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Mechanisms for Frequency Control in Neuronal Competition Models∗

Rodica Curtu†, Asya Shpiro‡, Nava Rubin‡, and John Rinzel§

Abstract. We investigate analytically a firing rate model for a two-population network based on mutual inhibi-
tion and slow negative feedback in the form of spike frequency adaptation. Both neuronal populations
receive external constant input whose strength determines the system’s dynamical state—a steady
state of identical activity levels or periodic oscillations or a winner-take-all state of bistability. We
prove that oscillations appear in the system through supercritical Hopf bifurcations and that they
are antiphase. The period of oscillations depends on the input strength in a nonmonotonic fashion,
and we show that the increasing branch of the period versus input curve corresponds to a release
mechanism and the decreasing branch to an escape mechanism. In the limiting case of infinitely slow
feedback we characterize the conditions for release, escape, and occurrence of the winner-take-all
behavior. Some extensions of the model are also discussed.
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1. Introduction. Competition models have a long tradition in ecology and population
biology (see, e.g., [22]). Typically, the competition involves negative interactions in the battle
for a common resource. Eventually, one of the participant populations emerges as the winner
eliminating the competitors. This framework has appeared in models of neuronal development
where the competition is for synapse formation such as the development of neuromuscular
connections for innervated muscle fibers and for the formation of ocular dominance columns
and topographic maps (as reviewed in [35]). The notion of competition has also been applied
in the modeling of various neuronal computational tasks. Winner-take-all behavior, when one
neural population remains active and the others inactive indefinitely as a result of inhibitory
interactions, has been proposed in models for short term memory and attention [13] or for the
selection and switching in the striatum of the basal ganglia under both normal and pathological
conditions [15, 21].

The winner-take-all steady state may persist for a long time but not indefinitely if some
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mechanism for slow fatigue or adaptation is at work. In this case one population may be
dominant for a while, then another, and so on. Competition between, say, two neuronal
populations, via reciprocal inhibition and slow adaptation underlies models for alternating
rhythmic behavior in central pattern generators (CPGs) [11, 32, 6, 33] and in perceptual
bistability [17, 37, 24]. CPGs consist of neural circuits that drive alternately contracting
muscle groups. Perceptual bistability refers to a class of phenomena in which a deeply am-
biguous stimulus gives rise to two different interpretations that alternate over time, only one
being perceived at any given moment. Slow adaptation may be implemented via a cellular
mechanism (fatigue in the spike generation mechanism) or a negative feedback in the coupling
(depression of the synaptic transmission mechanism). In some neuronal competition models
the alternations may be irregular and caused primarily by noise, with adaptation playing a
secondary role [30, 10, 24].

Both for CPGs and perceptual bistability the issue of oscillations’ frequency or period
detection (and eventually control) seems to be important. For example, a classical example
of perceptual bistability is binocular rivalry whose properties were summarized in the so-
called Levelt’s propositions [19]. In binocular rivalry, a subject views an ambiguous stimulus
in which each eye is presented with a drastically different image. Instead of perceiving a
mixture of the two images, the subject reports (over a large range of stimulus conditions)
an alternation between the two competing percepts; one image is perceived for a while (a
few seconds), then the other, etc. Levelt’s proposition IV (LP-IV) states that increasing
the contrast of the rivaling images increases the frequency of percept switching, or, in other
words, that dominance times of both perceived images decrease with equal increase of stimulus
strength. Since 1968, binocular rivalry has been investigated intensively in other psychophysics
experiments [2, 25, 20, 1, 28, 29, 3], in experiments using fMRI techniques [34, 26, 38, 18],
and also in modeling studies [17, 37, 10, 24].

In a recent modeling paper, Shpiro et al. [31] show that for a class of competition models,
the LP-IV type of dynamics occurs in fact only within a limited range of stimulus strength.
Outside this range four other types of behavior were observed: (i) fusion at a very high level
of activity, (ii) winner-take-all behavior, (iii) a region where dominance times increase with
stimulus strength (as opposed to LP-IV), and then (iv) fusion again for very low levels of
activity (see Figure 3F in section 2). These differences between experimental reports and
theory have important implications, either predicting new possible dynamics in binocular
rivalry or, if future experiments do not confirm them, pointing to the necessity for other types
of models. Meanwhile, it is important to understand the sources or mechanisms that lead to
the nonmonotonic dependence of oscillation period on the stimulus strength for this class of
neuronal competition models. Our paper aims to investigate this issue.

We analyze a firing rate model in which competition between populations is a result of a
combination of reciprocal inhibition and a slow negative feedback process. We prove that, as
the input strength changes, oscillations appear in the system through a Hopf bifurcation and
that they are antiphase. Due to the two time scales involved in the system there is a regime
where periodic solutions take the form of relaxation-oscillators. Their period of oscillations
depends nonmonotonically on the input strength, say, I: in a range of low values for I, the
period increases with I, and we show that the dynamics is due to a release mechanism; on
the other hand, in a range of higher values for I, the period decreases with I, and escape is
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Figure 1. Network architecture of neuronal competition model.

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

S

A 

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

u

F
=

S −
1

B 

0 0.2 0.4 0.6 0.8 1

0.4

0.45

0.5

0.55

0.6

u

F
 ’

C 

Figure 2. Graphical representations of generic (A) gain function S; (B) its inverse F ; and (C) first
derivative F ′.

the underlying mechanism (see section 4; we define release as the case when the switch in
dominance during oscillation occurs due to a significant change in the response to an input
to the dominant population. On the contrary, escape corresponds to the case of a significant
change in the input-output function for the suppressed population). For intermediate values
of I, winner-take-all is possible and we explain how it appears. Then in section 5 we present
some model modifications that allow for reducing, or even excluding, one of the escape and
release regimes, thus leading to a monotonic period versus input curve.

2. The mathematical model. The model we investigate in this paper assumes a network
architecture of two populations of neurons (Figure 1) that respond to two competing stimuli
of equal strength:

u̇1 = −u1 + S(I − βu2 − ga1),

u̇2 = −u2 + S(I − βu1 − ga2),

τ ȧ1 = −a1 + u1,

τ ȧ2 = −a2 + u2.(2.1)

Variables uj (j = 1, 2) measure short-time and spatially averaged firing rates of the two
populations that inhibit each other. The system is nonlinear due to the gain function S;
it is the steady input-output function for the population and it has a sigmoid shape as in
Figure 2A. The strength of inhibition is modeled by the positive parameter β, while I is the
control parameter directly associated to the external stimulus strength (e.g., it grows with
growing stimulus strength such as contrast). Each population is subject to a slow negative
feedback process aj such as spike frequency adaptation of positive strength g. Since variables
aj evolve in much slower time than uj , the parameter τ takes large values, τ � 1 (e.g., the
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time-scale for uj is about 10 msec, while for aj it is about 1000 msec).
Remark 2.1. In general, firing-rate models like (2.1) include in the equation of uj a non-

linear term of the form S(I + αuj − βuk − gaj). The product αuj is associated with the
intrapopulation recurrent excitation. It is important to note that for neuronal competition
model (2.1) we have disallowed recurrent excitation (taken α = 0) in order to preclude an
isolated population (β = 0) from oscillating on its own. This is a restriction imposed by
experimental observations on binocular rivalry and other perceptual bistable phenomena.

The nonlinear gain function S that appears in the differential equations for uj is usually
defined in neuronal models by

(2.2) S(x) =
1

1 + e−r(x−θ)

with positive r and real θ.
Function S is invertible with F = S−1 a C∞(0, 1)-function and F ′(u) = 1

ru(1−u) (Figure

2B–C). Based on this example, we consider the following assumptions for the gain function S.
S : R → (0, 1) is a differentiable, monotonically increasing function with S(θ) = u0 ∈ (0, 1)

and limx→−∞ S(x) = 0, limx→∞ S(x) = 1. Moreover, its first and second derivatives satisfy
the conditions limx→±∞ S ′(x) = 0, S ′′(x) > 0 for x < θ, S ′′(x) < 0 for x > θ, and S ′′(θ) = 0,
so S ′ has a maximum at θ.

As a consequence, S is invertible with F = S−1 : (0, 1) → R monotonically increasing
function such that limu→0 F (u) = −∞, limu→1 F (u) = ∞, F (u0) = θ, and limu→0 F

′(u) =
limu→1 F

′(u) = ∞, F ′′(u) < 0 for u ∈ (0, u0), F ′′(u) > 0 for u ∈ (u0, 1), F ′′(u0) = 0.
Obviously, F ′ has a minimum value at u0 which is F ′(u0) = 1/S ′(θ).

Additionally we assume that F is a C∞-function on (0, 1), or at least C2 on (0, 1) and C∞

on (0, 1) \ {u0}.
The typical graphs of function S and its corresponding F and F ′ are drawn in Figure

2A–C. We used the example (2.2) with parameter values r = 10 and θ = 0.2; obviously in
this case S(θ) = u0 = 0.5.

All the experiments that motivated our work report oscillatory phenomena with frequen-
cies tightly connected to the stimulus strengths. Moreover, as Levelt [19] pointed out for
binocular rivalry, those experiments show large ranges for stimulus strength where the corre-
sponding oscillation periods/frequencies behave monotonically. What kind of possible mech-
anism is behind this type of dynamics is the question we will focus on in this paper.

Given the neuronal competition model (2.1), the goal is to examine the effect the parameter
I has on the existence of oscillations and on their period. The system is a simplified version
of an entire class of competition models that, as we found [31], share important dynamical
features.

To illustrate those commonalities we draw in Figure 3A–E the timecourses of activity vari-
ables u1(t) and u2(t) for different values of control parameter I. Then we summarize the result
in the bifurcation diagram of the period T versus I (Figure 3F). Other parameter values are
fixed to β = 1.1, g = 0.5, τ = 100, and S as in (2.2) with r = 10 and θ = 0.2 (here u0 = 1/2).
The system (2.1) exhibits five possible types of behavior: for large values of I (region I in
Figure 3F) both populations are active at identically high levels (Figure 3A); the timecourses
of u1(t) and u2(t) tend to a stable steady state larger than u0. As I decreases (region II,
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Figure 3. Bifurcation diagrams and examples of activity timecourses for neuronal competition model (2.1)
with parameter values g = 0.5, τ = 100, r = 10, θ = 0.2, and β = 1.1 (A–G), respectively, β = 0.75 (H–I).
Timecourses of u1, u2 corresponding to panel F for different values of I: (A) I = 1.86, (B) I = 1.5, (C) I = 1,
(D) I = 0.5, and (E) I = 0.08. Bifurcation diagrams of period T of the network oscillation versus input strength
I (F and H). Bifurcation diagram of population activity u1 versus I (G and I).

