk, the set A(µ) of addable nodes of µ is
the set of α = (j, µj + 1) such that µ ∪ {α} is a Young diagram. Likewise, the set R(µ) of
removable nodes is the set of α = (j, µj) such that µ \ {α} is a Young diagram. The addable
nodes correspond one–to–one with λ ∈ Ĥk+1 such that µ→ λ in Ĥ , and the removable nodes
correspond one–to–one with ν ∈ Ĥk−1 such that ν → µ in Ĥ .

If K is a field of characteristic zero, then the group algebra KSk is split semisimple for all
k > 0, and Ĥ is the branching diagram for the tower of split semisimple algebras (KSk)k>0.

It is well known that standard Young tableaux of a given shape λ ∈ Ĥk can be identified
with paths on Ĥ from ∅ to λ, i.e. sequences (λ(j))06j6k such that λ(j) ∈ Ĥj , λ(k) = λ, and
λ(j−1) → λ(j) in Ĥ for 1 6 j 6 k.

We are going to define Brauer algebra analogues of Young’s lattice and standard tableaux.
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For k > 0, let B̂k be the set of pairs (λ, l), where 0 6 l 6 bk/2c and λ is Young diagram of
size k − 2l. B̂0 has a unique element (∅, 0), which we also denote by ∅. Define B̂ to be the
directed graded graph with:

(1) vertices at level k: B̂k, and
(2) a directed edge (λ, l) → (µ,m) connecting (λ, l) ∈ B̂k−1 and (µ,m) ∈ B̂k, if r µ is

obtained either by adding a node to λ, or by deleting a node from λ.
According to Wenzl [18], Theorem 3.21 and Corollary 3.3, if K is a field of characteristic

zero and δ ∈ K is not an integer, then the algebras Bk = Bk(K; δ) are split semisimple, and
the branching diagram for the sequence (Bk)k>0 is B̂. This applies in particular to Bk(z) =
Bk(F, z).

Next we discuss the analogue of standard tableaux.

Definition 2.1. A path on B̂ from (λ, l) ∈ B̂j to (µ,m) ∈ B̂k (for j < k) is a sequence
t = (t(j), t(j+1), . . . , t(k)) with t(j) = (λ, l), t(k) = (µ,m), t(s) ∈ B̂s for all s, and t(s) → t(s+1)

in B̂ for all s < k. The set of all paths from ∅ to (λ, l) ∈ B̂n is denoted by B̂(λ,l)
n . If t ∈ B̂(λ,l)

n ,
we write Shape(t) = (λ, l). Write B̂(·)

n for the set of all paths from ∅ to some (λ, l) ∈ B̂n.

The set B̂((λ,l))
n is the Brauer algebra analogue of the set of standard tableaux of fixed shape in

the representation theory of the symmetric group. The set B̂(·)
n is the Brauer algebra analogue

of the set of all standard tableaux of fixed size n. These paths are often called “up–down
tableaux”.

Remark 2.2. For a path t =
(
(λ(0), l0), (λ(1), l1), . . . , (λ(k), lk)

)
∈ B̂

(λ,l)
k , the sequence

(λ(0), λ(1), . . . , λ(k)) suffices to reconstruct t, since lj = (j − |λ(j)|)/2. Therefore, we will
sometimes also write t(j) = λ(j).

Notation 2.3 (Operations on paths).
• (Concatentation) A path s from (λ, l) to (µ,m) and a path t from (µ,m) to (ν, n) can be

concatenated in the obvious sense; we denote the concatenation by s ◦ t.
• (Truncation) If t is a path from ∅ to (λ, l) ∈ B̂n, and 0 6 k < ` 6 n, write t[k,`] for the

path (t(k), . . . , t(`)). Write t↓j for t[0,j]. Write t′ for t↓n−1 and t′′ for t↓n−2.
• (Shifting) If t = ((λ(j), lj))06j6k is a path on B̂, let t[2l] = ((λ(j), lj + l))06j6k.

2.3. Markov trace and conditional expectation. Let Bk = Bk(S; δ) be any specialization
of the Brauer algebras, where δ is assumed to be invertible in S. There exists a conditional
expectation εk−1 : Bk → Bk−1, that is, a unital Bk−1–Bk−1 bimodule map, defined on k–strand
Brauer diagrams by εk−1(b) = (1/δ) cl(b), where cl(b) is obtained by joining the k–th upper
and lower vertices of b, and replacing any closed loop by a factor of δ. For x ∈ Bk, one has

ekxek = δεk−1(x)ek. (2.1)

Lemma 2.4. The map x 7→ xek from Bk to Bk+1 is injective.

Proof. One has εk(xek) = (1/δ)x. �

There exists an S–valued trace τ on Bk defined inductively by τ(1) = 1 and τ(b) =
τ(εk−1(b)) for b ∈ Bk. By definition τ(ι(b)) = τ(b) where ι denotes the embedding of Bk

in Bk+1, and τ ◦ εk−1 = τ . The trace τ is called the Markov trace. See [18], Proposition 2.2 for
details.

According to Wenzl [18], if K is a field of characteristic zero and δ ∈ K is not an integer,
then the Markov trace τ is non–degenerate on Bk = Bk(K; δ); that is, for each x ∈ Bk, there
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exists y ∈ Bk such that τ(xy) 6= 0. This entails that τ(p) 6= 0 for each minimal idempotent
p ∈ Bk.

We conclude this subsection with some observations about minimal idempotents. Assume
K is a field of characteristic zero and δ ∈ K is not an integer, as above. For (λ, l) ∈ B̂k, let
z(λ,l) denote the corresponding minimal central idempotent in Bk = Bk(K; δ).

Lemma 2.5. Let (λ, l) ∈ B̂k−1. If p is a minimal idempotent in Bk−1z(λ,l), then (1/δ)ekp is a
minimal idempotent in Bk+1z(λ,l+1)

Proof. By the proof of Theorem 3.2 in [18], Jk+1 = Bk+1ekBk+1 is isomorphic to the Jones
basic construction for the pair Bk−1 ⊆ Bk. The result now follows from [18], Proposition
1.2. �

Lemma 2.6. Let p be a minimal idempotent in Bk−1 and ζ a minimal central idempotent in Bk

such that p ζ 6= 0. Then εk−1(p ζ) = (τ(p ζ)/τ(p)) p.

Proof. We have εk−1(p ζ) = pεk−1(pζ)p, by the bimodule property of εk−1, and since p is a
minimal idempotent, this is equal to αp for some α ∈ K. Applying τ , we get τ(p ζ) = ατ(p),
so α = τ(p ζ)/τ(p). �

2.4. Weights of the Markov trace. Wenzl has determined the weights of the Markov trace τ
on Bk(z) = Bk(F, z), that is, the values of τ on minimal idempotents.

Notation 2.7. For a Young diagram µ, let µ̃ denote the transposed diagram. Thus µ̃j is the
length of the j–th column of µ. If (i, j) is a node of the Young diagram µ, the associated hook
length is

hµ(i,j) = µi − i+ µ̃j − j + 1.

Let H(µ) denote the produce of all the hook lengths, H(µ) =
∏

α∈µ h
µ(α), where the product

is over all nodes α of µ.

Definition 2.8 ([4]). The El Samra–King polynomial associated to a Young diagram µ is

Pµ(z) = (1/H(µ))
∏

(i,j)∈µ
i>j

(z + µi + µj − i− j)
∏

(i,j)∈µ
i<j

(z − µ̃i − µ̃j + i+ j − 2)

Theorem 2.9 ([18], Theorem 3.2). Let p be a minimal idempotent in the minimal ideal ofBk(z)

labelled by (µ, l) ∈ B̂k. Then

τ(p) = Pµ(z)/zk.

2.5. A Murphy basis for the Brauer algebras. Introduced by Graham and Lehrer as a device
for studying non–semisimple representations of a class of algebras that includes Hecke alge-
bras, Schur algebras and Brauer algebras [10], cellular algebras are defined by the existence
of a cellular basis and a cell datum, which have combinatorial properties analogous to the
“Robinson–Schensted correspondence” in the group algebra of the symmetric group. Cellular-
ity of Bk was established using a tangle type basis in [10, Theorem 3.11]. This paper will use
the cellular basis for Bk given in [6, Section 6], which is a Brauer algebra analogue of Murphy’s
cellular basis [15, Theorem 4.17] for the Iwahori-Hecke algebra of the symmetric group. We
will adhere closely to the notation established in [6]. For further details on cellular algebras in
general, the reader is referred to [10, 12, 13, 8, 9].
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For i = 0, 1, . . . , let

e
(l)
i−1 =


1, if l = 0 and i 6 2,
ei−2l+1ei−2l+3 · · · ei−1︸ ︷︷ ︸

l factors

if 1 6 l 6 bi/2c,

0, if bi/2c < l.

For (λ, l) ∈ B̂k, define

c(λ,0) =
∑
w∈Sλ

w and c(λ,l) = c(λ,0)e
(l)
k−1.

If 1 6 a < i, define
wa,i = sasa+1 · · · si−1 = (i, i− 1, . . . , a)

and wi,a = w∗a,i. If µ ` i− 1 and λ ` i, with λ = µ ∪ {(j, λj)}, let a =
∑j

r=1 λr and define

d
(i)
µ→λ = wa,i and u

(i)
µ→λ = wi,a

µj∑
r=0

wa,a−r.

The elements d(i)
µ→λ and u(i)

µ→λ are “branching factors” for restriction and induction of cell mod-
ules of the symmetric group algebras ZSn. They are related to the Murphy basis of the sym-
metric group algebras as follows. For n > 0 and λ ∈ Ĥn, identify a standard tableau t of shape
λ with a path (λ(j))06j6n on Young’s lattice Ĥ and define

dt = d
(n)

λ(n−1)→λ(n)d
(n−1)

λ(n−2)→λ(n−1) · · · d
(1)

λ(0)→λ(1) .

Then dt ∈ Sn is the permutation such that tλdt = t, where tλ is the “row reading” tableau in
which the entries 1, . . . n are entered in order along the rows. Murphy’s basis is recovered as

ms t = d∗sc(λ,0)dt.

See [6, Section 4].
For future reference we recall from [6, Lemma A.2] that the d– and u– branching factors for

the symmetric groups satisfy the compatibility relation

c(λ,0)d
(i)
µ→λ = (u

(i)
µ→λ)

∗c(µ,0). (2.2)

It is shown in [6] that the branching factors for the symmetric group algebras can be lifted
to branching factors for the Brauer algebras, and that an analogue of Murphy’s cellular basis is
obtained by taking ordered products of d– branching factors along paths on B̂, as follows:

For (µ,m) ∈ B̂k−1 and (λ, l) ∈ B̂k, with (µ,m)→ (λ, l) in B̂, define

d
(k)
(µ,m)→(λ,l) =

{
d

(k−2m)
µ→λ e

(m)
k−2, if l = m,

u
(k−2m−1)
λ→µ e

(m)
k−2, if l = m+ 1.

(2.3)

If (µ,m) ∈ B̂k and t = ((µ(0),m0), . . . , (µ(k),mk)) ∈ B̂(µ,m)
k , define

dt = d
(k)

(µ(k−1),mk−1)→(µ(k),mk)
d

(k−1)

(µ(k−2),mk−2)→(µ(k−1),mk−1)
· · · d(1)

(µ(0),m0)→(µ(1),m1)
.

We now extend the usual dominance order Q on partitions to an order on the set B̂k.

Definition 2.10. Let (λ, l), (µ,m) ∈ B̂k. Write (λ, l) Q (µ,m) if either l > m, or l = m and
λ Q µ.
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Proposition 2.11 ([6, Theorem 6.19]). The set

Bk = {ms t = d∗sc(λ,l)dt | s, t ∈ B̂(λ,l)
k , (λ, l) ∈ B̂k} (2.4)

is an R-basis for Bk and (Bk, ∗, B̂k,Q,Bk) is a cell datum for Bk.

One also has u–branching factors for the Brauer algebras defined as follows: For (µ,m) ∈
B̂k−1 and (λ, l) ∈ B̂k, with (µ,m)→ (λ, l) in B̂, define

u
(k)
(µ,m)→(λ,l) =

{
u

(k−2m)
µ→λ e

(m)
k−1, if l = m,

d
(k−2m−1)
λ→µ e

(m+1)
k−1 , if l = m+ 1.

