Homework 4: Solutions

Calculate the following for all i for the simplicial complex from class:

Figure 1: Simplicial complex from class.

1. Find C_i , B_i , Z_i .

Note that C_i , B_i , Z_i and H_i are all vector spaces with \mathbb{Z}_2 coefficients. A vector space is determine by its basis. Thus one can find C_i , B_i , Z_i and H_i by finding bases for these vector spaces. The rank of a finite-dimensional vector space is the number of elements in a basis for that vector space.

Recall the maps $\partial_i : C_i \to C_{i-1}$ are boundary operators.

Recall also that ∂_i is a linear map: $\partial_i(\Sigma_j n_j \sigma_j) = n_j \Sigma_j \partial_i(\sigma_j)$ where $\Sigma_j n_j \sigma_j$ is an *i*-chain = a linear combination of *i*-dimensional simplices. Thus to understand ∂_i , we just need to know how it acts on a simplex, σ_j .

- (a) C_i = set of *i*-dimensional chains = set of all linear combination of *i*-dimensional simplices = the vector space where the basis is the set of *i*-dimensional simplices.
 - $C_0 = \mathbb{Z}_2[v_1, v_2, v_3, v_4] = \langle v_1, v_2, v_3, v_4 \rangle$
 - $C_1 = \mathbb{Z}_2[e_1, e_2, e_3, e_4, e_5] = \langle e_1, e_2, e_3, e_4, e_5 \rangle$
 - $C_2 = \mathbb{Z}_2[f] = <f>$
 - $C_i = \{0\}$ for all i > 2 because there are no *i*-dimensional simplices in this simplicial complex for i > 2.
- (b) $Z_i = \{ \Sigma_j n_j \sigma_j \text{ in } C_i \mid \partial_i (\Sigma_j n_j \sigma_j) = 0 \}$
 - Determine Z_0 .

Method 1: $Z_0 = \{ \Sigma_i n_i v_i \text{ in } C_0 \mid \partial_0(\Sigma_i n_i v_i) = 0 \} = \langle v_0, v_1, v_2, v_3 \rangle = C_0 \text{ since } \partial_0 \text{ takes}$ all the vertices (and thus all 0-chains) to 0.

Method 2: Using matrices. From question 2: $M_0 = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

 $Z_0 = \text{null space of } M_0 = \langle v_1, v_2, v_3, v_4 \rangle$

• Determine Z_1 .

Method 1: $Z_1 = \{ \Sigma_i n_i e_i \text{ in } C_1 \mid \partial_1(\Sigma_i n_i e_i) = 0 \}.$ $\partial_1(\Sigma_i n_i \sigma_i) = 0 \text{ implies } \partial_1(n_1 e_1 + n_2 e_2 + n_3 e_3 + n_4 e_4 + n_5 e_5) = 0.$ By linearity, $n_1 \partial_1(e_1) + n_2 \partial_1(e_2) + n_3 \partial_1(e_3) + n_4 \partial_1(e_4) + n_5 \partial_1(e_5) = 0.$ Thus, $n_1(v_1 + v_2) + n_2(v_2 + v_3) + n_3(v_3 + v_4) + n_4(v_1 + v_4) + n_5(v_1 + v_3) = 0$ Hence, $(n_1 + n_4 + n_5)v_1 + (n_1 + n_2)v_2 + (n_2 + n_3 + n_5)v_3 + (n_3 + n_4)v_4 = 0.$ This implies $n_1 + n_4 + n_5 = 0, n_1 + n_2 = 0, n_2 + n_3 + n_5 = 0, n_3 + n_4 = 0.$ Hence, $n_1 = n_2, n_3 = n_4$ and $n_5 = n_1 + n_4 = n_2 + n_3 = 0.$ Thus $\Sigma_i n_i e_i \in Z_1$ iff $\Sigma_i n_i e_i = n_1 e_1 + n_1 e_2 + n_4 e_3 + n_4 e_4 + (n_1 + n_4) e_5 = n_1(e_1 + e_2 + e_5) + n_4(e_3 + e_4 + e_5)$

Thus a 1-chain is in Z_1 iff

it is a linear combination of the 1-chains $(e_1 + e_2 + e_5)$ and $(e_3 + e_4 + e_5)$.

Thus $\{(e_1 + e_2 + e_5), (e_3 + e_4 + e_5)\}$ is a basis for Z_1 .