Figure 3F) the system starts oscillating with u1(t) and u2(t) alternatively on and off (Fig-
ure 3B); in this region the period of oscillation decreases with increasing input strength. At
intermediate values of I a winner-take-all kind of behavior is observed (region III, Figure 3F);
depending on the choice of initial conditions, one of the two populations is active indefinitely,
while the other one remains inactive (Figure 3C). Decreasing I even more (region IV, Fig-
ure 3F) the neuronal model becomes oscillatory again (Figure 3D) with u1 and u2 competing
for the active state; however, for this range of parameter the oscillation period T increases
with input value I—an opposite behavior to that observed in region II. Last, for small values
of stimulus strength (region V, Figure 3F) both populations remain inactive at identically low
level firing rates (Figure 3E); the timecourses of u1(t) and u2(t) tend to a stable steady state
less than u0.

To further characterize system (2.1)’s dynamics as the input value I is varied, we also
construct the local bifurcation diagram of amplitude response u1 to I (Figure 3G). For the
parameter ranges I and V the trajectories are attracted to a stable fixed point satisfying
the ũ1 = ũ2 condition (thick line in Figure 3G). This fixed point becomes unstable (dashed
line) in regions II, III, and IV, where the attractor is replaced by either a stable limit cycle
(regions II and IV: branched filled-circle curves corresponding to the maximum and minimum
amplitudes during rivalry oscillations) or another stable fixed point with ũ1 �= ũ2 (region III).
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Due to the symmetry in the equations of (2.1) whenever (ũ1, ũ2, ã1, ã2) is an equilibrium point,
(ũ2, ũ1, ã2, ã1) is as well. The local bifurcation diagram suggests the existence of some Hopf
and pitchfork bifurcations in the model that we will further investigate in section 3.

There is another common feature of many neuronal competition models based on reciprocal
inhibition architecture with slow negative feedback in the form of spike frequency adaptation
and/or synaptic depression [31]: the absence of the winner-take-all behavior when inhibition
strength β is sufficiently small. As we illustrate in Figure 3H–I for β = 0.75 (all other
parameters are the same as above), the winner-take-all regime at intermediate I disappears.
However, the dependency of period T on stimulus strength remains nonmonotonic.

An intriguing question is: What are the neuronal mechanisms underlying the two distinct
dynamics—one of increasing period with increase of stimulus strength (for smaller values of
input), and one of decreasing period (for larger values)? This issue is discussed in section 4
and then extended in section 5.

Our general goal is to understand and possibly to analytically characterize the numerical
results obtained for this specific competition model (2.1). Consequently, as already pointed
out, this step will help us understand the typical behavior of an entire class of neuronal
competition models.

3. Oscillatory antiphase solutions and local analysis. In this section we use methods
from local bifurcation theory [14, 16] to prove the existence of periodic solutions (u1(t), u2(t),
a1(t), a2(t)) for the two-population network (2.1). We also show that the main variables u1

and u2 oscillate in antiphase, therefore competing for the ON/active state.
The bifurcation diagrams obtained numerically in section 2 suggest the existence of an

equilibrium point satisfying u1 = u2 no matter the value of parameter I. Let us now investigate
system (2.1) theoretically.

All equilibria satisfy the conditions u1 = S(I−βu2−ga1), u2 = S(I−βu1−ga2), a1 = u1,
and a2 = u2 that are equivalent (due to the invertibility of S) to F (u1) = I − βu2 − ga1,
F (u2) = I − βu1 − ga2, and a1 = u1, a2 = u2. Looking for a particular type of equilibrium
point, that is, for points with u1 = u2, we obtain the equation I = H(u) with H defined by

(3.1) H : (0, 1) → R, H(u)
def
= F (u) + (β + g)u.

Since F is monotonically increasing on (0, 1) with vertical asymptotes limu→0 F (u) = −∞ and
limu→1 F (u) = ∞, (3.1) has a unique solution uI ∈ (0, 1) for any real value of the parameter
I. Moreover, from the identity I = F (uI) + (β + g)uI we compute

(3.2)
duI
dI

=
1

β + g + F ′(uI)
,

so a decrease in I leads to a decrease in uI with limI→∞ uI = 1 and limI→−∞ uI = 0.
The neuronal competition model (2.1) always possesses an equilibrium of the type (uI , uI ,

uI , uI). Its stability properties are then defined by the linearized system dY/dt = AY , Y =
(u1 − uI , u2 − uI , a1 − uI , a2 − uI)

T, where ( )T stays for the transpose, and matrix

A =

⎛
⎜⎜⎝

−1 −β/F ′(uI) −g/F ′(uI) 0
−β/F ′(uI) −1 0 −g/F ′(uI)

1/τ 0 −1/τ 0
0 1/τ 0 −1/τ

⎞
⎟⎟⎠ .
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This form of the matrix relies on the equality S ′(I−βu2−ga1) = S ′(F (u1)) = S ′(S−1(u1)) =
1/(S−1)′(u1) = 1/F ′(u1), which is true at the equilibrium point.

The characteristic equation of A takes the form[
(λ + 1)

(
λ +

1

τ

)
+

g

τF ′(uI)

]2

−
[

β

F ′(uI)

(
λ +

1

τ

)]2

= 0.

As a difference of squares it can be decomposed into two quadratic equations: the first is
λ2 + λ

(
1 + 1

τ + β
F ′(uI)

)
+ 1

τ

(
1 + g+β

F ′(uI)

)
= 0, so two eigenvalues of the matrix A, say, λ1 and

λ2, have negative real part no matter the value of parameter I. The other eigenvalues λ3 and
λ4 satisfy the second quadratic equation λ2 + λ

(
1 + 1

τ − β
F ′(uI)

)
+ 1

τ

(
1 + g−β

F ′(uI)

)
= 0, and

their real part can change sign when I is varied.
For |I| sufficiently large, uI is close to either zero or one, keeping F ′(uI) larger than both

β/(1 + 1
τ ) and β − g (see Figure 2C); the corresponding equilibrium point (uI , uI , uI , uI) is

asymptotically stable.
There are two ways this equilibrium point can lose stability: either through a pair of

purely imaginary eigenvalues λ3,4 = ±iω at F ′(uI) = β/(1 + 1
τ ) or through a zero eigenvalue

λ3 = 0, λ4 < 0 at F ′(uI) = β − g. Which of these two cases occurs first depends on the
relationship between β/(1 + 1

τ ) and β − g: if β/(1 + 1
τ ) > β − g, i.e., β/g < τ + 1, then the

eigenvalues λ3, λ4 change the sign of their real part from negative to positive by crossing the
imaginary axis (λ3,4 = ±iω); if β/g > τ + 1, then the case λ3 = 0, λ4 < 0 is encountered first.

At this point we remind the reader of our assumption of a large time constant value τ .
(The competition between the populations in the network comes from the combination of
two important ingredients: reciprocal inhibition and the addition of a slow negative feedback
process.) Therefore, it makes sense to situate ourselves in the case of β/g � τ , which implies

(3.3) β < g(τ + 1).

Inequality (3.3) can be interpreted as a feature of the neuronal competition model to be rather
(adaptation) feedback-dominated than (inhibitory) coupling-dominated.

We will assume in the following that parameters g and τ are fixed and that β is chosen
such that (3.3) is true.

Another observation is that the graph of F ′ has a well-like shape with positive minimum
at 1/S ′(θ) as in Figure 2C. Consequently the straight horizontal line y = β/(1+ 1

τ ) intersects
it twice (if β/(1+ 1

τ ) > 1/S ′(θ)), once (for the equality), or not at all (if β/(1+ 1
τ ) < 1/S ′(θ)).

As observed in numerical simulations, in order for the system to oscillate, a sufficiently large
inhibition strength has to be considered. Mathematically that reduces to

(3.4) β >
1 + 1/τ

S ′(θ)
.

Thus we are able to characterize the stability of the equilibrium (uI , uI , uI , uI).
Theorem 3.1. The dynamical system (2.1) has a unique equilibrium point with u1 = u2,

say, eI = (uI , uI , uI , uI), for any real I. The value uI increases monotonically with I and
belongs to the interval (0, 1).

Let us assume that the adaptation-dominance condition (3.3) is true.
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(i) If β < 1+1/τ
S ′(θ) , then eI is asymptotically stable for all I ∈ R.

(ii) If β > 1+1/τ
S ′(θ) , then there exist exactly two values u∗hb, u

∗∗
hb ∈ (0, 1) such that u∗hb < u0 <

u∗∗hb and

(3.5) F ′(u∗hb) = F ′(u∗∗hb) =
β

1 + 1
τ

.

The equilibrium point eI is asymptotically stable for all I ∈ (−∞, I∗hb)∪ (I∗∗hb ,∞) and unstable
for I ∈ (I∗hb, I

∗∗
hb ), where I∗hb = H(u∗hb), I∗∗hb = H(u∗∗hb) defined by (3.1). At I∗hb and I∗∗hb the

stability is lost through a pair of purely imaginary eigenvalues.
Proof. (i) Since β − g < β/(1 + 1

τ ) < 1/S ′(θ) = min(F ′), all eigenvalues of the linearized
system about eI have negative real part.

(ii) The conclusion is based on the properties of F ′, which decreases on interval (0, u0)
and increases on (u0, 1) with F ′(u0) = min(F ′). The sum λ3 +λ4 changes sign from negative
to positive when I increases through I∗hb and then back from positive to negative when passing
through I∗∗hb . For I ∈ (I∗hb, I

∗∗
hb ) at least one real part of λ3 and λ4 is positive, so eI is unstable.

At I = I∗hb and I = I∗∗hb we have λ3,4 = ±iω. For all other values of I we have λ3 + λ4 < 0,
λ3λ4 > 0; so eI is asymptotically stable.

Since the equilibrium point eI becomes unstable through a pair of purely imaginary eigen-
values as I crosses the values I∗hb and I∗∗hb , we expect to find there two Hopf bifurcation points.
Indeed, in section 3.1 we prove the existence of a supercritical Hopf bifurcation at both I∗hb
and I∗∗hb and, as a consequence, the existence of stable oscillatory solutions for system (2.1).

3.1. Normal form for the Hopf bifurcation. In the following we assume that both in-
equalities (3.3) and (3.4) are true; that is, we take the coupling in (2.1) to be sufficiently
strong but still adaptation-dominated.

Let us use the notation I∗ for any of the critical values I∗hb and I∗∗hb and similarly the
notation u∗ for u∗ ∈ {u∗hb, u∗∗hb}. Then the linearization matrix A at u∗ becomes

A0 =

⎛
⎜⎜⎝

−1 −(1 + 1
τ ) − g

β (1 + 1
τ ) 0

−(1 + 1
τ ) −1 0 − g

β (1 + 1
τ )

1
τ 0 − 1

τ 0
0 1

τ 0 − 1
τ

⎞
⎟⎟⎠ ,

and it has eigenvalues λ1,2 with Re(λ1,2) < 0 and λ3,4 = ±iω,

(3.6) ω =
1

τ

√
g(τ + 1)

β
− 1.