(2.5)

The d– and u–branching factors satisfy the following compatibility relation:

c(λ,l)d
(k)

(µ,m)→(λ,l) = (u
(k)

(µ,m)→(λ,l))
∗c(µ,m), (2.6)

see [6, Appendix A]. This relation will be used frequently.
We recall for convenience some basic properties of the bases (2.4) derived from the general

theory of cellular algebras (for details, see [10, 9, 8, 6]). For (λ, l) ∈ B̂k, let BQ(λ,l)
k denote

the R–span of {ms t | (µ,m) Q (λ, l) and s, t ∈ B̂
(µ,m)
k } and B�(λ,l)

k the R–span of {ms t |
(µ,m) � (λ, l) and s, t ∈ B̂(µ,m)

k }. Then these are two sided ideals in B. Indeed, one has

BQ(λ,l)
k =

∑
(µ,m)Q(λ,l)

Bkc(µ,m)Bk,

and similarly for B�(λ,l)
k . For (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l)

k , and b ∈ B, one has

ms tb ≡
∑
u

ru(b; t)ms u mod B�(λ,l)
k , (2.7)

where the sum is over u ∈ B̂(λ,l)
k , and the scalars ru(b; t) ∈ R depend only on b and t, and not

on s. Evidently, one has m∗s t = mt s, and it follows that

bms t ≡
∑
u

ru(b
∗; s)mu t mod B�(λ,l)

k . (2.8)

The cell module ∆
(λ,l)
k is the free R-module with basis {mt | t ∈ B̂(λ,l)

k } with right Bk-action

mtb =
∑
u

ru(b; t)mu, for b ∈ Bk,

where the scalars ru(b; t) ∈ R are determined by the relation (2.7). The opposite cell module
(∆

(λ,l)
k )∗ is the free R–module with basis {m∗s | s ∈ B̂

(λ,l)
k } and left action

bms =
∑
u

ru(b
∗; s)m∗u, for b ∈ Bk.

It follows from the definitions that the map α(λ,l) : BQ(λ,l)
k /B�(λ,l)

k → (∆
(λ,l)
k )∗ ⊗R ∆

(λ,l)
k deter-

mined by ms t + B�(λ,l)
k 7→ m∗s ⊗mt, for s, t ∈ B̂(λ,l)

k , is a Bk–Bk bimodule isomorphism.
For (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l)

k , the map 〈 , 〉 : ∆
(λ,l)
k ×∆

(λ,l)
k → R, defined by

〈mu,mv〉ms t ≡ ms umv t mod B�(λ,l)
k for u, v ∈ B̂(λ,l)

k , (2.9)

is a symmetric bilinear form on ∆
(λ,l)
k . It is shown in [10, Sect. 2] that the form defined by the

relation (2.9) is independent of the choice of s and t. It does depend, however, on the choice of
the cellular basis Bk = {ms t} of Bk.
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The basis for ∆
(λ,l)
k realises an explicit filtration by cell modules for Bk−1 of the restriction

of ∆
(λ,l)
k to Bk−1.

Proposition 2.12 ([6, Lemma 3.13]). Assume that (λ, l) ∈ B̂k and (ρ, r) ∈ B̂k−1, where
(ρ, r) → (λ, l) in B̂. Let NQ(ρ,r) ⊆ ∆

(λ,l)
k and N�(ρ,r) ⊆ ∆

(λ,l)
k denote the R-submodules

respectively generated by

{mt ∈ ∆
(λ,l)
k | Shape(t↓k−1) Q (ρ, r)} and {mt ∈ ∆

(λ,l)
k | Shape(t↓k−1) � (ρ, r)}.

Then the linear map NQ(ρ,r)/N�(ρ,r) → ∆
(ρ,r)
k−1 given by

ms +N�(ρ,r) 7→ mt, if s ∈ B̂(λ,l)
k , t ∈ B̂(ρ,r)

k−1 and s↓k−1 = t,

is an isomorphism of Bk−1-modules.

2.6. A partial order on paths, and a maximal path. The following partial order on paths
will play a crucial role:

Definition 2.13 ([9, Definition 2.16]). Consider paths s = ((λ(0), l0), . . . , (λ(k), lk)) and t =

((µ(0),m0), . . . , (µ(k),mk)) in B̂(·)
k . We say that s precedes t in reverse lexicographic order

(denoted t < s) if s = t, or if for the last index i such that (λ(i), li) 6= (µ(i),mi) we have
(µ(i),mi) � (λ(i), li). Write t � s if t < s and s 6= t.

Next, we define two distinguished paths in B̂(λ,l)
k . Recall the “row reading” standard tableau

tλ for λ ∈ Ĥn, namely the standard tableau in which the numbers 1, . . . , n are entered in order
from left to right along the rows of λ. Regarded as a path on Ĥ , tλ = (λ(j))06j6n, where
λ(j) \ λ(j−1) is the node in A(λ(j−1)) ∩ λ with least row index.

Definition 2.14.
(1) For (λ, l) ∈ B̂k, define t = t(λ,l) by

t(2r) = (∅, r) for 0 6 r 6 l

t(2r+1) = ((1), r) for 0 6 r 6 l − 1,

and t[2l,k] = ((λ(j), l))06j6k−2l, where tλ = (λ(j))06j6k−2l.
(2) Let (λ, l) ∈ B̂k. Let ρ be the Young diagram obtained by adjoining to λ its lowest addable
node, ρ = λ ∪ {(` + 1, 1)}, where ` is the length of λ. Define u = u(λ,l) ∈ B̂(λ,l)

k by u↓k−2l =
t(λ,0), and

u(k−2l+2r) = (λ, r) for 0 6 r 6 l

u(k−2l+2r+1) = (ρ, r) for 0 6 r 6 l − 1,

Remark 2.15. For (λ, l) ∈ B̂k, t(λ,l) is characterized as the unique maximal element in B̂(λ,l)
k

with respect to reverse lexicographic order. Note also that t(∅,l) = u(∅,l) and t(λ,l) = t(∅,l) ◦
t(λ,0)[2l].

Notation 2.16. For x ∈ Bj and r > 1, define x[r] ∈ Bj+r to be x shifted by r strands to the
right. For the generators ei, si, we have ei[r] = ei+r and si[r] = si+r.

The following consequence of the contraction identity for the ei’s will be used frequently.

Lemma 2.17. For l > 1 and k > 3,

e
(l)
k e

(l−1)
k−1 e

(l−1)
k−2 = e

(l)
k .
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Proof. This is evident if l = 1. For l > 1,

e
(l)
k e

(l−1)
k−1 e

(l−1)
k−2 = eke

(l−1)
k−2 e

(l−1)
k−1 e

(l−1)
k−2 = e

(l)
k .

�

Lemma 2.18. Let k > 1, (λ, l) ∈ B̂k, and t ∈ B̂(λ,l)
k . Then the following statements hold:

(1) c(λ,l)du(λ,l) = c(λ,l).
(2) dt(λ,0) = 1 and, for l > 1,

dt(λ,l) =


e

(l)
k−2e

(l)
k−3 · · · e

(l)
2l−1, if λ 6= ∅ and k > 2,

e
(l−1)
k−2 e

(l−1)
k−3 , if λ = ∅ and k > 2,

1 if k = 2.

(3) For l > 1 and x ∈ Bk−2l,

xe
(l)
k−1e

(l)
k−2 · · · e

(l)
2l−1 = e

(l)
k−1e

(l)
k−2 · · · e

(l)
2l−1x[2l].

Proof. (1) Let u = u(λ,l). If l = 0, then u = t(λ,0), and du = 1. So assume l > 0, and proceed
by induction on l. Write u′′ = u↓k−2.

Note that d(k−2l+1)
λ→ρ = u

(k−2l+1)
λ→ρ = 1. Therefore d(k)

u(k−1)→u(k)
= d

(k)
(ρ,l−1)→(λ,l) = e

(l−1)
k−2 . Like-

wise, d(k−1)

u(k−2)→u(k−1) = d
(k−1)
(λ,l−1)→(ρ,l−1) = e

(l−1)
k−3 . Hence,

c(λ,l)d
(k)

u(k−1)→u(k)
d

(k−1)

u(k−2)→u(k−1) = c(λ,0)e
(l)
k−1e

(l−1)
k−2 e

(l−1)
k−3 = c(λ,0)e

(l)
k−1 = c(λ,l),

using Lemma 2.17. Thus, writing u′′ = u↓k−2,

c(λ,l)du = c(λ,l)du′′ .

The result follows from the induction hypothesis, since c(λ,l) = ek−1c(λ,l−1) and u′′ = u(λ,l−1).
(2) Compute directly that dt(∅,1) = 1 and dt(∅,2) = e2e1. For l > 3,

dt(∅,l) = e
(l−1)
2l−2 e

(l−1)
2l−3 dt(∅,l−1) = e

(l−1)
2l−2 e

(l−1)
2l−3 e

(l−2)
2l−4 e

(l−2)
2l−5 = e

(l−1)
2l−2 e

(l−1)
2l−3 .

by the appropriate induction hypothesis and Lemma 2.17. When λ 6= ∅ and k > 2, t(λ,l) =
t(∅,l) ◦ t(λ,0)[2l], and

dt(λ,l) = dt(λ,0)[2l]dt(∅,l) = e
(l)
k−2e

(l)
k−3 · · · e

(l)
2l−1dt(∅,l) .

If l = 1, dt(∅,l) = 1 and the desired formula for dt(λ,l) follows. If l > 2, dt(∅,l) = e
(l−1)
2l−2 e

(l−1)
2l−3 , and

the formula follows from applying Lemma 2.17.
(3) The element e(l)

k−1e
(l)
k−2e

(l)
k−3 · · · e

(l)
2l−1 is a Brauer diagram with vertical strands connecting

the top vertex j and the bottom vertex j + 2l for 1 6 j 6 (k − 2l). Therefore, assertion (3)
follows from diagramatic computation. �

Notation 2.19. For (λ, l) ∈ B̂k, write m(λ,l) = d∗
t(λ,l)

c(λ,l)dt(λ,l) .

Remark 2.20. It follows from Lemma 2.18 parts (2) and (3) that

m(λ,l) = e
(l)
2l−1c(λ,0)[2l]. (2.10)
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3. JUCYS–MURPHY ELEMENTS AND THE SEMINORMAL BASIS

3.1. Nazarov’s Jucys–Murphy elements. Nazarov [16, Sect. 2] has defined a family of JM
elements (Li)i>0 for the tower (Bi)i>0 by the relations

L0 = L1 = 0, and Li+1 = si − ei + siLisi, for i > 1

Let Lk denote the subalgebra of Bk generated by {Li | 1 6 i 6 k}.
Proposition 3.1 (See [16, Sect. 2]). Let k ∈ Z>1. Then the following statements hold:
(1) L0 + L1 + · · ·+ Lk is central in Bk.
(2) Lk commutes with Bk−1.
(3) The subalgebra Lk ⊆ Bk is commutative.

Recall that if a is a cell in a Young diagram, the content c(a) of a is the column index
of a minus the row index of a. The Brauer algebra analogue is the following: for an edge
(λ, l)→ (µ,m) in B̂, let

c((λ, l)→ (µ,m)) =

{
c(a), if µ = λ ∪ {a},
1− z − c(a), if µ = λ \ {a}.

(3.1)

For (λ, l) ∈ B̂k and t ∈ B̂(λ,l)
k , and for 1 6 i 6 k, define

ct(i) = c(t(i−1) → t(i)).

The following is the crucial property of the Jucys–Murphy elements and the Murphy bases
of the cell modules.

Proposition 3.2 (See [9, Section 6.4]). Let (λ, l) ∈ B̂k and t = ((λ(0), l0), . . . , (λ(k), lk)) ∈
B̂

(λ,l)
k . If i = 1, . . . , k, then there exist scalars rs ∈ R, for s ∈ B̂(λ,l)

k , such that

mtLi = ct(i)mt +
∑
s�t

rsms.

Use of the reverse lexicographic order Proposition 3.2 repairs an error in [5].
The conclusion of Proposition 3.2 still holds for any specialization Bk(S; δ) of the Brauer

algebras, where the variable z in (3.1) has to be replaced by δ. It follows from this that
{L1, . . . , Lk} is a family of Jucys–Murphy elements for Bk(S; δ) in the sense of Mathas [13,
Definition 2.4]. One says that the Jucys–Murphy elements {L1, . . . , Lk} separate paths (over
S) if for s 6= t in B̂(·)

k , there exists a j such that ct(j) 6= cs(j); see [13, Definition 2.8]. Ev-
idently, a sufficient condition for this is that S has characteristic zero and δ is not an integer.
In particular, this holds for Bk(F; z). Mathas shows [13, Corollary 2.9] that if K is a field and
if the the Jucys–Murphy elements {L1, . . . , Lk} separate paths over K, then Bk(K; δ) is split
semisimple.

Remark 3.3. This suggests a different proof of Wenzl’s theorem: ifK is a field of characteristic
zero and δ ∈ K is not an integer, then Bk(K; δ) is split semisimple. The proof relies on [9,
Section 6.4] and [13, Corollary 2.9], and avoids the determination of the weights of the Markov
trace, as in [18]. We omit the details as the alternative proof is neither more efficient nor more
elegant than the original proof from [18].

3.2. Seminormal bases. Let F = Q(z) denote the field of fractions of R = Z[z]. For the
remainder of Section 3, we denote Bk(F; z) = Bk(z) ⊗R F by Bk. Later in the paper where
we need to deal with several specializations of the Brauer algebras in the same context, we
will write Bk(z) for Bk(F, z). For (λ, l) ∈ B̂k, denote the specialization of the cell module
∆

(λ,l)
k ⊗R F by ∆

(λ,l)
k,F .