Thus, $Z_1 = \{ \sum_i n_i e_i \text{ in } C_1 \mid \partial_1(\sum_i n_i e_i) = 0 \}$ = $\{ \sum_i n_i e_i \text{ in } C_1 \mid n_1 + n_4 + n_5 = 0, n_1 = n_2, n_3 = n_4 \} = \langle e_1 + e_2 + e_5, e_3 + e_4 + e_5 \rangle$

Method 2: Using matrices. From question 2:

$$M_{1} = \begin{array}{ccccc} e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{array} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right) \xrightarrow{v_{1}} \begin{array}{ccccc} v_{1} & e_{2} & e_{3} & e_{3} + e_{4} + e_{5} & e_{5} \\ v_{1} \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right)$$

		e_1	e_2	e_3	$e_3 + e_4 + e_5$	$e_1 + e_2 + e_5$
\rightarrow	v_1	(1	0	0	0	0
	v_2	1	1	0	0	0
	v_3	0	1	1	0	0
	v_4	0	0	1	0	0 /

 $Z_1 =$ null space of $M_1 = \langle e_1 + e_2 + e_5, e_3 + e_4 + e_5 \rangle$

• Determine Z_2

Method 1: $Z_2 = \{ \Sigma_i n_i f_i \text{ in } C_2 \mid \partial_2(\Sigma_i n_i f_i) = 0 \} = \{ 0 \}$ since $\partial_2(f) = e_1 + e_2 + e_5 \neq 0.$

Alternatively, note that $C_2 = \{0, f\}$. Since ∂_2 is a linear map, $\partial_2(0) = 0$. Thus $0 \in Z_2$. $\partial_2(f) = e_1 + e_2 + e_5 \neq 0$. Thus $f \notin Z_2$. Thus Z_2 = kernel of $\partial_2 = \{x \text{ in } C_2 \mid \partial_2(x) = 0\} = \{0\}$

Method 2: Using matrices. From question 2: $M_2 = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

 $Z_2 = \text{null space of } M_2 = \{0\}.$

• Determine Z_i for i > 2.

$$Z_i = \{0\}$$
 for all $i > 2$ since $C_i = \{0\}$ for all $i > 2$

- (c) Determine $B_i = \text{image of } \partial_{i+1}$
 - Determine B_0

Method 1:
$$B_0 = \text{image of } \partial_1 = \langle \partial(e_1), \partial(e_2), \partial(e_3), \partial(e_4), \partial(e_5) \rangle$$

= $\langle v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4 + v_1, v_1 + v_3 \rangle$

Note, $v_1 + v_3 = (v_1 + v_2) + (v_2 + v_3)$.

Thus the last generator of $\langle v_1+v_2, v_2+v_3, v_3+v_4, v_4+v_1, v_1+v_3 \rangle$ is a linear combination of the first two generators. Thus $\{v_1+v_2, v_2+v_3, v_3+v_4, v_4+v_1, v_1+v_3\}$ is NOT a linearly independent set.

Also,
$$v_4 + v_1 = (v_1 + v_2) + (v_2 + v_3) + (v_3 + v_4)$$

Since the last two generators are linear combinations of the first 3 generators,

 $< v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4 + v_1, v_1 + v_3 > = < v_1 + v_2, v_2 + v_3, v_3 + v_4 > 0$

Note that $\{v_1 + v_2, v_2 + v_3, v_3 + v_4\}$ is a linearly independent set and thus this set forms a basis for B_0 .

Thus $B_0 = \langle v_1 + v_2, v_2 + v_3, v_3 + v_4 \rangle$.

Method 2: Using matrices. From question 2:

 B_0 = the image of the column space of $M_1 = \langle v_1 + v_2, v_2 + v_3, v_3 + v_4 \rangle$.

• Determine B_1

Method 1: $B_1 = \text{image of } \partial_2 = \langle \partial_2(f) \rangle = \langle e_1 + e_2 + e_5 \rangle$

Alternatively, note that $C_2 = \{0, f\}$. Since ∂_2 is a linear map, $\partial_2(0) = 0$. Thus $0 \in B_1$. $\partial_2(f) = e_1 + e_2 + e_5$. Thus $e_1 + e_2 + e_5 \in B_1$.

Thus $B_1 = \text{image of } \partial_2 = \{0, e_1 + e_2 + e_5\} = \langle e_1 + e_2 + e_5 \rangle$

Method 2: Using matrices. From question 2: $M_2 = \begin{bmatrix} f \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix} \begin{pmatrix} f \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

 B_1 = the image of the column space of $M_2 = \langle e_1 + e_2 + e_5 \rangle$

• Determine B_i for $i \ge 2$

 B_2 = image of ∂_3 where $\partial_3 : C_3 \to C_2$. Since $C_3 = \{0\}, B_2 = \{0\}$.