The system (2.1) has an equilibrium eI for any I ∈ R; we translate eI to the origin with
the change of variables vj = uj −uI , bj = aj −uI (j = 1, 2) and obtain a system topologically
equivalent to (2.1),

v̇1 = −v1 + S(F (uI) − βv2 − gb1) − uI ,

v̇2 = −v2 + S(F (uI) − βv1 − gb2) − uI ,

τ ḃ1 = −b1 + v1,

τ ḃ2 = −b2 + v2.(3.7)
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Near u∗, u∗ �= u0, we expand the nonlinear terms in (3.7) with respect to uI and obtain for
v1 (and similarly for v2) an equation of the form

v̇1 = −v1 − S ′(F (uI)) · (βv2 + gb1) +
1

2
S ′′(F (uI)) · (βv2 + gb1)

2(3.8)

− 1

6
S ′′′(F (uI)) · (βv2 + gb1)

3 + h.o.t.

Here h.o.t. means the higher order terms. The parameter value I∗ is a possible Hopf bifur-
cation, so we consider small perturbations about it and about the solution u∗. That is, we
take

(3.9) I − I∗ = ε2α, V (t) = εV0(t) + ε2V1(t) + ε3V2(t) + · · · ,

where α is the bifurcation parameter and V = (v1, v2, b1, b2)
T.

The expansions of the coefficients S(k)(F (uI)), k = 1, 2, 3, . . . , with respect to ε take the
form S ′(F (uI)) = (1 + 1

τ )/β + αAε2 + O(ε4), S ′′(F (uI)) = B + O(ε2), and S ′′′(F (uI)) =
D + O(ε2), where A, B, and D are defined by

(3.10) A = − F ′′(u∗)

F ′(u∗)2(β + g + F ′(u∗))
, B = − F ′′(u∗)

F ′(u∗)3
, D =

3F ′′(u∗)2 − F ′(u∗) · F ′′′(u∗)

F ′(u∗)5

(see Appendix A for more details). Let us introduce the following notation: for two vectors
U = (v1, v2, b1, b2)

T and W = (w1, w2, c1, c2)
T we define first the quantities ṽij = βvj + gbi,

w̃ij = βwj + gci, and then, using the scalars from (3.10), we define the operators

L0U =
dU

dt
− A0U, ΛU = −αA (ṽ12, ṽ21, 0, 0)T,

B(U,W ) =
B

2
(ṽ12w̃12, ṽ21w̃21, 0, 0)T, C(U,U,U) = −D

6
(ṽ3

12, ṽ
3
21, 0, 0)T.

Then based on (3.8), (3.9), and (3.10), we write system (3.7) as

L0V0 = ε[B(V0, V0) − L0V1] + ε2[C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2] + O(ε3) .

The construction of the normal form relies on an algorithm that we describe in Appendix A
(see also [4, 5] for a similar approach) and that involves tedious calculations; we present here
only the main result.

Theorem 3.2. Let us assume that conditions (3.3) and (3.4) are true (sufficiently strong
coupling and adaptation-dominated system), and take I∗ ∈ {I∗hb, I∗∗hb}, u∗ ∈ {u∗hb, u∗∗hb} as in
Theorem 3.1. Then the system (2.1) has in the neighborhood of I∗ the normal form

(3.11) ż = Aϕ(I − I∗) z − Lz2z̄,

where z is a complex variable and

L = 4τ2ω2 |ϕ|2
|ψ|2ϕψ

(
β + g

2
+ iβωτ

)
B2 + 2τ2ω2|ϕ|2ϕ

(
2(β + g)

1 + ( gβ + 1)(1 + 1
τ )

B2 −D

)
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with ϕ = β
2 + ig−β

2τω , ψ = 2 − 3g
β + 1

τ

(
5 − 3g

β

)
− 4iω(τ + 1), and A,B,D as in (3.10).

In order to show that I∗hb and I∗∗hb are supercritical Hopf bifurcation points, we need to
check that the coefficient of z2z̄ has negative real part, i.e., that Re(L) > 0.

As we prove in the appendix, for our range of parameters β, g, and τ , the first term in L

has indeed positive real part (see (A.3)); on the other hand, the real part of the second term
(see (A.4)) is larger than

βτ2ω2|ϕ|2B2F ′(u∗)

(
F ′(u∗)F ′′′(u∗)

F ′′(u∗)2
− 2

)
.

Remark 3.1. The inverse of function S defined by (2.2) satisfies the condition

(3.12) F ′(u∗)F ′′′(u∗) > 2F ′′(u∗)2.

Moreover, the inequality (3.12) is true not only for u∗ but for all u ∈ (0, 1).
We use this observation to state our next result.
Theorem 3.3. Let us assume the same hypotheses as in Theorem 3.2. Given at u∗ ∈

{u∗hb, u∗∗hb} the property (3.12) for the gain function S, the input value I∗ is a supercritical
Hopf bifurcation point for system (2.1). The stable limit cycle occurs on the left side of I∗∗hb
(that is, for sufficiently close I < I∗∗hb) and on the right side of I∗hb (I > I∗hb).

Proof. The Hopf bifurcation is supercritical since Re(L) > 0 in the normal form; the
nondegeneracy condition is Re(Aϕ) = Aβ/2 �= 0.

The sign of A is opposite to the sign of F ′′(u∗), so A > 0 for u∗hb and A < 0 for u∗∗hb.
Consequently the sign of Re(Aϕ(I − I∗)) that shows the direction of limit cycle bifurcation is
positive for I > I∗hb and I < I∗∗hb .

Remark 3.2. It is possible to obtain supercritical Hopf bifurcation points for other types of
gain-function than (3.12), as long as Re(L) has positive value. When (3.12) is not valid, the
sign of Re(L) will be computed directly from the definition formula of L.

3.2. Antiphase oscillations. The stable limit cycle that exists in the neighborhood of
the bifurcation points I∗hb (for I > I∗hb) and I∗∗hb (for I < I∗∗hb ) is a periodic solution L1(t) =
(u1(t), u2(t), a1(t), a2(t)) of period, say, T . Due to the symmetry of the system (2.1) with
respect to the group Γ = {14, γ} where 14 is the unitary 4-by-4 matrix and

γ =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

L2(t) = γL1(t) = (u2(t), u1(t), a2(t), a1(t)) is also a periodic solution for (2.1). L2 results
automatically from solution L1 by relabeling the two network’s populations. Moreover, it
belongs to the same neighborhood of the equilibrium point as L1 does.

Since the limit cycle born through the Hopf bifurcation is unique, the corresponding phase
space trajectories of L1 and L2 coincide. Therefore, there exists a phase shift α0 ∈ [0, T ) such
that L2(t) = L1(t + α0). This implies u2(t) = u1(t + α0) and u1(t) = u2(t + α0), i.e.,
u1(t) = u1(t + 2α0) for all real t [12]. The phase shift α0 needs to satisfy α0 = kT/2 with k
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an integer, so k is either k = 0 or k = 1. If k = 0, the two populations in the network will
oscillate in synchrony. If k = 1, we have u2(t) = u1(t + T/2) and a2(t) = a1(t + T/2), which
means an antiphase oscillation.

Let us assume for the moment that k = 0. Then U(t) = (u1(t), u1(t), a1(t), a1(t)) is a
periodic solution of (2.1), and, as a consequence, (u1(t), a1(t)) is a periodic solution of the
two-dimensional system

u̇1 = −u1 + S(I − βu1 − ga1), τ ȧ1 = −a1 + u1.

This contradicts Bendixon’s criterion: the expression

∂

∂u1
(−u1 + S(I − βu1 − ga1)) +

∂

∂a1

(
−a1

τ
+

u1

τ

)
= −1 − βS ′(I − βu1 − ga1) −

1

τ

is always negative, so our initial assumption should be false.
Excluding the first case, the limit cycle has to be an antiphase solution of (2.1): the two

populations compete indeed for the active state (see, for example, Figure 3B or 3D).
We state our conclusion in the following theorem.
Theorem 3.4. Let us assume that conditions (3.3) and (3.4) are true and the coefficient

L in the normal form (3.11) has positive real part. Then the stable limit cycle obtained at
the supercritical Hopf bifurcation (as I crosses either I∗hb or I∗∗hb) corresponds to an antiphase
oscillation: the limit cycle of period T satisfies u2(t) = u1(t + T/2) and a2(t) = a1(t + T/2)
for any real t.

3.3. Multiple equilibria for large enough inhibition. Our local analysis shows how stable
oscillations occur in system (2.1)—through a Hopf bifurcation. The uniform equilibrium point
eI has four eigenvalues, λ1 and λ2 with negative real part independent of I (Re(λ1,2) < 0), and
λ3 and λ4 that can cross the imaginary axis. Besides Hopf, another type of local bifurcation
appears in (2.1) when one of the eigenvalues λ3, λ4 takes zero value, that is, when F ′(uI) =
β − g. Because of the system’s symmetry we expect it to be a pitchfork bifurcation.

Numerical simulations of system (2.1) reveal indeed the existence of additional equilibrium
points. However, they exist for stronger (Figure 3G, β = 1.1) but not for weaker inhibition
(Figure 3I, β = 0.75). We explain analytically how that happens.

Theorem 3.5. (i) If β − g < 1/S′(θ), then the dynamical system (2.1) has a unique equi-
librium point for all real I and this is eI = (uI , uI , uI , uI).

(ii) For strong inhibition,

(3.13) β − g > 1/S ′(θ),

there are exactly two values, say, u∗pf , u
∗∗
pf ∈ (0, 1), such that u∗pf < u0 < u∗∗pf and

(3.14) F ′(u∗pf ) = F ′(u∗∗pf ) = β − g.

At I∗pf = H(u∗pf ) and I∗∗pf = H(u∗∗pf ) defined by (3.1), the equilibrium point eI has a zero
eigenvalue.

Proof. The condition that characterizes the equilibrium points of (2.1) is equivalent to
G(u1) = G(u2) = I−β(u1 +u2), where we define G by G(u) = F (u)+(g−β)u, u ∈ (0, 1). We
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have limu→0 G(u) = −∞, limu→1 G(u) = ∞, and G ′(u) = F ′(u) + g − β ≥ F ′(u0) + g − β =
1/S ′(θ) + g − β. Obviously, based on hypothesis (i), we have G ′(u) > 0. Therefore, G is a
monotonically increasing function; so it is injective, and the conclusion follows immediately.
Statement (ii) results from the shape of F ′.

By constructing the normal form of the system around the bifurcation point I∗pf or I∗∗pf ,
we prove the existence of a subcritical pitchfork bifurcation. Therefore, in the neighborhood
of I∗pf or I∗∗pf the system (2.1) has multiple (three) equilibria. However, since the pitchfork
is subcritical, the two newly born equilibrium points are unstable. In the four-dimensional
eigenspace they actually possess two unstable modes (see Remark 3.4).

In some cases these nonuniform equilibria (having u1 �= u2) might change their stability
for I between I∗pf and I∗∗pf . Depending on the initial condition a trajectory will be attracted
either to the fixed point with u1 > u2 or to that with u1 < u2, so one population is dominant
and the other is suppressed forever. We call this type of dynamics in (2.1) winner-take-all
behavior. The issue of the existence of the winner-take-all regime will be discussed separately
in section 4.2. In this section we focus only on the mechanism that introduces additional
equilibrium points to system (2.1).