9



For each i > 1 let Let C(i) denote the set of Brauer contents associated to edges from level
i− 1 to level i in B̂,

C(i) = {c((λ, l)→ (µ,m)) | (λ, l) ∈ B̂i−1, (µ,m) ∈ B̂i, and (λ, l)→ (µ,m)}.
Equivalently C(i) is the set of Brauer contents ct(i) for paths t from ∅ to level k for any k > i.

Definition 3.4. Let (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l)
k . Define

Ft =
∏

16i6k

∏
c∈C(i)
ct(i) 6=c

Li − c
ct(i)− c

Definition 3.5. Let ft = mtFt and Fs t = Fsms tFt.

Since the JM elements L1, . . . , Lk satisfy the separation condition of [13, Definition 2.8], as
noted above, we obtain the following statements from [13, Sect. 3].

Proposition 3.6. Let k > 1 and (λ, l), (µ,m) ∈ B̂k.

(1) If t ∈ B̂(λ,l)
k , then there exist rs ∈ F, for s ∈ B̂(λ,l)

k , such that

ft = mt +
∑
s�t

rsms. (3.2)

(2) {ft | t ∈ B̂(λ,l)
k } is an F-basis for ∆

(λ,l)
k,F .

(3) {Fs t | (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l)
k } is an F-basis for Bk.

(4) ftLi = ct(i)ft, for all t ∈ B̂(λ,l)
k and i = 1, . . . , k.

(5) FsFt = δstFs and fsFt = δstfs, for all s, t ∈ B̂(·)
k .

(6) For s, t ∈ B̂(λ,l)
k , 〈fs, ft〉 6= 0 if and only if s = t.

(7) For s, t ∈ B̂(λ,l)
k and u, v ∈ B̂(µ,m)

k , Fs tFu v = δt u〈ft, ft〉Fs v, and ftFu v = δt u〈ft, ft〉fv.
(8) Ft = 〈ft, ft〉−1Ft t is a minimal indempotent, and z(λ,l) =

∑
s∈B̂(λ,l)

k
Fs is a minimal central

idempotent. The ideal z(λ,l)Bk is a full matrix algebra with matrix units

{〈ft, ft〉−1Fs t | s, t ∈ B̂(λ,l)
k }.

The bases given in (3) and (4) above are the seminormal bases for Bk and ∆
(λ,l)
k,F respectively.

Observe that, as eigenvectors for the action of the JM family in Bk, the seminormal bases for
∆

(λ,l)
k,F and Bk are uniquely determined up to scaling factors in F.
Because the transition matrix between the m–basis and the f–basis of the cell module ∆

(λ,l)
k,F

is unitriangular with respect to the reverse lexicographic order �, the inverse matrix has the
same property:

mt = ft +
∑
s�t

r′sfs. (3.3)

Recall the Bk–Bk bimodule isomorphism α(λ,l) : B
Q(λ,l)
k /B

�(λ,l)
k → (∆

(λ,l)
k,F )∗⊗∆

(λ,l)
k,F . deter-

mined by α(λ,l) : ms t +B
�(λ,l)
k 7→ m∗s ⊗mt. One has α−1

(λ,l)(f
∗
s ⊗ ft) = Fs t +B

�(λ,l)
k . It follows

from Proposition 3.6 parts (3) and (7) that {Fs t | (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l)
k } is a cellular

basis of Bk. Moreover, from [7, Lemma 2.3] or from [13, Lemma 3.3] we have that

B
Q(λ,l)
k = spanF{Fs t | (µ,m) Q (λ, l) and s, t ∈ B̂(µ,m)

k }

and similarly for B�(λ,l)
k . From Proposition 3.6 parts (7) and (8), we have

z(λ,l)B
�(λ,l)
k = 0. (3.4)
10



Consequently if a, b ∈ BQ(λ,l)
k and a ≡ b mod B

�(λ,l)
k , then az(λ,l) = bz(λ,l).

Lemma 3.7. Let (λ, l) ∈ B̂k.

(1) For fixed s ∈ B̂(λ,l)
k , Is = spanF{ms tFt : t ∈ B̂(λ,l)

k } is a right ideal of Bk and ft 7→ ms tFt

is a Bk–module isomorphism from ∆
(λ,l)
k,F onto Is.

(2) For s, t ∈ B̂(λ,l)
k ,

ms tFtmt s = 〈ft, ft〉ms sz(λ,l). (3.5)
(3)

c(λ,l)dt(λ,l)z(λ,l) = c(λ,l)dt(λ,l)Ft(λ,l) . (3.6)
(4)

Ft(λ,l)m(λ,l) = m(λ,l)Ft(λ,l) = m(λ,l)z(λ,l) = Ft(λ,l) t(λ,l) . (3.7)

Proof. (1) (Compare [13, Corollary 3.10].) The map x 7→ α−1
(λ,l)(m

∗
s ⊗ x) is a Bk–module

isomorphism from ∆
(λ,l)
k,F intoBQ(λ,l)

k /B
�(λ,l)
k . The image of ft under this map isms tFt+B

�(λ,l)
k .

Therefore, for b ∈ B, if ftb =
∑
rvfv, then

ms tFtb =
∑

rvms vFv + y,

with y ∈ B�(λ,l)
k . Now multiply by z(λ,l) and use (3.4) and Proposition 3.6 part (8) to get

ms tFtb =
∑

rvms vFv,

which proves the claim.
(2) For any b ∈ Bk, and u, v ∈ B̂(λ,l)

k , we have

ms ubmv s ≡ 〈mub,mv〉ms s ≡ 〈mu,mvb
∗〉ms s mod B�(λ,l)

k .

In particular,
ms tFtmt s = 〈ft, ft〉ms s + y,

where y ∈ B�(λ,l)
k . Multplying by z(λ,l) gives the result.

(3) We have mt(λ,l) = ft(λ,l) = mt(λ,l)Ft(λ,l) , and hence

c(λ,l)dt(λ,l) = c(λ,l)dt(λ,l)Ft(λ,l) + y,

where y ∈ B�(λ,l)
k . Multplying by z(λ,l) gives the result.

(4) It follows from part (3) that m(λ,l)z(λ,l) = m(λ,l)Ft(λ,l) . Hence

m(λ,l)Ft(λ,l) = (m(λ,l)Ft(λ,l))
∗ = Ft(λ,l)m(λ,l).

Now we have
m(λ,l)z(λ,l) = Ft(λ,l)m(λ,l)Ft(λ,l) = Ft(λ,l) t(λ,l) .

�

We record the following special case of (3.5), which will be used repeatedly:

c(λ,l)dtFtd
∗
t c(λ,l) = 〈ft, ft〉c(λ,l)z(λ,l), (3.8)

for t ∈ B̂(λ,l)
k . Indeed, according to Lemma 2.18 part (1), this is the special case with s = u(λ,l).

In the remainder of this subsection, we present some useful alternative expressions for the
idempotents Ft. The following terminology is due to Vershik and Okounkov (find reference).

Definition 3.8. Fix k > 1. The Gelfand Zeitlin subalgebra of Bk is the maximal abelian
subalgebra generated by the centers of B1, B2, . . . , Bk. For j 6 k and for t a path on B̂ to level
j, the Gelfand Zeitlin idempotent F ′(t) is defined as

∏
s zt(s) .
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Proposition 3.9 ([9], Proposition 3.11). The Jucys–Murphy elements L1, . . . , Lk generate the
Gelfand–Zeitlin subalgebra of Bk and the minimal idempotents Ft coincide with the Gelfand–
Zeitlin idempotents F ′t .

Corollary 3.10. Let 1 6 j 6 k, let t ∈ B̂(·)
k and s ∈ B̂(·)

j . Then FtFs = δt↓j ,sFt and ftFs =
δt↓j ,sft.

Recall that C(i) denotes the set of Brauer contents associated to edges from level i − 1 to
level i in B̂. For fixed (λ, l) ∈ B̂i−1, let C(λ, i) ⊆ C(i) denote the set of Brauer contents

C(λ, i) = {c((λ, l)→ (µ,m)) | (µ,m) ∈ B̂i, and (λ, l)→ (µ,m)}.

Lemma 3.11. Fix an edge (λ, l)→ (µ,m) from level i−1 to level i in B̂. Write c0 = c((λ, l)→
(µ,m)). Then

z(λ, l)
∏

c∈C(λ,i)
c0 6=c

Li − c
c0 − c

= z(λ, l)
∏
c∈C(i)
c0 6=c

Li − c
c0 − c

= z(λ, l)z(µ,m). (3.9)

Proof. Let s ∈ B̂(·)
i . Multiplying any of the three expression in (3.9) on the left by Fs gives Fs if

s(i−1) = (λ, l) and s(i) = (µ,m), and zero otherwise. Since
∑

s Fs = 1, the result follows. �

Corollary 3.12. For any t ∈ B̂(·)
k ,

Ft =
∏

16i6k

∏
c∈C(t(i−1),i)

ct(i)6=c

Li − c
ct(i)− c

= Ft′

∏
s6=t
s′=t′

Lk − cs(k)

ct(k)− cs(k)
.

Proof. This follows from Lemma 3.11 and Proposition 3.9. �

3.3. Seminormal representations and restriction. The seminormal representations are the
representations of the Brauer algebras with respect to the seminormal bases of the cell modules.
In this subsection, we consider the restriction of a seminormal representation of Bk to Bj and
to the relative commutant of Bj in Bk, for j < k.

In the following, for j < k, write Bk ∩ B′j for the set of x ∈ Bk such that x commutes with
all y ∈ Bj .

Lemma 3.13. Let 1 6 j < k. Let (λ, l) ∈ B̂k and t ∈ B̂
(λ,l)
k . Let (µ,m) ∈ B̂j and u, v ∈

B̂
(µ,m)
j . Write t1 = t[0,j] and t2 = t[j,k], so t = t1 ◦ t2. Then

ftFu v = δt1 u〈ft1 , ft1〉fv◦t2 .

Proof. We can embed the cell module ∆
(λ,l)
k,F in Bk, identifying ft with c(λ,l)dtFt, using

Lemma 3.7 part (1) and taking s = u(k,l). Write Ft2 =
∏

j<n6k zt(n); then Ft = Ft1Ft2 and
Ft2 ∈ Bk ∩B′j . Thus,

ft = c(λ,l)dtFt = c(λ,l)dt2dt1Ft1Ft2 .

Using (2.6) and induction, we have an element ut2 ∈ Bk such that c(λ,l)dt2 = u∗t2ct(j) . Inserting
this, and using that Ft2 commutes pointwise with Bj , we get

ft = u∗t2Ft2ct(j)dt1Ft1 .

Applying Lemma 3.7 to Bj , we have

ftFu v = δt1 u〈ft1 , ft1〉u∗t2Ft2ct(j)dvFv.

Now we can reverse the steps taken above to rewrite this as

ftFu v = δt1 u〈ft1 , ft1〉c(λ,l)dv◦t2Fv◦t2 .
12



�

Proposition 3.14. Let 1 6 j < k, (λ, l) ∈ B̂k, and t ∈ B̂(λ,l)
k . Write t1 = t[0,j] and t2 = t[j,k],

so t = t1 ◦ t2. Write (µ,m) for t(j).

(1) If x ∈ Bj , then

ftx =
∑
s

rsfs◦t2 ,

where s ranges over B̂(µ,m)
j , and the coefficients rs ∈ F depend only on x and t1 and not on t2

(or k).
(2) If x ∈ Bk ∩B′j , then

ftx =
∑
s

rsft1◦s,

where s ranges over paths on B̂ from (µ,m) to (λ, l), and the coefficients rs ∈ F depend only
on x and t2 and not on t1.

Proof. Because {Fu v}, where u, v are paths of length j with the same shape, is a basis of Bj ,
part (1) follows immediately from Lemma 3.13.

Now suppose that x ∈ Bk ∩ B′j . Write ftx =
∑

u rufu, where the sum is over u ∈ B̂
(λ,l)
k .

Since x commutes with Bj ,

ftx = ftFt1x = ftxFt1 =
∑
u

rufuFt1 ,

which shows that ru = 0 unless u↓j = t1. Therefore, we rewrite the expansion of ftx as

ftx =
∑
s

rsft1◦s,

where now the sum is over paths s from (µ,m) to (λ, l). It remains to show that the coefficients
rs do not depend on t1. If v ∈ B̂(µ,m)

j , then

fv◦t2x = (1/γ)ftFt1 vx = (1/γ)ftxFt1 v

= (1/γ)
∑
s

rsft1◦sFt1 v =
∑
s

rsfv◦s,

where we have written γ = 〈ft1 , ft1〉 and applied Lemma 3.13. �

Corollary 3.15. Assume that (λ, l) ∈ B̂k and (ρ, r) ∈ B̂k−1, where (ρ, r) → (λ, l) ∈ B̂. Let
N (ρ,r) ⊆ ∆

(λ,l)
k,F denote the subspace with basis {fs ∈ ∆

(λ,l)
k,F | Shape(s↓k−1) = (ρ, r)}.