Similarly $B_i = \{0\}$ for i > 2. Thus $B_i = \{0\}$ for $i \ge 2$.

- 2. Find the matrix corresponding to each boundary map (from C_i to C_{i-1}).
 - (a) Let M_0 be the matrix corresponding to the boundary map $\partial_0 : C_0 \to 0$. Then, ∂_0 takes every vertex to 0.

Thus $M_0 = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(b) Let M_1 be the matrix corresponding to the boundary map $\partial_1 : C_1 \to C_0$. Since rank $(C_1) = 5$ and rank $(C_0) = 4$, M_1 is a 4×5 matrix. Also, a_{ij} is nonzero iff $a_{ij} = 1$ iff the vertex corresponding to row *i* is in the boundary of the edge corresponding to column *j*. For example, we have that $\partial(e_1) = v_1 + v_2$; hence we have a 1 as an entry in both the first and second rows of the first column. The remaining entries in the first column are zero.

$$M_{1} = \begin{array}{cccc} e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\ v_{1} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right)$$

(c) Let M_2 be the matrix corresponding to the boundary map $\partial_2 : C_2 \to C_1$. Since rank $(C_2) = 1$ and rank $(C_1) = 5$, M_2 is a 5×1 matrix. Since $\partial(f) = e_1 + e_2 + e_5$, we have a 1 as an entry in the rows corresponding to those edges.

$$M_{2} = \begin{array}{c} f \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \end{array} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{array} \right)$$

3. Find $H_i = \frac{Z_i}{B_i}$.

Recall that $\partial_{i+1}(\partial_i(c)) = 0$ for any c in C_{i+1} . Hence we get the inclusion $B_i \subset Z_i$. By modding out Z_i by B_i , we are taking all the elements in Z_i that are also in B_i and setting them equal to 0.

(a)
$$H_0 = Z_0/B_0 = \frac{\langle v_1, v_2, v_3, v_4 \rangle}{\langle v_1 + v_2, v_2 + v_3, v_3 + v_4 \rangle}$$

= $\langle v_1, v_2, v_3, v_4 \mid v_1 + v_2 = 0, v_2 + v_3 = 0, v_3 + v_4 = 0 \rangle = \langle [v_1] \rangle$

where $[v_1] = \{v_1, v_2, v_3, v_4\}$ is a representative of the set containing all the vertices. Since we are working with coefficients in \mathbb{Z}_2 , we get that $\{v_1 + v_2 = 0, v_2 + v_3 = 0, v_3 + v_4 = 0\}$ implies $v_1 = v_2, v_2 = v_3, v_3 = v_4$. Thus $[v_1] = \{v_1, v_2, v_3, v_4\}$

Rank H_0 = Rank Z_0 - Rank $B_0 = 4 - 3 = 1$

(b)
$$H_1 = Z_1/B_1 = \frac{\langle e_1 + e_2 + e_5, e_3 + e_4 + e_5 \rangle}{\langle e_1 + e_2 + e_5 \rangle}$$

= $\langle e_1 + e_2 + e_5, e_3 + e_4 + e_5 | e_1 + e_2 + e_5 = 0 \rangle = \langle [e_3 + e_4 + e_5] \rangle$

The cycle $e_1 + e_2 + e_5$ was filled by the face f and thus $e_1 + e_2 + e_5 = 0$ in H_1 .

Rank H_1 = Rank Z_1 - Rank $B_1 = 2 - 1 = 1$

Sidenote: To determine H_1 , we set every element in B_1 equal to 0. Thus $\partial(f) = e_1 + e_2 + e_5 = 0$. Thus in H_1 , $e_3 + e_4 + e_5 = (e_3 + e_4 + e_5) + 0 = (e_3 + e_4 + e_5) + \partial(f) = (e_3 + e_4 + e_5) + (e_1 + e_2 + e_5) = e_1 + e_2 + e_3 + e_4$.

Thus $e_1 + e_2 + e_3 + e_4 \in [e_3 + e_4 + e_5]$ in H_1 . This also means that $[e_1 + e_2 + e_3 + e_4] = [e_3 + e_4 + e_5]$ and thus $H_1 = \langle e_3 + e_4 + e_5 \rangle = \langle e_1 + e_2 + e_3 + e_4 \rangle$.

Hence $H_1 = \langle e_3 + e_4 + e_5 \rangle$ and $H_1 = \langle e_1 + e_2 + e_3 + e_4 \rangle$ are both correct answers.

- (c) $H_2 = Z_2/B_2 = \langle 0 \rangle$ since $Z_2 = \langle 0 \rangle$.
- (d) Similarly, $H_i = \langle 0 \rangle$ for all i > 2.