Theorem 3.6. Let us assume β/(1 + 1
τ ) > β − g > 1/S ′(θ) and take I◦ ∈ {I∗pf , I∗∗pf},

u◦ ∈ {u∗pf , u∗∗pf} as in (3.14), I◦ = F (u◦) + (β + g)u◦. Then the system (2.1) has in the
neighborhood of I◦ the normal form

(3.15) ż =
(I − I◦)F ′′(u◦)

2β[g(τ + 1) − β]
z +

(β − g)2

6[g(τ + 1) − β]

(
F ′(u◦)F ′′′(u◦) − 3

2
F ′′(u◦)2 +

3g

2β

)
z3.

Moreover, if the gain function S satisfies (3.12) at u◦ ∈ {u∗pf , u∗∗pf}, then I◦ is a subcritical
pitchfork bifurcation point for the system (2.1). Two additional unstable equilibrium points
occur on the left side of I∗∗pf (I < I∗∗pf ) and on the right side of I∗pf (I > I∗pf ).

Proof. The construction of the normal form is sketched in Appendix B. Since (3.12)
is true, the coefficient of z3 in the normal form is positive and the pitchfork is subcritical.
Additional equilibrium points appear for (I−I◦)F ′′(u◦) < 0 with F ′′(u◦) negative at u∗pf and
positive at u∗∗pf .

Remark 3.3. In case of adaptation-dominated systems (when condition (3.3) or, equiva-
lently, β/(1 + 1

τ ) > β − g is true) we conclude the following: (1) for weak inhibition (β − g <
β/(1 + 1

τ ) < 1/S′(θ)), system (2.1) has a unique equilibrium point eI which is asymptotically
stable for all I; (2) for some intermediate value of inhibition (β − g < 1/S′(θ) < β/(1 + 1

τ )),
the system still has a unique equilibrium point for all I but this becomes unstable in the inter-
val (I∗hb, I

∗∗
hb ). However in order to obtain this case we need to properly adjust the maximum

gain to the adaptation parameters (i.e., we need S ′(θ) > 1/(τg)); (3) for strong inhibition
( 1/S′(θ) < β−g < β/(1+ 1

τ )), additional equilibrium points occur in system (2.1) for I > I∗pf
and I < I∗∗pf .

Remark 3.4. In case of strong inhibition and adaptation-dominated system we obtain u∗hb <
u∗pf < u0 < u∗∗pf < u∗∗hb and

I∗hb < I∗pf < I0 < I∗∗pf < I∗∗hb .

(Note that I0 = H(u0) is independent of β.) At each I between I∗hb and I∗∗hb , the equilibrium
point eI has at least one eigenvalue of positive real part. In fact for I ∈ (I∗hb, I

∗
pf )∪ (I∗∗hb , I

∗∗
pf ),
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Figure 4. Dynamical regimes in system (2.1) as inhibition strength β and stimulus strength I vary (other
parameters are fixed: g = 0.5, τ = 100, r = 10, θ = 0.2). To the left of curve Ihb (solid line) the system has a
unique stable equilibrium, and this satisfies u1 = u2 (simultaneous activity); in the region between curves Ihb
and Iw (dashed line) the system oscillates; then to the right of Iw the system has a winner-take-all behavior
(two stable and one unstable equilibria). The curve Ipf (dotted line) indicates a transition from one equilibrium
to multiple equilibria in (2.1). While the attractor’s type (limit cycle) does not change between Ihb and Iw, the
number of equilibria does: we find one unstable equilibrium between Ihb, Ipf and three unstable equilibria between

Ipf , Iw. The turning points of curves Ihb, Ipf , and Iw are obtained at β = 1+1/τ
S ′(θ) = 0.404, β = g+1/S ′(θ) = 0.9,

and βwta = 1.0387, respectively.

it has exactly two eigenvalues with positive real part and for I ∈ (I∗pf , I
∗∗
pf ) it has only one

eigenvalue with positive real part. Due to the multidimensionality of the eigenspace, at I∗pf
and I∗∗pf the equilibrium eI does not actually change its stability (even if an eigenvalue takes
zero value). Instead two new (nonuniform) equilibria are born (e.g., Figure 3G). The two
nonuniform equilibria inherit the number of unstable modes from their “parent”–fixed point,
which means they have exactly two unstable modes.

As we see, condition (3.13) is necessary but not sufficient to obtain a winner-take-all
behavior in system (2.1). In section 4.2, equations (4.11) and (4.10), we will determine the
minimum value of β for which winner-take-all exists (βwta) and the corresponding values I∗w,
I∗∗w where transition from oscillation to winner-take-all dynamics takes place. We summarize
all these results in Figure 4 by drawing the bifurcation diagram in the parameter plane (I, β).

4. Release, escape, and winner-take-all mechanisms in neuronal competition models.
As we mentioned in section 1, some common features are observed for a large class of neuronal
competition models based on mutual inhibition and slow negative feedback process. An im-
portant example is the nonmonotonic dependency of the rivalry-oscillation’s period T on the
stimulus strength I: in a range of small values for I the period increases with input strength;
however, there exists another range for I, at larger values, where the period decreases with
stimulus strength. These two dynamical regimes are usually separated by another one that is
nonoscillatory; it occurs for sufficiently strong inhibition and corresponds to winner-take-all
behavior (see Figures 3F and 3H).

The goal of this section is to characterize the underlying mechanisms of the above dynam-
ical scheme. We aim to understand what causes the two opposite rivalry dynamics: as we will
see, a release kind of mechanism is associated with the increasing branch of the T versus I
curve (region IV in Figure 3F); on the other hand, for the decreasing branch of the I-T curve
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(region II in Figure 3F), an escape mechanim is responsible.

The terms release and escape were previously introduced by [36] for inhibition-mediated
rhythmic patterns in thalamic model neurons and then extended and refined by [32] for Morris–
Lecar equations. Most cases include an autocatalytic process either intrinsic by voltage-gated
persistent inward currents or synaptic by intrapopulation recurrent excitation. In neuronal
competition model (2.1) mutual inhibition plays the role of autocatalysis: one population
inhibits the network partner that inhibited it; thus the combination of these two negative
factors has a positive effect on its own activity. Rhythmicity is obtained due to a fast positive
feedback (disinhibition) and a slow negative feedback process. The slow negative feedback
process can be either an intrinsic property of the neuronal populations (e.g., spike frequency
adaptation as in (2.1)) or a property of the inhibitory connections between them (e.g., synaptic
depression). A simplified model similar to (2.1) but with synaptic depression and a Heaviside
step-gain function was analytically investigated in [33]. Numerical results for models with
synaptic depression and smooth sigmoid gain functions were also reported in [33] and [31].

In the context of neuronal competition models we define release and escape mechanisms
as follows: The two populations in the network oscillate in antiphase competing for the active
state; for the dominant population of variable, say, u1, the net input I−βu2−ga1 decreases as
the slow negative feedback accumulates; on the contrary, for the suppressed population u2 the
feedback recovers (decays) so the net input I−βu1−ga2 increases. However, since the function
S is highly nonlinear, equal changes in the net input I−βuj−gak of both populations can lead
to drastically different changes in the corresponding effective response S(I −βuj − gak). This
transformation has a direct influence on the variation of u1 and u2. The switch in dominance
is due either to a significant, more abrupt change (decrease) in the response to an input to the
dominant population, or, on the contrary, to a significant change (increase) in the response
to an input to the suppressed population. In the first case the dominant population loses
control, its activity drops, and it no longer suppresses its competitor, which becomes active.
We call this mechanism release. In the latter case, when the input-output function S of the
suppressed population changes faster, this population regains control, its activity rises, and it
forces its competitor into the inhibited state. We call this mechanism escape.

Intuitively, escape occurs for higher stimulus ranges than release. Therefore, we expect
that an escape (release) mechanism underlies the dynamics in region II (region IV) in Figure 3F
with decreasing (increasing) I-T curve. For large values of I the gain function for the dominant
population is relatively constant and close to 1 while that for the suppressed population falls
in the interval where it is steeper. For example, let us consider the fast plane (u1, u2) and
assume that u1 is ON and u2 is OFF; then the dominance switching point is on the shallow
part of the active population nullcline u1 = S(I − βu2 − ga1) and on the steeper part of the
down population nullcline u2 = S(I − βu1 − ga2) (see the animation 70584 01.gif [3.7MB]
in Appendix C). A larger variation in u2 than in u1 is expected, and that corresponds to
the escape mechanism. For small values of I the gain function for the dominant population
is steeper (the steeper part of active population nullcline u1 = S(I − βu2 − ga1)), while the
gain function for the suppressed population is relatively constant and close to 0 (the shallow
part of the down population nullcline u2 = S(I−βu1 − ga2))—see the animation 70584 02.gif
[3.8MB] in Appendix C. That is what we call release.

For sufficiently large inhibition β, at intermediate I the effective response to an input to

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_02.gif
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both populations might end up being relatively constant: closer to 1 for the active population
and closer to 0 for the down population. The switching does not take place anymore; instead
a winner-take-all dynamics is obtained.

In the following we investigate analytically how the period of oscillations for system (2.1)
depends on the input strength and show that the increasing (decreasing) branch of the I-T
curve is associated with the release (escape) mechanism. Our analysis is done in two steps:
first, in section 4.1, we consider the limiting case sigmoid function S(x) = Heav(x − θ) such
that S(x) = 0 if x < θ and S(x) = 1 if x > θ; the function does not obey the hypotheses in
section 2, but it provides a useful example where escape, release, and winner-take-all dynamics
are easily characterized. Then in section 4.2 we return to the case of smooth sigmoid func-
tion and describe the notions defined above in this more general context. We find a precise
mathematical characterization for the minimum value of β and then for the corresponding
input values, say, I∗w and I∗∗w , where the winner-take-all regime appears. In the absence of a
winner-take-all regime we provide a mathematical definition for the transition between escape
and release.

4.1. A relevant example: The Heaviside step function. The choice of S(x) = Heav(x−θ)
allows us to solve completely for the intervals of the stimulus strength I where oscillations
and winner-take-all dynamics exist. For system (2.1) with a Heaviside step function, there are
only four possible equilibrium points: (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), and (0, 0, 0, 0). Here
(1, 1, 1, 1) and (0, 0, 0, 0) correspond respectively to the simultaneously high and low activity
states observed in numerical simulations in regions I and V of Figure 3F. Oscillations can
occur only between the states (u1, u2) = (1, 0) and (u1, u2) = (0, 1) in which one population is
dominant and the other one is suppressed. Let us now determine the necessary and sufficient
conditions for the oscillations to exist. The idea used in our analysis is similar to that in
[17] and [33].