(1) The linear map N (ρ,r) → ∆
(ρ,r)
k−1,F given by fs 7→ fs′ is an isomorphism of Bk−1(z)-modules.

(2) These maps induce an isomorphism of right Bk−1(z)–modules

∆
(λ,l)
k,F
∼=

⊕
(µ,m)→(λ,l)

∆
(µ,m)
k−1,F,

where the sum is over (µ,m) ∈ B̂k−1 such that (µ,m)→ (λ, l) in B̂.

Proof. Immediate from Lemma 3.14 part (1). �
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3.4. Preliminary results on matrix coefficients of the generators. Let (λ, l) ∈ B̂k+1 and
t ∈ B̂(λ,l)

k+1 . For 1 6 i 6 k, define structure constants ei(s, t), si(s, t) ∈ F by

ftei =
∑
s

ei(s, t)fs and ftsi =
∑
s

si(s, t)fs.

Definition 3.16. Let (λ, l) ∈ B̂k and s, t ∈ B̂(λ,l). Write s
i∼ t, and say that s and t are is

i–equivalent, if s(j) = t(j) whenever j 6= i.

The following statement is an immediate consequence of Proposition 3.14.

Lemma 3.17. The coefficients ei(s, t) and si(s, t) are zero unless s i∼ t. Moreover the coeff-
cients depend only on s[i−1,i+1] and t[i−1,i+1].

Lemma 3.18. For (λ, l) ∈ B̂k+1 and s, t ∈ B̂(λ,l)
k+1 and for 1 6 i 6 k, we have si(s, t) = 0 ⇔

si(t, s) = 0 and ei(s, t) = 0⇔ ei(t, s) = 0.

Proof. We give the proof for ei. Since e∗i = ei, we have 〈fsei, ft〉 = 〈fs, ftei〉. Using the
orthogonality of the basis {fu}, this gives ei(t, s)〈ft, ft〉 = ei(s, t)〈fs, fs〉. Since 〈ft, ft〉 and
〈fs, fs〉 are non–zero, the assertion follows. �

In preparation for the next results, let us recall a notational convention. If (λ, l) ∈ B̂k+1 and
t = ((λ(0), l0), . . . , (λ(k+1), lk+1)) ∈ B̂(λ,l)

k+1 , we write t(j) for (λ(j), lj) and t(j) for λ(j).

Lemma 3.19. Assume that (λ, l) ∈ B̂k+1 with k > 1, and t ∈ B̂(λ,l)
k+1 . Then ct(k) + ct(k + 1) =

1− z if and only if t(k − 1) = t(k + 1).

Proposition 3.20. Assume that (λ, l) ∈ B̂k+1 with k > 1, and t ∈ B̂(λ,l)
k+1 . Then the following

statements are equivalent:
(1) t(k − 1) = t(k + 1).
(2) Ftek 6= 0.
(3) ftek 6= 0.
(4) ek(t, t) 6= 0.

Proof. The implications (4) =⇒ (3) =⇒ (2) are evident. Assume that t(k − 1) 6= t(k + 1).
Then ct(k)+ct(k+1) 6= 1+z, by Lemma 3.19. We have Ft(Lk+Lk+1) = (ct(k)+ct(k+1))Ft,
by Proposition 3.6, and (Lk + Lk+1)ek = (1 + z)ek, by [16, Proposition 2.3]. Thus

(ct(k) + ct(k + 1))Ftek = Ft(Lk + Lk+1)ek = (1 + z)Ftek.

It follows that Ftek = 0. This give the implication (2) =⇒ (1).
Now assume that t(k − 1) = t(k + 1). Write t′ = t↓k and t′′ = t↓k−1. We have Ft′ek =∑
{Fsek : s′ = t′}, using Proposition 3.9. By the previous paragraph, when s 6= t and s′ = t′,

it follows that Fsek = 0. Thus Ft′ek = Ftek.
Note that Ft′ = zt(k)Ft′′ , by Proposition 3.9. Therefore, using Lemma 2.6, εk−1(Ft′) =

(τ(Ft′)/τ(Ft′′))Ft′′ . Multiplying the equation Ftek = Ft′ek by ek on the left yields

ekFtek = ekFt′ek = zεk−1(Ft′)ek = z(τ(Ft′)/τ(Ft′′))Ft′′ek.

But Ft′′ek 6= 0 by Lemma 2.4, so this this shows in particular that Ftek 6= 0. Multiplying the
displayed equation on the left by Ft gives

ek(t, t)Ftek = z(τ(Ft′)/τ(Ft′′))Ftek.

Since Ftek 6= 0, we have ek(t, t) = zτ(Ft′)/τ(Ft′′) 6= 0. This shows (1) =⇒ (4). �
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Remark 3.21. A slightly different approach to this Proposition would use Lemma 2.5 instead
of Lemma 3.19.

For the following corollary, recall that the weights of the Markov trace τ on Bk(z) are given
by the El Samra–King polynomials Pµ(z), see Theorem 2.8.

Corollary 3.22. Let (λ, l) ∈ B̂k+1 and t ∈ B̂(λ,l)
k+1 , with

t = (· · · , (λ, l − 1), (µ,m), (λ, l)).

Then

(1) ekFtek = ek(t, t)ekFt′′ , and
(2) ek(t, t) = zτ(Ft′)/τ(Ft′′) = Pµ(z)/Pλ(z)

Proof. The first statement and the first equality in (2) is contained in the proof of Proposi-
tion 3.20. The second equality in (2) results from applying Theorem 2.8. �

Corollary 3.23. Let (λ, l) ∈ B̂k+1 and s, t ∈ B̂(λ,l)
k+1 . The matrix entry ek(s, t) = 0 unless s k∼ t

and t(k − 1) = t(k + 1).

Proof. This follows from Lemma 3.17 and Proposition 3.20. �

Lemma 3.24. Let (λ, l) ∈ B̂k+1 and s, t, u ∈ B̂(λ,l)
k+1 , where s(k − 1) = s(k + 1) and s, t, and u

are k–equivalent paths.

(1) ek(s, t)fsek = ek(s, s)ftek.
(2) ek(u, s)ek(s, t) = ek(s, s)ek(u, t).
(3) ek(s, t) 6= 0

Proof. From Corollary 3.22, we have ekFsek = ek(s, s)ekFs′′ . As in the proof of the previous
lemma, apply this to ft, but now observe that ftFs′′ = ft since s

k∼ t. This yields the equal-
ity ek(s, t)fsek = ek(s, s)ftek. Multiplying this on the right by Fu gives ek(s, t)ek(u, s)fu
= ek(s, s)ek(u, t)fu, hence the second assertion. In particular, we have ek(s, t)ek(t, s) =
ek(s, s)ek(t, t), so ek(s, t) 6= 0. �

4. SEMINORMAL REPRESENTATIONS

We continue to work over F and to writeBk forBk(F, z). In this section, we obtain formulas
for the matrix entries of the generators ei and si with respect to the seminormal basis {ft} of the
cell modules ∆

(λ,l)
k+1,F of the Brauer algebras, as well as a branching rule for the inner products

〈ft, ft〉.
According to Lemma 3.17, for fixed i 6 k the matrix coefficients of ei and si with respect

to the seminormal basis of ∆
(λ,l)
k+1,F depend only on the initial portion of the paths indexing the

seminormal basis, up to level i + 1. Therefore, it suffices to find the matrix entries for ek and
sk.

We begin by recalling Nazarov’s formula [16, Corollary 3.10] for the diagonal matrix entries
ek(t, t) of the contractions ek. Let t ∈ B̂(λ,l)

k+1 with t(k−1) = (λ, l − 1) and t(k) = (µ,m). Write
b0 = (z − 1)/2 + c((λ, l − 1)→ (µ,m)). Let B denote the set of elements

(z − 1)/2 + c((λ, l − 1)→ (σ, s)),

where (σ, s) ∈ B̂k and (λ, l−1)→ (σ, s). Thus B is the set of eigenvaues of L′k = (z−1)/2+
Lk, and b0 the eigenvalue corresponding to the eigenvector ft.
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Proposition 4.1 ([16], Corollary 3.10). Let t ∈ B̂(λ,l)
k+1 with t(k−1) = (λ, l−1) and t(k) = (µ,m).

With the notation as in the previous paragraph,

ek(t, t) = (2b0 + 1)
∏

b∈B\{b0}

b0 + b

b0 − b
(4.1)

Note that ek(t, t) is non–zero (by Lemma 3.20) and depends only on λ and µ. For example,
if t(k) = (µ, l − 1) and µ = λ ∪ {a}, Nazarov’s formula (4.1) translates to

ek(t, t) = (z + 2c(a))

∏
α∈A(λ)
α6=a

(z − 1 + c(a) + c(α))∏
α∈R(λ)(z − 1 + c(a) + c(α))

·
∏

α∈R(λ)(c(a)− c(α))∏
α∈A(λ)
α 6=a

(c(a)− c(α))
.

A similar formula holds in case t(k) = (µ, l) and µ = λ \ {a}.

Remark 4.2. Recall that we already have an alternative formula for ek(t, t) as a ratio of El
Samra–King polynomials, ek(t, t) = Pµ(z)/Pλ(z), see Corollary 3.22 (2).

Lemma 4.3. Let (λ, l) ∈ B̂k+1 and t = ((λ(0), l0), . . . , (λ(k+1), lk+1)) ∈ B̂
(λ,l)
k+1 . Assume that

λ(k+1) 	 λ(k−1) = {α, β}.
(1) If α and β are neither in the same row nor the same column, then there exists s = tsk ∈
B̂

(λ,l)
k+1 such that {u ∈ B̂

(λ,l)
k+1 | u

k∼ t} = {s, t}. Moreover, cs(k + 1) = ct(k) and cs(k) =
ct(k + 1).
(2) If α and β are in the same row or the same column, then {u ∈ B̂(λ,l)

k+1 | u
k∼ t} = {t}.

Definition 4.4. Let λ be a partitions and a = (i, j) be an addable or removable node of λ.
(1) Let R(λ)<a = {(r, λr) ∈ R(λ) | r > i}.
(2) Let A(λ)<a = {(r, λr + 1) ∈ A(λ) | r > i}.

The quantities in the following definition were used by James and Murphy [11] and Mur-
phy [14] to compute the determinant of the Gram matrices for Specht modules for the symmet-
ric groups. They will appear in the formulas for the matrix coefficients of the contractions ei
with respect to the seminormal basis in Theorem 4.11.

Definition 4.5. Let λ ⊂ µ be partitions with µ = λ ∪ {α}. Define

γλ→µ =

∏
β∈A(λ)<α(c(α)− c(β))∏
β∈R(λ)<α(c(α)− c(β))

. (4.2)

Recall that hµα denotes the hook length of a node α in a Young diagram µ, see Notation 2.7.

Lemma 4.6.
(1) Let λ ⊂ µ be partitions with µ = λ ∪ {α}, where α = (j, µj). Then

γλ→µ =
∏

16k<µj

hµ(j,k)

hµ(j,k) − 1
(4.3)

(2) Let σ be a partition with addable nodes α, β in different rows and columns, and with λ =
σ ∪ {α}� ρ = σ ∪ {β}. Write µ = σ ∪ {α, β}. Then

γλ→µ
γσ→ρ

= 1− 1

(c(α)− c(β))2
(4.4)

Proof. Part (1) is a straightforward exercise and part (2) follows since µ and ρ differ only in the
node β. �
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The next definition gives the Brauer algebra analogue of the branching coefficients γλ→µ.

Definition 4.7. Let (λ, l) ∈ B̂k and (µ,m) ∈ B̂k+1, with (λ, l)→ (µ,m) in B̂, Define

γ
(k+1)
(λ,l)→(µ,m) =

{
γλ→µ, if l = m,

ek(t, t)γµ→λ, if l = m− 1,
(4.5)

where, in the second case, t ∈ B̂(µ,m)
k+1 is any path which satisfies t(k−1) = (µ, l) and t(k) = (λ, l).

As noted above, the structure constant ek(t, t) in (4.5) is non-zero and completely determined
by λ and µ. Therefore γ(k+1)

(λ,l)→(µ,m)depends only on λ and µ and not on m.

4.1. Statement of the main results. We are now ready to state the main results of this section.
Theorem 4.8 and Theorem 4.11 together give complete formulae for the matrix entries of the
generators si and ei with respect to the seminormal basis of the cell modules ∆

(λ,l)
k+1,F. Some

of these formulae were known. The diagonal entries are due to Nazarov (references). The
expressions for structure constants (4.6) and (4.7) associated with the generator sk are due to
Rui and Si [17, Theorem 3.18(a)]. The formulae for the off-diagonal structure constants (4.10)
and (4.11) associated with ek and sk appear to be new. Theorem 4.9 gives a recursion for the
bilinear form 〈ft, ft〉. This result is of independent interest, but is also needed for the proof of
Theorem 4.11. Finally, Theorem 4.10 gives a recursion for the determinant of the Gram matrix
of the bilinear form (2.9) on the cell modules of the Brauer algebras.