In the fast plane, the nullclines of u1 and u2 consist in two constant plateaus of zero
and unit value discontinuously connected at a “threshold” point (I − (θ + ga1))/β and
(I − (θ + ga2))/β, respectively (Figure 5A). During oscillation, due to the change in slow
variables a1 and a2 these thresholds move along the vertical and horizontal axes. For example,
assuming u1 = 1, u2 = 0, the slow equations become τ ȧ1 = −a1 + 1 > 0 and τ ȧ2 = −a2 < 0;
thus the u1-nullcline moves down while the u2-nullcline moves to the right. If these nullclines
slide enough and the thresholds cross either 0 (for the u1-nullcline) or 1 (for the u2-nullcline),
i.e., either a1J = (I − θ)/g or a2J = (I − (θ + β))/g are reached, then the equilibrium point
(u1, u2) = (1, 0) disappears and the system will be attracted to (u1, u2) = (0, 1). The switch
takes place and the slow equations change to τ ȧ1 = −a1 < 0, τ ȧ2 = −a2 +1 > 0, now pushing
the nullclines in opposite directions. As we explain below, depending on which of the two
jumping values a1J or a2J is reached first, a release or an escape mechanism will underlie the
oscillation.

We note that for an oscillatory solution, u1+u2 = 1 always, and so τ(ȧ1+ȧ2) = 1−(a1+a2).
Asymptotically, the slow dynamics will occur along the diagonal a1 +a2 = 1 of the unit square
(Figure 5D or 5F). The positions the horizontal line a2 = (I − (θ+β))/g and the vertical line
a1 = (I − θ)/g have relative to the unit square is important when the trajectory points to the
lower-right corner; on the other hand, when the trajectory points to the upper-left corner, the
position of vertical line a1 = (I − (θ + β))/g and horizontal line a2 = (I − θ)/g will matter.
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Figure 5. System (2.1)’s dynamics for large inhibition strength (β/g > 1) and Heaviside step function.
(A) Nullclines in the plane of fast variables (u1, u2); (B–H) System’s dynamics in the slow variables plane
(a1, a2) for: (B) I ≥ θ+β+g; (C) θ+β+g/2 ≤ I < θ+β+g; (D) θ+β < I < θ+β+g/2; (E) θ+g ≤ I ≤ θ+β;
(F) θ + g/2 < I < θ + g; (G) θ ≤ I ≤ θ + g/2; (H) I < θ.
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Therefore, in the slow plane (a1, a2) (see Figure 5B–5H) we are interested in the intersection
of the unit square (grey) with the square defined by the possible jumping values (I−(θ+β))/g
(blue) and (I − θ)/g (red). If the red line is reached, then the active cell (uj = 1) becomes
suddently inactive (uj = 0), allowing its competitor to go up. That is why we call this case a
release mechanism; otherwise, if the blue line is reached first, then the suppressed cell becomes
suddenly active, forcing its competitor to go down. That is the escape mechanism.

As parameter I decreases, the blue-red square slides down along the first diagonal, starts to
intersect the grey unit square, and then leaves it (Figure 5B–5H). The way those two squares
intersect determines the system’s dynamics, so we need to take into account the relative size
of their sides: 1 and β/g.

Theorem 4.1 (five modes of behavior for large enough inhibition strength). Let us assume
that β/g > 1. The following five dynamical regimes exist for the neuronal competition model
(2.1) with S(x) = Heav(x− θ).

(i) If I ≥ θ + β + g/2, then the system’s attractor is the simultaneously high activity state
u1 = u2 = 1.

(ii) If θ+β < I < θ+β+g/2, then the system oscillates between the states (u1, u2) = (1, 0)
and (u1, u2) = (0, 1) due to an escape mechanism. The period of oscillations decreases with I
and satisfies

(4.1) Tescape = 2τ ln

(
g

I − (θ + β)
− 1

)
.

(iii) If θ+ g ≤ I ≤ θ+β, then the system is in a winner-take-all regime with fast variables
either (1, 0) or (0, 1) depending on the initial condition choice.

(iv) If θ + g/2 < I < θ + g, then the system oscillates between the states (u1, u2) = (1, 0)
and (u1, u2) = (0, 1) due to a release mechanism. The period of oscillations increases with I
and satisfies

(4.2) Trelease = 2τ ln

(
g

θ + g − I
− 1

)
.

(v) If I ≤ θ + g/2, then the system’s attractor is the simultaneously low activity state
u1 = u2 = 0.

Proof. Since β/g > 1, there are exactly seven relative positions of the blue-red square to
the unit square that lead to conclusions (i) to (v).

(i) For 1 ≤ (I − (θ + β))/g (Figure 5B) both a1, a2 are smaller than (I − (θ + β))/g, so
I − βui − gak ≥ I − β − g ≥ θ, and we always have u1 = u2 = 1.

If 1/2 ≤ (I − (θ + β))/g < 1 < (I − θ)/g (Figure 5C), let us assume u1 = 1, u2 = 0, and
a1 + a2 = 1 as initial values. The slow variable a1 increases while a2 decreases; in this case
only a2 can cross the horizontal blue line, producing the jump of u2 from 0 to 1. However,
just after the jump, in the equation of u1 we have I − βu2 − ga1 = I − β − g(1 − a2J) =
2(I− (β+ θ))−g+ θ ≥ θ, which keeps u1 at its value 1. Therefore, the point will be attracted
to the corner (a1, a2) = (1, 1) and the oscillation dies.

(ii) For 0 < (I − (θ + β))/g < 1/2 < 1 < (I − θ)/g (Figure 5D), a2 will first cross the blue
line and induce a sudden change in u2. Then in the u1-equation we obtain I − βu2 − ga1 =
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I − β − g(1 − a2J) = 2(I − (β + θ)) − g + θ < θ, which forces u1 to take zero value. The fast
system switches from (1, 0) to (0, 1) and the slow dynamics changes its direction of movement
along the upper-left–lower-right diagonal of the unit square. The change I − βu1 − ga2 =
I − ga2 ≥ I − g ≥ θ does not affect the new value u2 = 1; oscillation exists indeed and its
projection on the slow plane is the segment defined by the intersection of the unit square’s
secondary diagonal with the two blue lines. When I decreases, the length of this segment
increases, so it will take longer to go from one endpoint to the other. We expect the period T
to increase as I decreases. Indeed, at the jumping point, the slow variable for the suppressed
population takes the value af := a2J = (I − (θ+ β))/g; however, just after the previous jump
it was ai := 1−a1J = 1− (I− (θ+β))/g. Therefore, from τ ȧ2 = −a2 we compute the solution
a(t) = aie

−t/τ , t ∈ (0, T/2). The period T of oscillation is T = 2τ ln(ai/af ), i.e., exactly (4.1).
Moreover, dT/dI < 0, so T decreases with I.

(iii) By choosing I such that (I − (θ + β))/g < 0 < 1 ≤ (I − θ)/g, the unit square
falls completely inside the blue-red square (Figure 5E). Starting at u1 = 1, u2 = 0 we have
I − βu2 − ga1 = I − ga1 ≥ I − g ≥ θ and I − βu1 − ga2 = I − β − ga2 ≤ I − β < θ; the slow
variables a1 and a2 continue to increase, respectively, decrease, approaching the lower-right
corner of the unit square, and a winner-take-all state is achieved. For u1 = 0, u2 = 1, the
point (a1, a2) will be attracted to the upper-left corner.

(iv) Decreasing I even more, we enter the region (I−(θ+β))/g < 0 < 1/2 < (I−θ)/g < 1
(Figure 5F). Here the threshold is crossed at the red line and (when u1 = 1, u2 = 0) u1 jumps
from 1 to 0. In the u2-equation, the expression I − βu1 − ga2 becomes I − g(1 − a1J) =
2(I − θ)− g + θ ≥ θ, which leads to u2 = 1. That is the release mechanism. In the slow plane
(a1, a2) the point changes its direction of movement; the oscillation occurs along the segment
defined by the intersection of the unit square’s secondary diagonal with the two red lines. The
length of this segment decreases as I decreases; it takes less time to go from one endpoint
to the other, so we expect the period T to decrease. Indeed, for the release mechanism,
af := a1J = (I − θ)/g, with value just after the previous jump ai := 1 − a2J = 1 − (I − θ)/g.
The slow differential equation is now τ ȧ1 = 1−a1, that is, a(t) = 1−(1−ai)e

−t/τ , t ∈ (0, T/2).
The period T of oscillation satisfies T = 2τ ln((1−ai)/(1−af )), or (4.2). Obviously dT/dI > 0.

(v) Oscillations cannot exist anymore for (I−(θ+β))/g < 0 ≤ (I−θ)/g ≤ 1/2 (Figure 5G).
Say, again, that we have u1 = 1, u2 = 0: only a1 can reach the threshold (red) line for u1 to
become inactive. However, just after the jump, in the u2-equation the net input I−βu1−ga2 =
I − g(1 − a1J) = 2(I − θ) − g + θ is still less than θ, and it keeps u2 at zero. Both slow
variables start to decrease approaching the corner (a1, a2) = (0, 0). The oscillation dies, and
the fast system has (0, 0) as a single attractor. For even smaller values of input strength,
(I − (θ + β))/g < (I − θ)/g < 0 (Figure 5H), it is true that I − βui − gak ≤ I < θ and
u1 = u2 = 0.

Remark 4.1. We note that in the escape regime, T → 0 as I → θ+β + g/2 and T → ∞ as
I → θ + β. Similarly, in the release regime, T → 0 as I → θ + g/2 and T → ∞ as I → θ + g.

Case (iii) in Theorem 4.1 (case (E) in Figure 5) is not possible if the side of the blue-red
square is smaller than the unit. Therefore, the winner-take-all dynamics is eliminated. On
the other hand, the blue-red square can lie completely inside the unit square. Then we need
to distinguish between two cases: the point moving along the secondary diagonal of the unit
square may first reach the blue line (Figure 6A) or the red line (Figure 6B).
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Figure 6. (A) Escape and (B) release mechanisms for low inhibition strength (β/g < 1) in system (2.1)
with Heaviside step function.

Theorem 4.2 (no winner-take-all regime for low inhibition strength). Let us assume that β/g
< 1. Then the neuronal competition model (2.1) with S(x) = Heav(x − θ) exhibits only four
dynamical regimes.

If I ≥ θ + β + g/2, then the system’s attractor is the high activity state u1 = u2 = 1.
Similarly, if I ≤ θ + g/2, the system’s attractor is the low activity state u1 = u2 = 0.

For intermediate values of input strength, the system oscillates between the states (u1, u2)
= (1, 0) and (u1, u2) = (0, 1). If θ + (β + g)/2 < I < θ + β + g/2, oscillations occur due
to an escape mechanism; the period T decreases with I and satisfies (4.1). If θ + g/2 < I <
θ + (β + g)/2, then a release mechanism underlies the oscillations and T increases with I
according to (4.2).

Moreover, at ITmax = θ + (β + g)/2 the system has maximum oscillation period

Tmax = 2τ ln

(
1 + β/g

1 − β/g

)
.

Proof. Let us assume again initial conditions u1 = 1, u2 = 0, and a1 + a2 = 1; therefore,
a1 increases and a2 decreases. In order to first reach the blue line (Figure 6A), the inequality
1− (I − (θ + β))/g < (I − θ)/g, i.e., I > ITmax, must be true. When the blue line is reached,
the down variable u2 switches from 0 to 1. If (I − (θ + β))/g < 1/2, the net input for u1

becomes Ne := I−βu2−ga1 = I−β−g(1−a2J) = 2(I−β−θ)−g+θ < θ, so u1 changes to 0
and oscillation occurs due to an escape mechanism. If (I− (θ+β))/g ≥ 1/2, then Ne ≥ θ and
u1 remains 1; the fast system has (1, 1) as an attractor. Similar arguments are used for the
release mechanism; the condition for intersection with the red line (Figure 6B) is equivalent
to the inequality 1 − (I − θ)/g > (I − (θ + β))/g, i.e., I < ITmax. For both (4.1) and (4.2),
T → Tmax as I → θ + (β + g)/2. Also, Tescape → 0 as I → θ + β + g/2 and Trelease → 0 as
I → θ + g/2.

4.2. Global features of the competition model with smooth sigmoid gain function.
Numerical simulations of system (2.1) with smooth gain function S indicate that the limit
cycle born through the Hopf bifurcation as in section 3 takes a relaxation-oscillator form just
beyond the bifurcation (Figure 3B and 3D). That is, because of the two time-scales involved
in the system, variables u1 and u2 evolve much faster than a1 and a2 (τ � 1). We use this
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observation to describe for (2.1) the relaxation-oscillator solution in the singular limit 1/τ = 0.
In the plane (a1, a2) of slow variables we construct the curve of “jumping” points from the
dominant to the suppressed state of each population, and back. This curve is the equivalent
of the blue-red square from the case of Heaviside step function, and similarly it consists of two
arcs associated with an escape and release mechanism, respectively. Then we give analytical
conditions for the winner-take-all regime to exist.

4.2.1. The singular relaxation-oscillator solution. For large values of τ let us consider the
slow time s = εt (ε = 1/τ ; ′ = d/ds) and rewrite system (2.1) as εu′1 = −u1+S(I−βu2−ga1),
εu′2 = −u2 + S(I − βu1 − ga2), a

′
1 = −a1 + u1, a

′
2 = −a2 + u2.

In the singular perturbation limit ε = 0 any solution will belong to the slow manifold Σ
defined by −u1 + S(I − βu2 − ga1) = 0, −u2 + S(I − βu1 − ga2) = 0 or, based on the inverse
property of S (S−1 = F ),

Σ =

{
(u1, u2, a1, a2) : u1, u2 ∈ (0, 1), a1, a2 ∈ R, and(4.3)

u2 = S(I − βu1 − ga2), a1 =
1

g
[I − F (u1) − βS(I − βu1 − ga2)]

}
.

The surface Σ is multivalued and can be visualized by plotting a1 as a function of u1 and a2

(Figure 7).
Then the slow dynamics is according to equations a′1 = −a1 + ũ1(a1, a2), a′2 = −a2 +

ũ2(a1, a2), where (ũ1, ũ2, a1, a2) ∈ Σ. The “slow” nullclines are characterized by additional
conditions: a1 = u1 for a1-nullcline (N1) and a2 = u2 for a2-nullcline (N2); geometrically these
are two curves situated on the surface Σ and defined by

N1(a
′
1 = 0) =

{
(u1, u2, a1, a2) : u1 = a1, u2 = S(I − βa1 − ga2(a1)),(4.4)

a2 =
1

g

[
I − βa1 − F

(
I − ga1 − F (a1)

β

)]
with a1 ∈ (α1, α2)

}

and

N2(a
′
2 = 0) =

{
(u1, u2, a1, a2) : u1 = S(I − βa2 − ga1(a2)), u2 = a2,(4.5)

a1 =
1

g

[
I − βa2 − F

(
I − ga2 − F (a2)

β

)]
with a2 ∈ (α1, α2)

}
.

Here α1, α2 ∈ (0, 1) are the unique solutions of the equations F (α1) + gα1 = I − β and
F (α2) + gα2 = I, respectively.

The equilibrium points are at the nullclines’ intersection, which means a1 = u1 and a2 = u2

simultaneously on Σ. They are characterized by the conditions

(4.6) N1 ∩ N2 : u1 = a1, u2 = a2, F (a1) + ga1 + βa2 = F (a2) + ga2 + βa1 = I.

We recall from section 3 that if β > (1+ 1
τ )/S ′(θ) (which in the limit case ε = 0 corresponds

to β > 1/S ′(θ)), there exist two values of input parameter I∗hb < I∗∗hb such that the system has
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Figure 7. Projection of the slow manifold Σ on the space (u1, a1, a2). System (2.1)’s parameters are
β = 1.1, g = 0.5, θ = 0.2, r = 10, and I = 1.5 (A–C), respectively, I = 1 (D–F). The curve SN of saddle-nodes
(jumping points) is represented in blue-red (C, F). Nullclines N1 (magenta) and N2 (black curve) intersect in
three points for (B) I = 1.5 and (E) I = 1. However, either the equilibrium points can all lie on the middle
branch of Σ (A), that is, inside the curve of saddle-nodes (C), or two equilibrium points can move to the lateral
branches, outside of SN (D, F).

a unique stable equilibrium point for I ∈ (−∞, I∗hb) ∪ (I∗∗hb ,∞). This equilibrium point takes
the form eI = (uI , uI , uI , uI) with uI ∈ (0, 1), F (uI)+ (β+ g)uI = I, and it becomes unstable
at I∗hb and I∗∗hb ; a stable limit cycle appears for I > I∗hb and I < I∗∗hb . The critical parameter
values are defined by I∗hb = F (u∗hb) + (β + g)u∗hb and I∗∗hb = F (u∗∗hb) + (β + g)u∗∗hb with u∗hb, u

∗∗
hb

according to (3.5). Again, in the limit case ε = 0, condition (3.5) becomes

(4.7) F ′(u∗hb) = F ′(u∗∗hb) = β,
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and obviously we have F ′(uI) < β for each I ∈ (I∗hb, I
∗∗
hb ).

Moreover, if β − g > 1/S ′(θ), two additional equilibrium points occur for I > I∗pf and
I < I∗∗pf through a pitchfork bifurcation. However, at least in the neighborhood of I∗pf or
I∗∗pf , these equilibrium points are unstable. Their coordinates (u1p, u2p) satisfy (4.6), so either
u1p < uI < u2p or u1p > uI > u2p. In addition, they are close to uI for all I sufficiently close
to I∗pf or I∗∗pf ; in conclusion, at least in a small region, F ′(u1p) < β and F ′(u2p) < β.

In Figure 7 we plotted the projection on the three-dimensional space (u1, a1, a2) of the
slow manifold Σ and the nullclines N1 and N2 (N1 is colored in magenta and N2 is colored in
black; because Σ is defined over the full range −∞ to ∞ with respect to a1 and a2, we plot
only part of it). All plots are done for S as in (2.2), β = 1.1, g = 0.5, r = 10, θ = 0.2, and two
values of input strength, I = 1.5 (Figure 7A–C) and I = 1 (Figure 7D–F). For these values of
parameters we have I∗pf = 0.4064 and I∗∗pf = 1.5936, so at both I = 1.5 and I = 1 the system
has three equilibrium points; nullclines intersect three times and the middle intersection point
is exactly eI . We note that all equilibrium points are unstable at I = 1.5 while two of them
become stable at I = 1 (see also Figure 3G).

On the surface Σ we have ∂u1
∂a1

= g/[β2S ′(I − βu1 − ga2) − F ′(u1)] and ∂u1
∂a2

= −βg/[β2 −
F ′(u1)/S

′(I − βu1 − ga2)], i.e.,

∂u1

∂a1
=

gF ′(u2)

β2 − F ′(u1)F ′(u2)
and

∂u1

∂a2
= − βg

β2 − F ′(u1)F ′(u2)
.

For an initial condition (u1, u2, a1, a2) with u1 sufficiently large (close to 1) we have ∂u1
∂a1

< 0

and ∂u1
∂a2

> 0; therefore, a simultaneous increase in a1 and decrease in a2 lead to a decrease

in u1. Similarly, for a choice of u1 sufficiently low (close to 0), ∂u1
∂a1

< 0, ∂u1
∂a2

> 0, and a
simultaneous decrease in a1 and increase in a2 lead to an increase in u1. On the other hand,
the limit cycle exists for some I ∈ (I∗hb, I

∗∗
hb ). Since here eI ∈ Σ with F ′(uI) < β, we have

∂u1
∂a1

> 0 and ∂u1
∂a2

< 0 in a neighborhood of this equilibrium point; the behavior of u1 with
respect to a1 and a2 is opposite that previously described.

Therefore, relative to the plane (u1, a1) the surface Σ has a cubic-like shape: its left
and right branches decrease with u1 while the middle branch increases. The curve of lower
(u1 < u2) and upper (u1 > u2) knees on Σ is defined by F ′(u1)F

′(u2) = β2 (blue-red curve
in Figure 7C and 7F). As we show in the following, when the trajectory on surface Σ reaches
the curve of knees on its upper side, the point will jump from the right branch of Σ to its
left branch. Similarly, when it reaches the lower side of the curve of knees, the point will
jump from the left to the right branch of Σ. In the plane of fast variables (u1, u2) the curve
of knees corresponds to a saddle-node bifurcation (a node approaching a saddle then merging
with it and disappearing—see the animations 70584 01.gif [3.7MB] and 70584 02.gif [3.8MB]
in Appendix C). For this reason we also call it the curve of saddle-nodes (SN) or the curve
of jumping points. It is defined by the equations

(4.8) SN : F ′(u1J)F ′(u2J) = β2, a1J =
1

g
[I −F (u1J)−βu2J ], a2J =

1

g
[I −F (u2J)−βu1J ].

We do not prove here the existence of the relaxation-oscillator singular solution. We aim
only to provide the reader with the intuition for how oscillations occur in the competition

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_02.gif
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model (2.1) if a smooth sigmoid is taken as a gain function. Thus, if the oscillations exist
and, for example, u1 is dominant and u2 is suppressed (u1 > u2), we have −a1 + u1 > 0,
−a2 + u2 < 0, so a1 increases and a2 decreases. They push u1 down and the point moves
on the trajectory until it reaches SN at an upper knee U of coordinates (u1J , u2J); here the
derivatives ∂u1

∂a1
and ∂u1

∂a2
become infinite, so u1 jumps from the upper to the lower branch of

Σ (Figure 8A–8B). On the lower branch (u1 < u2) we have −a1 + u1 < 0 and −a2 + u2 > 0,
so u1 increases and the point will move due to the decrease of a1 and increase of a2 until it
touches SN at L. At L the point jumps up to the right branch of Σ. The projection of the
limit cycle on the slow plane (a1, a2) is a closed curve that touches the projection of SN at
two points (a1J , a2J) and (a2J , a1J) symmetric to the line a1 = a2 (Figures 8C and 9B).