Theorem 4.8 ([17], Theorem 3.18(a)). Let (λ, l) ∈ B̂k+1 and s, t ∈ B̂(λ,l)
k+1 , where s

k∼ t.

(1) If t(k−1) 6= (λ, l − 1) and tsk does not exist, then

sk(s, t) =
δst

ct(k + 1)− ct(k)
. (4.6)

(2) If t(k−1) 6= (λ, l − 1) and tsk exists, then

sk(s, t) =


1

ct(k+1)−ct(k)
, if s = t,

1− 1
(ct(k+1)−ct(k))2

, if s = tsk and s � t,

1, if s = tsk and t � s.

(4.7)

Theorem 4.9. Let (λ, l) ∈ B̂k and (µ,m) ∈ B̂k+1, where (λ, l) → (µ,m) ∈ B̂. If s ∈ B̂(µ,m)
k+1

with s(k) = (λ, l), then

〈fs, fs〉
〈fs′ , fs′〉

= γ
(k+1)
(λ,l)→(µ,m). (4.8)

If (λ, l) ∈ B̂k, let G(λ,l)
k denote the Gram matrix of the bilinear form (2.9) on ∆

(λ,l)
k and

det
(
G

(λ,l)
k

)
denote the determinant of G(λ,l)

k . The next statement, which is an immediate corol-
lary of Theorem 4.9, gives a branching rule for the determinants det

(
G

(λ,l)
k

)
. For the rep-

resentations of the Brauer algebras which factor through the group algebra of the symmetric
group, the recursion (4.9) coincides with the branching formula for the determinant of a Specht
module given by James and Murphy [11, Sect. 2].

Theorem 4.10 (cf. [17, Theorem 4.11]). Let (µ,m) ∈ B̂k+1. Then

det
(
G

(µ,m)
k+1

)
=

∏
(λ,l)→(µ,m)

det
(
G

(λ,l)
k

)(
γ

(k+1)
(λ,l)→(µ,m)

)dim(∆
(λ,l)
k )

, (4.9)
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where the product is taken over (λ, l) ∈ B̂k such that (λ, l)→ (µ,m) in B̂.

Theorem 4.11. Let (λ, l) ∈ B̂k+1 and s, t ∈ B̂(λ,l)
k+1 , where s

k∼ t.

(1) If s(k−1) 6= (λ, l − 1), then ek(s, t) = 0.
(2) If s(k−1) = (λ, l − 1), then

ek(s, t) =



γλ→µ
γλ→ρ

ek(t, t), if s(k) = (ρ, l − 1) and t(k) = (µ, l − 1),
γµ→λ
γλ→ρ

, if s(k) = (ρ, l − 1) and t(k) = (µ, l),
γλ→µ
γρ→λ

ek(s, s)ek(t, t), if s(k) = (ρ, l) and t(k) = (µ, l − 1),
γµ→λ
γρ→λ

ek(s, s), if s(k) = (ρ, l) and t(k) = (µ, l).

(4.10)

(3) If t(k−1) = (λ, l − 1), then

sk(s, t) =
δst − ek(s, t)

cs(k + 1)− ct(k)
. (4.11)

5. PROOF OF THE BRANCHING FORMULAE THEOREM 4.9 AND THEOREM 4.10

In this subsection we verify the formula for the branching factors of the bilinear form 〈ft, ft〉
on cell modules given in Theorem 4.9. As a corollary, we obtain a branching formula for the
Gram determinants of the cell modules.

Lemma 5.1. Let (λ, l) ∈ B̂k and (µ,m) ∈ B̂k+1 with (λ, l)→ µ,m) in B̂. Consider paths s ∈
B̂

(µ,m)
k+1 with s(k) = (λ, l). For any such path s, write s′ = s↓k. Then the ratio 〈fs, fs〉/〈f ′s, f ′s〉 is

independent of s, i.e. it depends only on the edge (λ, l)→ (µ,m).

Proof. Write d = d
(k+1)

(λ,l)→(µ,m) and u = u
(k+1)

(λ,l)→(µ,m). Fix s ∈ B̂(µ,m)
k+1 with s(k) = (λ, l). We have

〈fs, fs〉c(µ,m)z(µ,m) = c(µ,m)dsFsd
∗
sc(µ,m) = c(µ,m)dsFs′d

∗
sc(µ,m)z(µ,m),

using (3.8) and the equality Fs = Fs′z(µ,m). Continuing,

c(µ,m)dsFs′d
∗
sc(µ,m)z(µ,m) = u∗c(λ,l)ds′Fs′d

∗
s′c(λ,l)uz(µ,m)

= 〈fs′ , fs′〉u∗c(λ,l)z(λ,l)uz(µ,m) = 〈fs′ , fs′〉c(µ,m)dz(λ,l)uz(µ,m).

Thus
(〈fs, fs〉/〈f ′s, f ′s〉)c(µ,m)z(µ,m) = c(µ,m)dz(λ,l)uz(µ,m),

and the result follows since the right side depends only on the edge (λ, l)→ µ,m). �

Lemma 5.2. Let (λ, l) ∈ B̂k+1 and s ∈ B̂(λ,l)
k+1 . If t = ssk exists and t � s, then

〈fs, fs〉 =
(cs(k + 1)− cs(k))2 − 1

(cs(k + 1)− cs(k))2
〈ft, ft〉.

Proof. Apply the relation 〈fs, fs〉 = 〈fssk, fssk〉 and the formula (4.7). �

The following combinatorial lemma plays a crucial role.

Lemma 5.3. Let (λ, l) ∈ B̂k and let α = (j, λj) ∈ R(λ). Denote µ = λ \ {α}. Let a′ =∑j
r=1 λr, a = 2l + a′ and n =

∑
r>j λr. Then the following statements hold:

(1) If 0 6 r 6 n, then tr = (· · · ((t(λ,l)sa)sa+1) · · · )sa+r−1 exists in B̂(λ,l)
k .

(2) The sequence {ti | i = 0, . . . , n} satisfies t0 � t1 � · · · � tn.
18



(3) Write s = tn. Then s↓k−1 = t(µ,l) and

ft(λ,l)sasa+1 · · · sk−1 = fs +
∑
u�s

rufu, (5.1)

where the sum is over u ∈ B̂(λ)
k such that Shape(u↓k−1) 6= (µ, l).

Proof. In case α is the lowest removable node of λ, all the statements are trivial. So we assume
that α is not the lowest removable node, i.e., λj+1 > 0

First we argue that we can reduce to the case l = 0, so the statement actually has to do
with standard tableaux and the seminormal representations of the symmetric group. We have
t = t(λ,l) = t(∅,l) ◦ t(λ,0)[2l]. Consider the set of paths P = {t(∅,l) ◦ u[2l]}, where u ∈ B̂(λ,0)

k−2l .
The (partial) action of S{a, . . . , k} on paths preserves P , since the hypotheses imply that
a > 2l + 2. Moreover, it follows from (4.6) and (4.7) that the span of {fv : v ∈ P} is invariant
under S{a, . . . , k}, and the matrix coefficients for the action of S{a, . . . , k} are independent
of l.

For the rest of the proof we suppose that l = 0, and we deal with the partial action of the
symmetric group on standard tableaux, and the seminormal representation of Sk corresponding
to the partition λ. We have t0 = tλ, and for 1 6 r 6 t, the standard tableau tr = tλ wa,a+r is
obtained by cyclically permuting the entries a, . . . , a+r in tλ, so that tr(α) = a+r. Assertions
(1) – (2) are evident, as is the statement that (tn)↓k−1 = tµ.

We turn to the proof of the final assertion of (3). With s = tn, we have

ftλsa · · · sk−1 = mtλsa · · · sk−1 = ms = fs +
∑
u�s

rufu,

where � indicates dominance order on standard tableaux. On the other hand, it is evident
from the restriction rule for the seminormal representations, i.e. the symmetric group analogue
of Proposition 3.14, that those u which appear with non–zero coefficients in the sum satisfy
u↓a−1 = tλ↓a−1. It remains to verify that the u appearing in the sum satisfy nodeu(k) 6= α. We
prove this by induction on n. If n = 1, then ftλsk−1 = fs + κftλ , by (4.7), so the assertion is
valid. Suppose that n > 1. Let β denote nodetλ(k) = (`, λ`), where ` = length(λ). By the
appropriate induction hypothesis and the restriction rule,

ftλsa · · · sk−2 = ftn−1 +
∑
v

κvfv,

where the v appearing in the sum satisfy nodev(k − 1) 6= α, i.e., rowv(k − 1) > j, and
nodev(k) = β. Now multiply both sides by sk−1. We have ftn−1sk−1 = fs + γftn−1 by (4.7),
and nodetn−1(k) = β. For the remaining terms on the right side, both k − 1 and k have row
index > j in v, and therefore fvsk−1 is a linear combination of basis elements fu with the same
property. �

If λ = (λ1, λ2, . . . , λt) is a partition, let λ! =
∏t

r=1(λr!).

Lemma 5.4. If (λ, l) ∈ B̂k, then 〈ft(λ,l) , ft(λ,l)〉 = λ!zl.

Proof. From (3.5) and (3.7),

m2
(λ,l)z(λ,l) = m(λ,l)Ft(λ,l)m(λ,l) = 〈ft(λ,l) , ft(λ,l)〉m(λ,l)z(λ,l). (5.2)

On the other hand, m(λ,l) = e1e3 · · · e2l−1c(λ,0)[2l], from which it follows that m2
(λ,l) =

zlλ!m(λ,l). Multiply this by z(λ,l) and compare with (5.2). �

Lemma 5.5. Let (µ, l + 1) ∈ B̂k+1 and let ν = µ ∪ {(`+ 1, 1)}, where ` = length(µ). Define
u ∈ B̂(µ,l+1)

k+1 by the condition u↓k = t(ν,l).
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(1) For x ∈ Bk−2l−1,
d∗uxe

(l+1)
k du = e

(l)
2l−1x[2l]ek. (5.3)

(2) In particular
mu u = d∗uc(µ,l+1)du = m(µ,l)ek. (5.4)

Proof. We have du = e
(l)
k−1dt(ν,l) . If l = 0, then du = 1, and assertion (1) is evident. If l > 1

then
d∗uxe

(l+1)
k du = e

(l)
2l−1 · · · e

(l)
k−1e

(l+1)
k xe

(l)
k−1 · · · e

(l)
2l−1

= e
(l)
2l−1 · · · e

(l)
k−1e

(l+1)
k e

(l)
k−1 · · · e

(l)
2l−1x[2l] = e

(l)
2l−1x[2l]ek,

where we have used Lemma 2.18 part (3) and contraction identities. This completes the proof
of statement (1) and statement (2) follows. �

Proof of Theorem 4.9. Recall the notation in the statement of the theorem: We have s ∈ B̂(µ,m)
k+1

with s(k) = (λ, l). We write s′ = s↓k and s′′ = s↓k−1. We compute the quotient 〈fs, fs〉/〈fs′ , fs′〉
in two cases below.
CASE 1. Suppose l = m and µ = λ ∪ {α}, with α = (j, µj). If s is maximal with respect
to <, then 〈fs, fs〉/〈fs′ , fs′〉 = µj by Lemma 5.4, and there is nothing further to show. We
therefore proceed by a double induction on k and <. If α is in the last row of µ, then by
Lemma 5.1, we can assume that s = t(µ,m), which is the case already covered. We may
therefore assume that µj+1 > 0, and again by Lemma 5.1, we may assume without loss of
generality that s′ = t(λ,m). Since µj+1 > 0, in particular, λ 6= ∅, and thus s(k−1) = (σ,m),
where σ = λ \{β} and β = (r, µr) is the removable node in the last row of λ. Let ρ = σ∪{α}
and t = s′′ ◦ ((ρ,m), (µ,m)) = ssk. Note that t � s. Let t′ = t↓k. By the induction assumption
on <, we have

〈ft, ft〉 = µr〈ft′ , ft′〉. (5.5)
By Lemma 5.2 we have

〈fs, fs〉 = (1− 1

(c(α)− c(β))2
)〈ft, ft〉 (5.6)

By the induction assumption on k, we have

〈fs′ , fs′〉
〈fs′′ , fs′′〉

= µr and
〈ft′ , ft′〉
〈fs′′ , fs′′〉

= γσ→ρ. (5.7)

Combining equations (5.5) to (5.7) and using Lemma 4.6 part (2) yields

〈fs, fs〉
〈fs′ , fs′〉

= (1− 1

(c(α)− c(β))2
)γσ→ρ = γλ→µ, (5.8)

as required.
CASE 2. Assume that m = l + 1 and let λ = µ ∪ {(j, λj)}. By Lemma 5.1, there is no
loss of generality in assuming that s′ = t(λ,l) ∈ B̂

(λ,l)
k . Let ν = µ ∪ {(` + 1, 1)}, where

` = length(µ). Define u ∈ B̂(µ,m)
k+1 by the requirement u↓k = t(ν,l). We have du = e

(l)
k−1dt(ν,l) ,

and ds = d
(k+1)

(λ,l)→(µ,l+1)dt(λ,l) . Note that dt(ν,l) = dt(λ,l) , since these quantities depend only on k
and l. Thus,

mu s = d∗t(λ,l)e
(l)
k−1c(µ,l+1)d

(k+1)

(λ,l)→(µ,l+1)dt(λ,l) = d∗t(λ,l)e
(l)
k−1(u

(k+1)

(λ,l)→(µ,l+1))
∗c(λ,l)dt(λ,l)

= d∗t(λ,l)e
(l)
k−1e

(l+1)
k (d

(k−2l)

µ→λ )∗c(λ,l)dt(λ,l) .