4.2.2. Release, escape, and winner-take-all in the competition model with smooth
sigmoid gain function. Analogous to our analysis in section 4.1 we consider in the following
the projection of the curve of jumping points SN on the slow plane (a1, a2). As mentioned
above, if the up-to-down jump takes place at (a1J , a2J), then the down-to-up jump is at
(a2J , a1J); so the projection is a closed curve symmetric to the diagonal a1 = a2.

We consider in (a1, a2) the curve Γ0 of equations

A1 = −1

g
[F (u1J) + βu2J ], A2 = −1

g
[F (u2J) + βu1J ]

with F ′(u1J)F ′(u2J) = β2. Then from (4.8) we have

a1J = A1 +
I

g
, a2J = A2 +

I

g
.

For a given I, the projection of SN on the slow plane (say, Γ = ΓI) is exactly the translation
of Γ0 with quantity (I/g, I/g) along the first bisector. Obviously as I decreases, the curve
Γ moves down on the upper-right–lower-left direction (Figure 9B). That is similar to the
movement of the blue-red square for the case of the Heaviside step function in section 4.1
(Figure 5).

Let us consider now an oscillatory solution that exists for some I ∈ (I∗hb, I
∗∗
hb ). If popula-

tion 1 is dominant (u1 > u2), then −a1 + u1 > 0 and −a2 + u2 < 0 imply u1 − u2 > a1 − a2.
On the other hand, since the trajectory is on Σ, we also have a1 = [I − F (u1) − βu2]/g,
a2 = [I − F (u2) − βu1]/g, and thus a1 − a2 = [β(u1 − u2) − (F (u1) − F (u2))]/g. At the
jumping point a1 reaches its maximum and a2 its minimum, so 0 < a1J − a2J < u1J − u2J

can be written as

(4.9) 0 < W (u1J) =
1

g

(
β − F (u1J) − F (u2J)

u1J − u2J

)
< 1.

The point (u1J , u2J), u1J > u2J , satisfies F ′(u1J)F ′(u2J) = β2 and describes the part
of SN that corresponds to the upper knees. Let umβ, uMβ ∈ (0, 1) be the values defined by
umβ < u∗hb < u0 < u∗∗hb < uMβ , F ′(umβ) = F ′(uMβ) = β2/F ′(u0) = β2S ′(θ) (see the shape of
F ′ in Figure 2C). Then the upper branch of SN results by gluing together three arcs on which
(1) u1J increases between u∗∗hb and uMβ (so u2J decreases from u∗∗hb to u0); (2) u1J decreases
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Figure 8. (A–B) Limit cycle solution and the slow manifold Σ for system (2.1) with parameters I = 1.5,
β = 1.1, g = 0.5, r = 10, θ = 0.2, and τ = 5000. (C) The projection of the limit cycle on the slow plane
(a1, a2); P1, P2, and P3 are the projections of the equilibrium points.

from uMβ to u0 (and u2J decreases from u0 to umβ); (3) u1J continues to decrease from u0 to
u∗hb (however, u2J increases now between umβ and u∗hb).

We can plot the expression W (u1J) from (4.9) for u1J ∈ [u∗∗hb, uMβ ] and u1J ∈ [u∗hb, uMβ ]
with the corresponding u2J = u2(u1J) and check if the graph is below the horizontal line
W = 1 (Figure 9A). If for all combinations (u1J , u2J) we have W < 1, then the winner-take-
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Figure 9. (A) The graph of W = W (u1J) for upper knees on SN computed for g = 0.5, r = 10, θ = 0.2, and
S as in (2.2). At β = 0.75 (dashed-dotted curve) the maximum value of W is less than unity: Winner-take-all
regime does not exist; at β = 1.1 (thick curve) the maximum value of W is larger than unity: the values of I
where winner-take-all occurs correspond to u1J at points a and b. (B) Projection Γ of the curve of saddle-nodes
on the slow plane (a1, a2) for β = 0.75, g = 0.5, r = 10, θ = 0.2, S as in (2.2), and two values of input I = 1.2
and I = 1; Γ moves down on the first bisector direction as I decreases. The blue side is associated to the right
branch of W in panel A, from W = 0 to Wmax (an escape mechanism), and the red side is associated to the
left branch of W from Wmax to 0 (a release mechanism).

all regime does not exist in the interval (I∗hb, I
∗∗
hb ). Otherwise, for (u1J , u2J) where W = 1 we

can compute the values of I where winner-take-all occurs (see below).
Remark 4.2. Let us observe that W (u1J) = [β − F ′(ξ)]/g for some intermediate ξ between

u2J and u1J . At u1J = u2J = u∗∗hb or u1J = u2J = u∗hb (that represents exactly the equilibrium
point eI at I = I∗∗hb and I∗hb, respectively) we have F ′(ξ) = β; therefore, we can extend by
continuity the function W |[u∗∗hb, uMβ ] at u1J = u∗∗hb and the function W |[u∗hb, uMβ ] at u1J = u∗hb
by taking W = 0 at these edges.

For gain function S as in (2.2) and different values of β we plotted the curve W ; the
curve W always has a maximum value Wmax for some uWmax

1J ∈ (u0, uMβ) with u2 = u2(u1) ∈
(umβ, u0). Here ∂u2/∂u1 = −[F ′(u2)F

′′(u1)]/[F
′(u1)F

′′(u2)] > 0. W measures the relative
distance between the values of slow variables against that between fast variables. Based on
this observation we color SN, and obviously Γ, in blue for (u1J , u2J) starting at (u∗∗hb, u

∗∗
hb) and

varying until it reaches (uWmax
1J , uWmax

2J ) and in red for (u1J , u2J) between (uWmax
1J , uWmax

2J )
and (u∗hb, u

∗
hb) (Figures 7C, 9B). The first corresponds to the right branch of W from W = 0

to Wmax, and the latter corresponds to the left branch of W from Wmax to 0.
Well inside the interval that defines the blue part of Γ (that is, not too close to the

value uWmax
1J that gives the maximum W ) we have either u0 < u2J < u∗∗hb < u1J or u∗hb <

u2J < u0 < u∗∗hb < u1J ; so F ′(u2J) < β < F ′(u1J). However, we recall that F ′(u2J) =
1/S ′(I − βu1J − ga2J) and F ′(u1J) = 1/S ′(I − βu2J − ga1J). That means that the gain
function S has at the jump a bigger slope at I − βu1 − ga2, the net input to the suppressed
population, than at I−βu2−ga1, the net input to the dominant population; in other words, the
gain to the suppressed population falls in the range of steeper S. According to the definitions
introduced at the beginning of section 4, this case corresponds to an escape type of dynamics.

On the red part of Γ there is an opposite behavior: at least away from the edge uWmax
1J

we have either u2J < u∗hb < u0 < u1J < u∗∗hb or u2J < u∗hb < u1J < u0 < u∗∗hb. That is,
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F ′(u2J) = 1/S ′(I − βu1J − ga2J) > β > F ′(u1J) = 1/S ′(I − βu2J − ga1J). At the jump the
gain S ′(I − βu2 − ga1) to the dominant population falls in the range of steeper S than that
to the suppressed population. We called this a release mechanism.

In fact, the values uWmax
2J and uWmax

1J with uWmax
2J < u0 < uWmax

1J (and not u∗hb and u∗∗hb)
determine what we generically call the “steeper” part of S. For the particular case of gain
function symmetric to its inflection point (θ, u0), i.e., for S such that S(θ + x) +S(θ− x) = 1
it can be shown that indeed uWmax

2J = u∗hb and uWmax
1J = u∗∗hb (for example, S as in (2.2); see

Remark 4.3). However, in other cases that is not true anymore; then it is more difficult to
interpret the terms escape and release for u1J close to uWmax

1J , the passage point from one
dynamical regime to another.

Occurrence of the winner-take-all regime. We can determine now the minimum value of
β, say, βwta, where the winner-take-all regime occurs in system (2.1). Moreover, for a given
β > βwta we find the corresponding values of I that delineate this regime.

We note that if I ∈ (I∗hb, I
∗
pf ]∪ [I∗∗pf , I

∗∗
hb ), then system (2.1) has a unique equilibrium point

and it belongs to the middle branch of Σ (F ′(uI) < β).
For I > I∗pf or I < I∗∗pf sufficiently close to the pitchfork bifurcation point, system (2.1)

has three equilibria and all are situated again on the middle branch of Σ, inside SN, the
curve of lower and upper knees (Figure 7A and 7C). That is because F ′(u1p) < β and
F ′(u2p) < β, so F ′(u1p)F

′(u2p) < β2. A trajectory that starts on either the upper or
the lower branch of Σ cannot approach an equilibrium point since it will first reach SN,
and so the system oscillates. However, for intermediate values of I between I∗pf and I∗∗pf ,
two of the equilibrium points may move on the lateral branches of Σ and become stable
(F ′(u1p)F

′(u2p) > β2; see Figure 7D and 7F). That is the case where the winner-take-all
regime occurs. We should point out that the equilibrium eI = (uI , uI , uI , uI) always remains
unstable for I ∈ (I∗pf , I

∗∗
pf ) ⊂ (I∗hb, I

∗∗
hb ). The boundary between oscillatory and winner-take-all

dynamics is obtained when the equilibrium points (u1p, u2p) belong to SN, that is, when on
SN both a1 = u1 and a2 = u2 are true. We find in the following the values of I where
winner-take-all appears.

The values of I, say, Iw, that delineate the winner-take-all regime are defined by

F ′(u1J)F ′(u2J) = β2,

1

g

(
β − F (u1J) − F (u2J)

u1J − u2J

)
= 1,(4.10)

Iw = F (u1J) + gu1J + βu2J [ = F (u2J) + gu2J + βu1J ].

The left-hand side of the second equation in (4.10) is in fact W (u1J). Since the curve
W always has a maximum value Wmax for some uWmax

1J ∈ (u0, uMβ), the line W = 1 can be
either above the maximum or below it. If Wmax < 1 (Figure 9A, β = 0.75), then there is no
winner-take-all regime. If Wmax > 1 (Figure 9A, β = 1.1), then there exist two values for u1J

where the curve W intersects the horizontal line W = 1.
The critical (minimum) value βwta where the winner-take-all regime appears in system

(2.1) results from the case of Wmax = 1; i.e., it satisfies the conditions W (u1J) = 1 and
W ′(u1J) = 0. Thus the minimum value βwta that introduces winner-take-all dynamics in
system (2.1) is defined by
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F ′(u1J)F ′(u2J) = β2, u1J �= u2J ,

(F (u1J) − F (u2J))[F ′(u1J)F ′′(u2J) + F ′(u2J)F ′′(u1J)]

= (u1J − u2J)[F ′(u1J)2F ′′(u2J) + F ′(u2J)2F ′′(u1J)],

βwta = g +
F (u1J) − F (u2J)

u1J − u2J
.(4.11)

Remark 4.3. We note that due to its particular form (2.2), S is symmetric about the point
(θ, u0) with u0 = 0.5. The graph of F ′ is symmetric to the vertical line u = 0.5, i.e.,
F ′(1 − u) = F ′(u) for all u ∈ (0, 1), and so F ′′(1 − u) = −F ′′(u). In this particular
case we have F ′(u∗hb) = F ′(u∗∗hb) = β, so u∗hb = 1 − u∗∗hb and F ′′(u∗hb) = −F ′′(u∗∗hb). According
to (4.11) the maximum value Wmax is obtained exactly at u1J = u∗∗hb, u2J = u∗hb.