We claim that
mu s = ekwk,am(λ,l), (5.9)
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where a =
∑j

r=1 λr + 2l. The case l = 0 is easy to check. If l > 1, then dt(λ,l) = e
(l)
k−2 · · · e

(l)
2l−1,

and
mu s = e

(l)
2l−1 · · · e

(l)
k−1e

(l+1)
k (d

(k−2l)

µ→λ )∗c(λ,0)e
(l)
k−1 · · · e

(l)
2l−1

= e
(l)
2l−1 · · · e

(l)
k−1e

(l+1)
k e

(l)
k−1 · · · e

(l)
2l−1(d

(k−2l)

µ→λ )∗[2l]c(λ,0)[2l]

= e
(l)
2l−1ekwk,ac(λ,0)[2l] = ekwk,am(λ,l).

We have
mu sFsms u = 〈fs, fs〉mu uz(µ,m), (5.10)

by (3.5). On the other hand we compute, using Fs = Fs′z(µ,m), Lemma 3.7 and equation (5.9),

mu sFsms u = ekwk,am(λ,l)Fsm(λ,l)wa,kek = ekwk,am(λ,l)Fs′m(λ,l)wa,kekz(µ,m)

= 〈fs′ , fs′〉ekwk,am(λ,l)z(λ,l)wa,kekz(µ,m) = 〈fs′ , fs′〉ekwk,aFs′ s′wa,kekz(µ,m).

Let t′ = s′sasa+1 · · · sk−1. By Lemma 5.3, t′ ∈ B̂(λ,l)
k with t′′ = t′↓k−1 = t(µ,l), and

fs′wa,k = ft′ +
∑
a

rafa,

where the sum is taken over a ∈ B̂(λ,l)
k such that Shape(a↓k−1) 6= (µ, l). It follows that

ekwk,aFs′ s′wa,kek = ekFt′ t′ek = 〈ft′ , ft′〉ekFt′ek.

Let t = t′ ◦ ((µ,m)). Using Ft′z(µ,m) = Ft, we have

mu sFsms u = 〈fs′ , fs′〉〈ft′ , ft′〉ekFtekz(µ,m)

= 〈fs′ , fs′〉〈ft′ , ft′〉ek(t, t)Ft′′ekz(µ,m)

= 〈fs′ , fs′〉
〈ft′ , ft′〉
〈ft′′ , ft′′〉

ek(t, t)Ft′′ t′′ekz(µ,m)

Note that
mu uz(µ,m) = m(µ,l)ekz(µ,m) = m(µ,l)ekz(µ,l)z(µ,m) = Ft′′ t′′ekz(µ,m),

where the first equality is from Lemma 5.5, the second equality from Proposition 3.20, and the
last equality from (3.7), taking into account that t′′ = t(µ,l). By Case 1 above, 〈ft′ , ft′〉/〈ft′′ , ft′′〉
= γµ→λ, and hence we have

mu sFsms u = 〈fs′ , fs′〉γµ→λek(t, t)mu uz(µ,m). (5.11)

Comparing (5.10) and (5.11) gives the desired result,

〈fs, fs〉/〈fs′ , fs′〉 = γµ→λek(t, t).

�

The proof of Theorem 4.11 requires the following observation.

Corollary 5.6. Let (λ, l) ∈ B̂k and (µ, l) ∈ B̂k−1, with λ = µ ∪ {(j, λj)}. Let t denote t(λ,l)

and a = 2l +
∑j

r=1 λr. Let s = twa,k. Then

fswk,a =
γµ→λ
λj

ft +
∑
u≺t

rufu.

Proof. By Lemma 5.3, s = twa,k exists in B̂(λ,l)
k , and 〈fswk,a, ft〉 = 〈fs, ftwa,k〉 = 〈fs, fs〉.

Therefore, the coefficient of ft in the expansion of fswk,a in the seminormal basis is
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〈fs, fs〉/〈ft, ft〉. It follows from Lemma 5.3 that s′ = t(µ,m). Therefore, using Theorem 4.9
and Lemma 5.4, we have

〈fs, fs〉/〈ft, ft〉 =
γµ→λz

mµ!

zmλ!
=
γµ→λ
λj

.

�

Finally, we indicate how Theorem 4.10 follows from Theorem 4.9.

Proof of Theorem 4.10. The Gram determinant is the determinant of the matrix [〈ms,mt〉]s,t.
Since the transition matrix from the basis {mt} to the basis {ft} is unitriangular with respect
the partial order�, and the basis elements ft are mutually orthogonal with respect to the bilinear
form 〈·, ·〉, this is the same as the product

∏
t〈ft, ft〉. Now the recursion formula (4.9) follows

from (4.8). �

6. PROOF OF THE FORMULAE FOR THE SEMINORMAL REPRESENTATIONS THEOREM 4.11

Proposition 6.1. Let (λ, l) ∈ B̂k+1, with λ 6= ∅ and l > 1. Let ` denote the length of λ, and let
σ = λ \ {(`, λ`)} and ν = λ ∪ {(` + 1, 1)}. Define s ∈ B̂(λ,l)

k+1 by the conditions s(k) = (σ, l)

and s↓k−1 = t(λ,l−1). Define u ∈ B̂(λ,l)
k+1 by the conditions u(k) = (ν, l − 1) and u↓k−1 = t(λ,l−1).

Then the following statements hold:
(1) fsek = γσ→λmu and fuek = ek(u, u)mu.
(2) If t k∼ s and t(k) = (µ, l − 1), where (µ, l − 1) ∈ B̂k and (µ, l − 1)→ (λ, l), then

ek(s, t) = ek(s, s)ek(t, t)
γλ→µ
γσ→λ

and ek(t, s) =
γσ→λ
γλ→µ

.

(3) If t k∼ s and t(k) = (µ, l), where (µ, l) ∈ B̂k and (µ, l)→ (λ, l), then

ek(s, t) =
γµ→λ
γσ→λ

ek(s, s) and ek(t, s) =
γσ→λ
γµ→λ

ek(t, t).

Proof. Let P denote the set of paths v ∈ B̂
(λ,l)
k+1 such that v↓k−1 = t(λ,l−1). Remark that s

is the maximum element of P and u is the minimal element of P , with respect to reverse
lexicographic order.

(1) Note that

c(λ,0)u
(k+1−2l)

σ→λ = λ`c(λ,0) = γσ→λc(λ,0), (6.1)

because u(k+1−2l)

σ→λ is the sum of λ` elements of the row group Sλ. Using the definitions,

ds = e
(l)
k−1u

(k+1−2l)

σ→λ e
(l−1)
k−2 dt(λ,l−1) .

If follows from the commutation and contraction relations and (6.1) that

c(λ,l)dsek = c(λ,0)u
(k+1−2l)

σ→λ e
(l)
k dt(λ,l−1) = γσ→λekc(λ,l−1)dt(λ,l−1) . (6.2)

Likewise,
du = e

(l−1)
k−1 e

(l−1)
k−2 dt(λ,l−1) ,

so
c(λ,l)du = ekc(λ,l−1)dt(λ,l−1) . (6.3)

Comparing (6.2) and (6.3), we get msek = γσ→λmu.
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Let ms = fs +
∑

v�s rvfv. Then, Proposition 3.20 and the maximality of s in the set of paths{
v ∈ B̂(λ,l)

k+1 | v(k−1) = (λ, l − 1)
}

give

γσ→λmu = msek = fsek +
∑
v�s

rvfvek = fsek.

For the second equality, we evaluate fsekFuek in two ways. On the one hand,

fsekFuek = γσ→λmuFuek = γσ→λfuek.

On the other hand,

fsekFuek = ek(u, u)fsFu′′ek = ek(u, u)fsek = ek(u, u)γσ→λmu,

where we used Corollary 3.10 and Corollary 3.22. Comparison of the two expressions gives
the result.

(2) Let µ = λ ∪ {(j, µj)}, a′ =
∑j

r=0 µr, and a = a′ + 2l − 2. Let

u = u
(k+1)

(µ,l−1)→(λ,l) = wa′,k−2l+2e
(l)
k .

Following the proof of Lemma 5.1, we have

〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l) = u∗c(µ,l−1)z(µ,l−1)uz(λ,l). (6.4)

In the following, let v ∈ B̂
(λ,l)
k+1 be defined by the condition v↓k = t(µ,l−1). We consider two

cases:
CASE 1: l − 1 = 0. Then dt(µ,0) = 1 and a = a′, so

c(µ,0)z(µ,0) = c(µ,0)dt(µ,0)z(µ,0) = c(µ,0)dt(µ,0)Ft(µ,0) ,

using Lemma 3.7 part (3). Thus

〈ft, ft〉〈ft′ , ft′〉−1c(λ,1)z(λ,1) = u∗c(µ,0)dt(µ,0)Ft(µ,0)wa,kekz(λ,1)

= c(λ,l)dvFvwa,kekz(λ,1).
(6.5)

CASE 2: l − 1 > 1. Then dt(µ,l−1) = e
(l−1)
k−1 · · · e

(l−1)
2l−3 , and

c(µ,l−1) = c(µ,l−1)dt(µ,l−1)e
(l−1)
2l−2 · · · e

(l−1)
k−1 .

Thus,
〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l)

= u∗c(µ,l−1)dt(µ,l−1)z(µ,l−1)e
(l−1)
2l−2 · · · e

(l−1)
k−1 wa′,k−2l+2e

(l)
k z(λ,l)

(6.6)

Because wa′,k−2l+2 is a permutation of {2, . . . , k − 2l + 2}, it follows from Lemma 2.18 part
(3) that

e
(l−1)
2l−2 · · · e

(l−1)
k−1 wa′,k−2l+2 = wa,ke

(l−1)
2l−2 · · · e

(l−1)
k−1 .

There are at least two factors in the product e(l−1)
2l−2 · · · e

(l−1)
k−1 , since k − 2l + 2 = |µ| > 2, so

using Lemma 2.17,

e
(l−1)
2l−2 · · · e

(l−1)
k−1 e

(l)
k = e

(l−1)
2l−2 · · · e

(l−1)
k−2 ek = eke

(l−1)
2l−2 · · · e

(l−1)
k−2 .

Combining the last two displayed equations with (6.6), and also using Lemma 3.7 part (3), we
get

〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l)

= u∗c(µ,l−1)dt(µ,l−1)Ft(µ,l−1)wa,keke
(l−1)
2l−2 · · · e

(l−1)
k−2 z(λ,l)

= c(λ,l)dvFvwa,keke
(l−1)
2l−2 · · · e

(l−1)
k−2 z(λ,l).

(6.7)
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If we adopt the convention that e(l−1)
2l−2 · · · e

(l−1)
k−2 = 1 if l− 1 = 0, then formula (6.7) is also valid

in case 1, so we can treat both cases together.
By Lemma 5.3, we may write

fvwa,k = ft +
∑
z

rzfz,

where the sum is over z ∈ B̂(λ,l)
k+1 such that Shape(z↓k−1) 6= (λ, l − 1). Using the embedding of

the cell module in Bk+1 as in Lemma 3.7, as well as Proposition 3.20, we get

〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l) = c(λ,l)dtFteke
(l−1)
2l−2 · · · e

(l−1)
k−2 z(λ,l).

Applying Lemma 3.24 and point (1) above,

〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l) =

=
ek(s, t)

ek(s, s)
c(λ,l)dsFseke

(l−1)
2l−2 · · · e

(l−1)
k−2 z(λ,l)

=
ek(s, t)

ek(s, s)
γσ→λc(λ,l)due

(l−1)
2l−2 · · · e

(l−1)
k−2 z(λ,l).

(6.8)

In case 1, due
(l−1)
2l−2 · · · e

(l−1)
k−2 = 1, while in case 2, du = e

(l−1)
k−1 · · · e

(l−1)
2l−3 , and

c(λ,l)due
(l−1)
2l−2 · · · e

(l−1)
k−2 = c(λ,l).

Thus, in both cases we get

〈ft, ft〉〈ft′ , ft′〉−1c(λ,l)z(λ,l) =
ek(s, t)

ek(s, s)
γσ→λc(λ,l)z(λ,l).

By Theorem 4.9, we have

〈ft, ft〉〈ft′ , ft′〉−1 = ek(t, t)γλ→µ.

Hence we obtain the stated formula for ek(s, t). The formula for ek(t, s) can now be obtained
from the relation ek(s, t)ek(t, s) = ek(s, s)ek(t, t).

(3) Let t ∈ B̂(λ,l)
k+1 , where t

k∼ s and t(k) = (µ, l). By part (1), fsek = γσ→λmu and hence by
the orthogonality of the set of fv,

γσ→λ〈mu, ft〉 = 〈ft, ft〉ek(t, s). (6.9)

To compute the bilinear form 〈mu, ft〉, it will be convenient to work with the elements muu and
mut, and we begin by computing these elements.

We have du = e
(l−1)
k−1 e

(l−1)
k−2 dt(λ,l−1) . From Lemma 5.5 part (2), we have mu u = m(λ,l−1)ek.

Write λ = µ ∪ {(j, λj)}, a′ =
∑j

r=1 λr and a = 2l − 2 + a′. We have

d
(k+1)

(µ,l)→(λ,l) = d
(k+1−2l)

µ→λ e
(l)
k−1 = wa′,k+1−2le

(l)
k−1

and

d
(k)

(λ,l−1)→(µ,l) = u
(k+1−2l)

µ→λ e
(l−1)
k−2 = wk+1−2l,a′

µj∑
r=0

wa′,a′−re
(l−1)
k−2 .

Thus,
dt = d

(k+1−2l)

µ→λ e
(l)
k−1u

(k+1−2l)

µ→λ e
(l−1)
k−2 dt(λ,l−1) .

We consider two cases:
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CASE 1: l − 1 = 0. We have a′ = a, du = 1, and dt = wa,k−1ek−1wk−1,a

∑µj
r=0wa,a−r. Thus

mu t = c(λ,0)ekdt = m(λ,0)ekwa,k−1ek−1wk−1,a

µj∑
r=0

wa,a−r. (6.10)

CASE 2: l − 1 > 1. Then dt(λ,l−1) = e
(l−1)
k−3 · · · e

(l−1)
2l−3 , with k − 2l + 1 = |λ| > 1 factors. We

compute mu t:

mu t = duc(λ,0)e
(l)
k d

(k+1−2l)

µ→λ e
(l)
k−1u

(k+1−2l)

µ→λ e
(l−1)
k−2 e

(l−1)
k−3 · · · e

(l−1)
2l−3

= duc(λ,0)e
(l)
k d

(k+1−2l)

µ→λ e
(l)
k−1e

(l−1)
k−2 e

(l−1)
k−3 · · · e

(l−1)
2l−3 u

(k+1−2l)

µ→λ [2l − 2]

= duc(λ,0)ekd
(k+1−2l)

µ→λ e
(l−1)
k−2 e

(l−1)
k−3 · · · e

(l−1)
2l−3 ek−1u

(k+1−2l)

µ→λ [2l − 2]

= duc(λ,0)eke
(l−1)
k−2 e

(l−1)
k−3 · · · e

(l−1)
2l−3 d

(k+1−2l)

µ→λ [2l − 2]ek−1u
(k+1−2l)

µ→λ [2l − 2]

= m(λ,l−1)ekd
(k+1−2l)

µ→λ [2l − 2]ek−1u
(k+1−2l)

µ→λ [2l − 2]

= m(λ,l−1)ekwa,k−1ek−1wk−1,a

µj∑
r=0

wa,a−r,

(6.11)

where we have used Lemma 2.18 part (3) in lines (2) and (4), commutation relations in line (3),
and contraction relations in line (5). The final expresssion is valid in both cases 1 and 2.

Now that we have expressions for mu u and mu t, we are ready to compute 〈mu, ft〉. By a
variant on Lemma 3.7 part (2),

〈mu, ft〉mu uz(λ,l) = mu tFtmu u

= m(λ,l−1)ekwa,k−1ek−1wk−1,a

j∑
r=0

wa,a−rFtm(λ,l−1)ek.
(6.12)

Because Ft commutes with m(λ,l−1) by Lemma 3.7 part (4), and (
∑j

r=0wa,a−r)m(λ,l−1) =
λim(λ,l−1), the last expression reduces to

λim(λ,l−1)ekwa,k−1ek−1wk−1,aFtm(λ,l−1)ek. (6.13)

In this last expression, we will rewrite Ft as 〈ft, ft〉−1Ft t and then use that f ∗x 7→ Fx t determines
an isomorphism from the opposite cell module (∆

(λ,l)
k+1,F)∗ to spanF{Fx t}, by Lemma 3.7 part (1).

By Lemma 5.3, the path v = twa,k−1 is defined in B̂(λ,l)
k+1 , and

v = (· · · , (µ, l − 1), (λ, l − 1), (µ, l), (λ, l)).

Furthermore, we may write

ftwa,k−1 = fv +
∑
z�v

rzfz,

where the sum is over z ∈ B̂(λ,l)
k+1 such that z(k−2) 6= (µ, l − 1). It follows that

ekek−1wk−1,aFt = 〈ft, ft〉−1 ekek−1wk−1,aFt t

= 〈ft, ft〉−1ekek−1(Fv t +
∑
z�v

rzFz t)

= 〈ft, ft〉−1ekek−1Fv t = 〈ft, ft〉−1ek−1(v, v)ekFv t,

(6.14)

where we have used Proposition 3.20 both for ek−1 and for ek. Substituting this in (6.13), we
get

〈ft, ft〉−1ek−1(v, v)λim(λ,l−1)ekwa,k−1Fv tm(λ,l−1)ek. (6.15)
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Now use that Fv t = z(λ,l)z(µ,l)z(λ,l−1)Fv t, that z(λ,l)z(µ,l)z(λ,l−1) commutes with wa−2,k−1, and
that m(λ,l−1)z(λ,l)z(µ,l)z(λ,l−1) = m(λ,l−1)Ft by Lemma 3.7 part (4) to write (6.15) as

〈ft, ft〉−1ek−1(v, v)λiekm(λ,l−1)Ftwa,k−1Fv tm(λ,l−1)ek. (6.16)

Using Corollary 5.6, Ftwa,k−1Fv t = γµ→λλ
−1
i Ft t. Substituting this in (6.16) and again using

〈ft, ft〉−1Ft t = Ft and Ft = Ftz(λ,l) yields

ek−1(v, v)γµ→λm(λ,l−1)ekFtekm(λ,l−1)z(λ,l). (6.17)

Now use ekFtek = ek(t, t)Ft′′ek (where t′′ = t↓k−1 = t(λ,l−1)) from Corollary 3.22, and
m(λ,l−1)Ft′′m(λ,l−1) = 〈ft′′ , ft′′〉m(λ,l−1)z(λ,l−1), from Lemma 3.7 part (2), to rewrite (6.17) as

ek(t, t)ek−1(v, v)γµ→λ〈ft′′ , ft′′〉m(λ,l−1)ekz(λ,l−1)z(λ,l). (6.18)

It follows from Proposition 3.20 that ekz(λ,l−1)z(λ,l) = ekz(λ,l), and we know that m(λ,l−1)ek =

mu u. Moreover, ek−1(v, v)γµ→λ = γ
(k+1)
(λ,l−1)→(µ,l), so ek−1(v, v)γµ→λ〈ft′′ , ft′′〉 = 〈ft′ , ft′〉, using

Theorem 4.9. Thus (6.18) becomes

ek(t, t)〈ft′ , ft′〉mu uz(λ,l). (6.19)

Comparing with our starting point (6.12), we arrive at

〈mu, ft〉 = ek(t, t)〈ft′ , ft′〉. (6.20)

Finally, combining (6.20) and (6.9), and applying Theorem 4.9 once more

ek(t, s) = 〈ft, ft〉−1γσ→λek(t, t)〈ft′ , ft′〉 =
γσ→λ
γµ→λ

ek(t, t), (6.21)

which is the desired formula for ek(t, s) The formula for ek(s, t) is now obtained from the
relation ek(s, t)ek(t, s) = ek(s, s)ek(t, t). �

Proof of Theorem 4.11.

(1) This follows from Proposition 3.20.

(2) We know from Corollary 3.17 that the matrix coefficients ek(s, t) depend only on
s[k−1,k+1] and t[k−1,k+1]. The diagonal matrix entries ek(t, t) are determined by Nazarov’s for-
mula (4.1). If λ = ∅, there are no off–diagonal matrix entries to be determined, so we assume
that λ 6= ∅. Denote (σ, l) = max{(υ, r) ∈ B̂k | (υ, r) → (λ, l)} and v ∈ B̂(λ,l)

k+1 , where v
k∼ t

and v(k) = (σ, l). We have four cases to consider.
CASE 1. Assume that t(k) = (µ, l − 1) and s(k) = (ρ, l − 1). By Proposition 6.1(2),

ek(v, t) =
γλ→µ
γσ→λ

ek(v, v)ek(t, t) and ek(s, v) =
γσ→λ
γλ→ρ

.

Therefore, the relation ek(s, v)ek(v, t) = ek(v, v)ek(s, t) yields the required expression for
ek(s, t).
CASE 2. Assume that t(k) = (µ, l) and s(k) = (ρ, l − 1). By Proposition 6.1,

ek(v, t) =
γµ→λ
γσ→λ

ek(v, v) and ek(s, v) =
γσ→λ
γλ→ρ

.

The relation ek(s, v)ek(v, t) = ek(v, v)ek(s, t) now yields the required expression for ek(s, t).
CASE 3. Assume that t(k) = (µ, l − 1) and s(k) = (ρ, l). Using the second case above, we
obtain ek(t, s) = γρ→λγ

−1
λ→µ. Hence the formula for ek(s, t) follows.

CASE 4. Assume that t(k) = (µ, l) and s(k) = (ρ, l). By Proposition 6.1(3),

ek(v, t) =
γµ→λ
γσ→λ

ek(v, v) and ek(s, v) =
γσ→λ
γρ→λ

ek(s, s).
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The relation ek(s, v)ek(v, t) = ek(v, v)ek(s, t) now yields the required expression for ek(s, t).

(3) We use the relation skLk+1−Lksk = 1−ek and the diagonal action of the Jucys–Murphy
elements on the seminormal basis.

�

7. THE SEMINORMAL REPRESENTATIONS AND TENSOR SPACE

Let n be a non–zero integer. In this section we give an explicit description of the sim-
ple Bf (n) modules which factor through Bf (n)/ rad(τn), where rad(τn) is the radical of the
Markov trace. When n is a positive integer (resp. an even negative integer) Bf (n)/ rad(τn) is
isomorphic to the the centralizer algebra of the orthogonal group (resp. the symplectic group)
acting on the f–fold tensor power of its vector representation.

We will be dealing with several specializations of the Brauer algebras simultaneously. We
recall the notation R = Z[z] and F = Q(z). We write Bk = Bk(R, z) and Bk(z) = Bk(F, z).

Write Rn = Z[z](z−n) for the localization of Z[z] at the prime z − n; i.e. Rn ⊂ F is the
set of rational functions with denominators not divisible by z − n. Rn is a discrete valuation
ring with maximal ideal (z − n)Rn and residue field Q; the maximal ideal is the kernel of the
evaluation homomorphism from Rn to Q determined by z 7→ n.

Write Bk(n) for Bk(Q, n). Then Bk(n) ∼= Bk(Rn, z) ⊗Rn Q; where Rn acts on Q by the
evaluation homomorphism. The evaluation map from Rn to Q extends to an evaluation map
Bk(Rn, z) → Bk(n) given by a 7→ a ⊗ 1, or more concretely by

∑
d fd d 7→

∑
d fd(n) d,

where the sum is over the basis of Brauer diagrams and fd ∈ Rn. We will denote this map by
a 7→ a(n). We will refer to Bk(Rn, z) ⊂ Bk(F, z) as the ring of evaluable elements.

Recall that τ denotes the Markov trace on Bk(z). Let τn denote the Markov trace on Bk(n).
If a ∈ Bk(z) is evaluable, then τ(a) ∈ Rn and τn(a(n)) = τ(a)(n). The radical of the Markov
trace τn is the set of x ∈ Bk(n) such that for all y ∈ Bk(n), τ(xy) = 0; the radical of the trace,
denoted rad(τn) or Ik(n), is a two sided ideal in Bk(n). It is observed in [18, Lemma 3.1], that
Ik(n) ⊆ Ik+1(n).

For a non–zero integer n, a Young diagram µ is called n–permissible if for all Young di-
agrams λ ⊆ µ, Pλ(n) 6= 0, where Pλ is the El Samra–King polyomial. The following are
necessary and sufficient conditions for a Young diagram µ be n–permissible ( [18], Corollary
3.5):

• If n > 0, µ̃1 + µ̃2 6 n.
• If n = −2k is even and negative, µ1 6 k.
• If n is odd and negative, µ1 + µ2 6 2− n.

We call an element (µ,m) ∈ B̂f n–permissible if µ is n–permissible. A path t ∈ B̂(·)
f is called

n–permissible if t(j) is n–permissible for all j.
Let s, t be n–permissible paths. We will show that 〈ft, ft〉 is a unit in Rn, and that the matrix

entries ei(s, t) and si(s, t) are in Rn. We will also show that the idempotents Ft and the basis
elements Fs t are evaluable.

Lemma 7.1. Let s, t ∈ B̂(·)
f be a n–permissible paths. Then

(1) For all i < f , if ei(s, t) 6= 0, then ei(s, t) is a unit in Rn.
(2) 〈ft, ft〉 is a unit in Rn.

Proof. When ei(t, t) 6= 0, it is the ratio of El Samra–King polynomials of two n–permissible
Young diagrams by Corollary 3.22 part (2), hence ei(t, t) is a unit in Rn. For s 6= t, statement
(1) follows from Theorem 4.11 part (2).

Statement (2) follows from Definition 4.7 and the recursive formula (4.8) for 〈ft, ft〉. �
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Remark 7.2. Let s, t ∈ B̂(λ,l) be n–permissible. Then Ft is evaluable if and only if Ft t is evalu-
able, because Ft t = 〈ft, ft〉Ft, and 〈ft, ft〉 is a unit in Rn. If Fs and Ft are evaluable, then so is
Fs t = Fsms tFt. Conversely, if Fs t is evaluable, so are Ft s = F ∗s t and Ft t = 〈fs, fs〉−1Ft sFs t.

Following [13, Section 4], say two paths s, t ∈ B̂(·)
k are residue equivalent, and write s ≈ t

if cs(j) ≡ ct(j) mod (z − n) for all j.

Lemma 7.3. Let t ∈ B̂(·)
f+s and write t0 = t↓f . Suppose that Ft0 is evaluable. Let [t] be the set of

s ∈ B̂(·)
f+s such that s↓f = t0 and and s ≈ t. Then F[t] :=

∑
s∈[t] Fs is an evaluable idempotent.

Proof. The proof of [13, Lemma 4.2] applies with minor changes. �

Lemma 7.4. Let t ∈ B̂(·)
f+1. There is at most one path s ∈ B̂(·)

f+1 such that s 6= t, s′ = t′ and
s ≈ t.

Proof. Two edges c((µ,m) → (λ, l)) and c((µ,m) → (λ′, l′)) in B̂ are congruent modulo
z − n only if one of the two edge involves adding a cell α to µ and the other removing a
cell β from µ. Moreover the condition for the the contents to be congruent modulo z − n is
c(α) + c(β) = 1 − n. Therefore, for a given edge (µ,m) → (λ, l), there is at most one other
edge (µ,m)→ (λ′, l′) such that the contents of the edges are congruent modulo z − n. �

Lemma 7.5. Let f > 1 and t ∈ B̂
(·)
f . Suppose that t′ = t↓f−1 is n–permissble. Then Ft is

evaluable.

Proof. The proof is by induction on f . The base case f = 1 is obvious. Suppose that f > 1,
and that t ∈ B̂

(·)
f such that t′ is n–permissible. Write (µ,m) = t(f−1). By the appropriate

induction hypothesis, Ft′ is evaluable.
By Corollary 3.12, Ft is evaluable unless there exists a path s such that s 6= t, s′ = t′, and

cs(f) ≡ ct(f) mod (z − n). There is at most one such path by Lemma 7.4, and if such a
path s exists then Fs + Ft is evaluable by Lemma 7.3. Thus Ft is evaluable if and only if Fs is
evaluable. One of the two paths t, s has the form

(· · · , (µ,m), (µ−,m+ 1)),

and the other
(· · · , (µ,m), (µ+,m)),

where µ− is obtained by removing a cell from µ and µ+ by adding a cell. We can assume
without loss of generality that t is the first of these two paths, and in particular, that t is n–
permissible.

To prove that Ft is evaluable, first consider an n–permissible path of the form

u = (· · · , (µ−,m), (µ,m), (µ−,m+ 1)).

By the induction hypothesis, Fu′ is evaluable. We have Fu′ef−1Fu′ = Fuef−1Fu, using Propo-
sition 3.20, so Fuef−1Fu is evaluable. But Fu = d−1Fuef−1Fu, where d = ef−1(u, u) =
(Pµ(z)/Pµ−(z)), using Corollary 3.22. Hence Fu is evaluable, since d is a unit in Rn. Finally,
using Lemma 3.7 (1) and Corollary 3.13, we have

Ft′ u′Fu uFu′ t′ = 〈fu′ , fu′〉2Ft t = 〈fu′ , fu′〉2〈ft, ft〉Ft

Using Lemma 7.1 and Remark 7.2, it follows that Ft is evaluable. �

We will now construct a cellular basis {hs t} of Bf (Rn, z) indexed by pairs of paths in B̂(·)
f

of the same shape, with the properties:
(1) If both s and t are n–permissible, then hs t = Fs t.
(2) The set of hs t(n) where at least one of s, t is not n–permissible is a basis of rad(τn).
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The construction is a variant of the construction of the basis gs t in [13, Theorem 4.5].
If t ∈ B̂(·)

f is n–permissible, set [t] = {t}. If t ∈ B̂(·)
f is not n–permissible, let (µ,m) = t(k)

be the first non n–permissible point on the path t and write t0 = t↓k. According to Lemma 7.5,
Ft0 is evaluable. Let [t] = {s ∈ B̂(·)

f | s↓k = t0 and s ≈ t} and let F[t] =
∑

s∈[t] Fs. Then the
idempotent F[t] is evaluable by Lemma 7.3.

Definition 7.6. For s, t ∈ B̂
(λ,l)
f , let hs t = F[s]ms tF[t] and let ht ∈ ∆

(λ,l)
k,Rn

be defined by
ht = mtF[t].

Lemma 7.7.
(1) Let (λ, l) ∈ B̂f and t ∈ B̂(λ,l)

f . There exist coefficients βs ∈ Rn, for s ∈ B̂(λ,l)
k , such that

ht = mt +
∑
s�t

βsms. (7.1)

(2) {ht | t ∈ B̂(λ,l)
f } is an Rn–basis of the cell module ∆

(λ,l)
f,Rn

and

{hs t | (λ, l) ∈ B̂f and s, t ∈ B̂(λ,l)
f }

is a cellular basis of Bf (Rn, z).

Proof. For part (1), start withmt = ft+
∑

s�t r
′
sfs (where the coefficients are in F) and multiply

with F[t] on the right. This gives ht = ft +
∑

s�t, s∈[t] r
′
sfs. By applying (3.2), we obtain

(7.1), but with coefficients a priori in F. On the other hand, since F[t] ∈ Bf (Rn, z), we have
ht = mtF[t] =

∑
s γsms with coefficients in Rn. Matching coefficients gives the the result. It

follows that {ht | t ∈ B̂(λ,l)
f } is an Rn–basis of of the cell module ∆

(λ,l)
f,Rn

.
For the moment, write A = Bf (Rn, z) for the sake of concision. With

α : AQ(λ,l)/A�(λ,l) → (∆
(λ,l)
f,Rn

)∗ ⊗Rn ∆
(λ,l)
f,Rn

the A–A bimodule isomorphism determined by ms t + A�(λ,l) 7→ (ms)
∗ ⊗ mt, we have

α(hs t + A�(λ,l)) = (hs)
∗ ⊗ ht. It follows from [7, Lemma 2.3] that {hs t} is a cellular ba-

sis of Bf (Rn, z). �

Lemma 7.8. For f > 1, the set of hs,t(n) where s, t ∈ B̂
(·)
f and at least one of s, t is not

n–permissible is a Q–basis of rad(τn) ⊆ Bf (n).

Proof. Let M denote the span of the set of hs,t(n) where s, t ∈ B̂(·)
f and at least one of s, t is

not n–permissible. We have to show that M = rad(τn).
For any k, let Ik(n) denote the radical of τn on Bk(n).
First consider some (µ,m) ∈ B̂k for k 6 f , with µ not n–permissible. Let t0 ∈ B̂

(µ,m)
k0

be a path with t′0 n–permissible. Then Ft0 is evaluable by Lemma 7.5, and τn(Ft0(n)) =
Pµ(n)/nk = 0. Moreover, Ft0(n)Bk(n)Ft0(n) = QFt0(n), and it follows that Ft0(n) ∈ Ik(n).

Now let t ∈ B̂
(·)
f be a non n–permissible path. Let (µ,m) ∈ B̂k and t0 be as in the

definition of [t] preceding Definition 7.6. Then F[t] = Ft0F[t]. Since Ft0(n) ∈ Ik(n) and
Ik(n) ⊆ If (n), we have F[t](n) ∈ If (n). Finally if either s or t is not n permissible, then
hs t(n) = F[s](n)ms t(n)F[t](n) ∈ If (n). Thus we have M ⊆ rad(τn).

If both s and t are n–permissible paths in B̂(λ,l)
f , then hs t = Fs t and

τn(Fs t(n)Ft s(n)) = 〈fs, fs〉(n)〈ft, ft〉(n)Pλ(n)/nf 6= 0,
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so Fs t(n) 6∈ rad(τn). Finally, if x ∈ rad(τn), let

x =
∑
s,t

α(s, t)Fs t(n) +
∑
u,v

′
β(u, v)hu v,

where the first sum is over pairs (s, t) with both paths n–permissible and the second sum is
over pairs of paths (u, v) with at least one of the paths not n–permissible. For any pair (s, t)
with both paths n–permissible, we have Fs(n)xFt(n) = α(s, t)Fs t(n). The left side is in
rad(τn) and since Fs t(n) 6∈ rad(τn), it follows that α(s, t) = 0. Thus we have shown that
rad(τn) ⊆M . �

For x ∈ Bf (n), write x for the image of x in Bf (n)/ rad(τn). For (λ, l) ∈ B̂f , let a(λ,l)

denote the number of n–permissible paths of shape (λ, l).
The following theorem provides an explicit construction of the simple modules of Bf (n)

which factor through Bf (n)/ rad(τn). The result recovers Theorem 5.4.3 of [?].

Theorem 7.9.
(1) The set

{Fs t(n) | (λ, l) ∈ B̂f , s, t ∈ B̂(λ,l)
f n–permissible}

is a Q–basis of Bf (n)/ rad(τn).
(2) The set

{〈fs, fs〉(n)−1Fs t(n) | (λ, l) ∈ B̂f , s, t ∈ B̂(λ,l)
f n–permissible}

is a system of matrix units and a Q–basis of Bf (n)/ rad(τn). Thus,

Bf (n)/ rad(τn) ∼=
⊕
(λ,l)

Mata(λ,l)(Q),

where the sum is over (λ, l) ∈ B̂f with λ n–permissible.
(3) Let (λ, l) ∈ B̂f with λ n–permissible. For t ∈ B̂

(λ,l)
f n–permissible, set f̄t = Ft(λ,l) t(n).

Then
V(λ,l) = spanQ{f̄t | t ∈ B̂

(λ,l)
f is n–permissible}

is a simple Bf (n) module, with the module action f̄tx = f̄tx for x ∈ Bf (n).
(4) For s, t n–permissible paths of the same shape, the matrix coefficients ei(s, t) and si(s, t)
are in Rn.
(5) The structure constants of the generators ei and si with respect to the basis {f̄t} are ob-
tained by evaluating the matrix entries ei(s, t) and si(s, t) at z = n:

f̄t ei =
∑
s

ei(s, t)(n) f̄s and f̄t si =
∑
s

si(s, t)(n) f̄s,

with the sums over n–permissible paths.

Proof. Point (1) follows from Lemmas 7.7 and 7.8. It follows from (1) and Proposition 3.6 part
(7) that {〈fs, fs〉(n)−1Fs t(n)} is a system of matrix units and a basis of Bf (n)/ rad(τn), which
proves (2). Point (3) is immediate from (2).

It was already shown in Lemma 7.1 that the matrix entries ei(s, t) for s, t n–permissible are
in Rn. For u, t, s all n–permissible paths of the same shape, we have Fu tsiFs = si(s, t)Fu s.
Since the left side of this equation is evaluable, so is the right side, and since Fu s(n) 6= 0, this
implies that si(s, t) ∈ Rn. This proves point (4).

Finally, for point (5), if f̄tei =
∑

s α(s)f̄s, then f̄teiFs = α(s)f̄s. This gives

α(s)Ft(λ,l) t(n) = Ft(λ,l) teiFs(n) = ei(s, t)(n)Ft(λ,l) t(n),
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so α(s) = ei(s, t)(n). The identical proof applies to the generators si. �

Theorem 7.9 is equally valid over any field of characteristic zero, in particular over the
complex numbers. If n is a positive integer, there is a well known homomorphism Φ from the
Brauer algebra Bf (C, n) onto the centralizer of the complex orthogonal group O(n,C) acting
on the f–fold tensor power of its vector representation. If n is an even negative integer, n =
−2k, then there is a homomorphism Φ of Bf (C, n) onto the centralizer algebra of the complex
symplectic group Sp(2k,C) acting on the f–fold tensor power of its vector representation. In
both cases ker(Φ) = rad(τn), by [18, Corollary 3.5]. Thus Theorem 7.9 also describes the
structure of Φ(Bf (C, n)).
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