For gain function S as in (2.2) and different values of β we plotted the curve W and
determined the interval [I∗w, I

∗∗
w ] where winner-take-all occurs. For example, choosing r = 10,

θ = 0.2, g = 0.5, and β = 1.1, we have Wmax = 1.1046 and I∗w = 0.697 (computed at
u1J = 0.7158, u2J = 0.0424) and I∗∗w = 1.303 (computed at u1J = 0.9576, u2J = 0.2842).
The minimum value of β for the winner-take-all regime is βwta = 1.0387. As expected from
our analysis in section 3.3, the value of β that guarantees existence of multiple equilibria in
system (2.2), i.e., βpf = g + 1/S ′(θ) = 0.9, is smaller than βwta.

For the same choice of parameters as above (β = 1.1, g = 0.5, and S as in (2.2) with
r = 10, θ = 0.2), we plot the projection of the limit cycle and the curve of saddle-nodes on
the slow plane (a1, a2) for different values of parameter I. Figure 10A gives the bifurcation
diagram of activity u1 versus input strength I for τ = 100. In the rest of the panels we choose
τ = 5000 to mimic the singular limit cycle solution with jumping points exactly on the curve
of saddle-nodes (for smaller τ , e.g., τ = 100, the jumping points do not belong to the curve
of saddle-nodes but fall close to it). In this case we have

I∗hb = 0.1434, I∗pf = 0.4064, I∗w = 0.697, I∗∗w = 1.303, I∗∗pf = 1.5936, I∗∗hb = 1.8566.

At larger values of I (I = 1.7 and I = 1.5) oscillation is due to an escape mechanism (Fig-
ure 10B–C); at an intermediate value I = 1 the system is in the winner-take-all regime
(Figure 10D); at smaller values of I (I = 0.5 and I = 0.3) oscillation is due to a release mech-
anism (Figure 10E–F). Besides the limit cycle other important trajectories are the equilibrium
points. There are three unstable equilibria for I = 1.5 and I = 0.5 but only one equilibrium
point at I = 1.7 and I = 0.3. At I = 1 two out of three equilibria are stable.

Remark 4.4. Equations (4.11) and (4.10), used to determine the critical β where the win-
ner-take-all regime exists in system (2.1) and then, for β > βwta, to estimate I∗w and I∗∗w ,
prove to be reliable. The estimations obtained by this method are in excellent agreement with
the results found in system (2.1)’s numerical simulations for both symmetric and asymmetric
gain functions. The latter case is discussed in section 5.

5. Neuronal competition models that favor the escape (or release) dynamical regime.
As seen in section 4.1, the dynamical scheme of T versus I is symmetric to I = θ + β+g

2 for
S, the Heaviside step function. When the winner-take-all regime exists, its corresponding
I-input interval is equally split around the value θ + β+g

2 , that is, θ + g ≤ I ≤ θ + β as in
Theorem 4.1. Moreover, an equal input range is found for both release and escape mechanisms:
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Figure 10. (A) Bifurcation diagram of activity u1 versus input I for β = 1.1, g = 0.5, r = 10, θ = 0.2,
τ = 100. (B–F) Projection of the limit cycle and the curve of saddle-nodes on the slow plane (a1, a2) for different
values of parameter I chosen according to the bifurcation diagram in panel A; however, in order to mimic the
singular limit cycle solution we choose here τ = 5000. Symbol ∗ indicates the location of equilibria. At large
values of I oscillation is due to an escape mechanism: (B) I = 1.7, (C) I = 1.5; (D) at intermediate value
I = 1 winner-take-all dynamics is observed; then at low values of I oscillation is due to a release mechanism:
(E) I = 0.5, (F) I = 0.3. Single (panels B, F) or multiple (panels C, E) unstable equilibria can coexist with the
limit cycle.

θ + g
2 < I < θ + g and θ + β < I < θ + β + g

2 as in Theorem 4.1, or θ + g
2 < I < θ + β+g

2

and θ + β+g
2 < I < θ + β + g

2 as in Theorem 4.2. Therefore, it seems reasonable to ask to
what extent the symmetry of the I-T dynamical scheme about a specific value I∗ relates to
the geometry of S and, more generally, to the form of the equations in (2.1). We address
this question in the following and find a heuristic method to reduce one of the two ranges of
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escape and release mechanisms while still maintaining the other one.
First let us note that we obtain a result similar to that in section 4.1 for any smooth

sigmoid S as long as it is symmetric about its threshold. The threshold (say, th) is defined as
the value where the gain function reaches its middle point: for S taking values between 0 and 1,
it is S(th) = 0.5. The terminology comes from the fact that if a net input to one population
is below the threshold (x < th), then it determines a weak effective response (S(x) < 1/2);
at equilibrium that would correspond to an inactive state. On the other hand, a net input
above the threshold (x > th) determines a strong effective response (S(x) > 1/2) which, at
equilibrium, corresponds to an active state. The symmetry condition of S with respect to
the threshold is described mathematically by the equality S(th + x) + S(th − x) = 1 for any
real x or, equivalently, S(x) + S(2 th − x) = 1. The gain function defined by (2.2) is such an
example: in this case the threshold is exactly the inflection point θ (S ′′(θ) = 0; S(θ) = 0.5).

Theorem 5.1. If the gain function S satisfies S(θ + x) + S(θ − x) = 1, then system (2.1)
with input I∗ is diffeomorphic equivalent to system (2.1) with input I = 2θ + β + g − I∗.

Proof. Due to the symmetry of S, equation ˙̃u1 = −ũ1 +S(I∗−βũ2−gã1) with the change
u1 = 1− ũ1, u2 = 1− ũ2, a1 = 1− ã1, a2 = 1− ã2 becomes u̇1 = −u1 + 1−S(I∗−β(1−u2)−
g(1−a1)) = −u1+S((2θ+β+g−I∗)−βu2−ga1); on the other hand, equation τ ˙̃a1 = −ã1+ũ1

becomes τ ȧ1 = −a1 + u1. Therefore, system (2.1) with input I∗ is diffeomorphic equivalent
to system (2.1) with input (2θ + β + g − I∗).

Remark 5.1. Theorem 5.1 implies that system (2.1) has the same type of solutions for any
two values of input strength I1 and I∗1 such that 1

2(I1 + I∗1 ) = θ + β+g
2 . Moreover, if at I1

and I∗1 an oscillatory solution of period T1 and T ∗
1 exists, then, due to the diffeomorphism,

T1 = T ∗
1 . Obviously, if T1 < T2 for I1 < I2 < θ + β+g

2 , then T ∗
1 < T ∗

2 for the corresponding

values I∗1 > I∗2 > θ+ β+g
2 . Therefore, for symmetric S to its inflection point (threshold in this

case), the intervals of I for regions II and IV (see Figure 3F or H) have the same length and
are symmetric to the line I = θ + β+g

2 .
In order to explore the effect the asymmetry of S has on the bifurcation diagram, we

consider S to be

(5.1) S(x) =

⎧⎨
⎩

2u0/
(
1 + e

− r
2u0

(x−θ)
)
, x ≤ θ,

1 − 2(1 − u0)/
(
1 + e

− r
2(1−u0)

(θ−x)
)
, x > θ,

with u0 ∈ (0, 1).
Therefore the inflection point θ and the threshold th satisfy S(θ) = u0 and th > θ if

u0 < 1/2, respectively, th < θ if u0 > 1/2.
The graphs of S as in (5.1) and their corresponding F ′ (where F = S−1) are drawn in

Figure 11A–B with parameter values r = 10, θ = 0.2, and u0 = 0.1, 0.5, 0.9. Then the I-T
bifurcation diagram for the competition model (2.1) is constructed at β = 0.75 (Figure 11C).
Numerical results show that the symmetry of this bifurcation diagram is indeed a direct
consequence of the symmetry of S to its threshold. Such is the case u0 = 0.5. For other
choices of u0 one of the two regions that correspond to the increasing and decreasing I-T
branch is favored (it is wider)—the former when u0 > 1/2 and the latter when u0 < 1/2.

Recall from section 4 the definition (4.8) for the curve SN of jumping points (with its
projection Γ on the plane of slow variables (a1, a2)) and the definition (4.9) for W that char-
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Figure 11. Consider parameter values r = 10, θ = 0.2, g = 0.5, τ = 100 and gain functions S as in (5.1)
with u0 = 0.1, 0.5, 0.9. (A) Graphs of S. (B) Their corresponding F ′ where F = S−1. (C) Bifurcation diagram
for period T versus input I in system (2.1) as β = 0.75. (D) The graph of W = W (u1J) for upper knees on SN

computed as β = 0.75. (E–F) Projection Γ of the curve of saddle-nodes on the slow plane (a1, a2) for β = 0.75,
I = 1.2, and u0 = 0.1, 0.9. The blue side is associated to the escape mechanism and the red side to the release
mechanism. The asymmetry of S to the threshold favors (E) escape if u0 < 1/2 and (F) release if u0 > 1/2.

acterizes escape, release, and winner-take-all regimes. The shape of W changes dramatically
with u0 (Figure 11D, β = 0.75) but not at all with β. However, for any fixed u0 the curve W
always has a unique maximum point; this maximum moves down as β decreases.

The asymmetry of S leads to an asymmetry of the curve Γ: for u0 < 1/2 we have
u0 < uWmax

1J < u∗∗hb, u
Wmax
2J < u∗hb, and the curves SN and Γ have a longer blue part than
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red part; the escape mechanism is favored (Figure 11E, u0 = 0.1). On the contrary, for
u0 > 1/2 the release mechanism is favored since the red part of Γ is longer: uWmax

1J > u∗∗hb
and u∗hb < uWmax

2J < u0 (Figure 11F, u0 = 0.9). We can understand this specific behavior
by looking at the network populations’ dynamics about the threshold: in case of u0 < 1/2
the maximum gain to each population is reached for some net input below the threshold
(S′(θ) = maxS′ with S(θ) = u0, so θ < th); then about the threshold th the gain S′ has a
decreasing trend. Consequently, there is a wider range for inputs where the inactive popula-
tion has a significant gain compared to the active population, and so the escape mechanism is
favored (the suppressed population regains control on its own, thus becoming active). On the
other hand, if u0 > 1/2, the maximum gain to the network’s populations is reached for some
net input above the threshold (θ > th) and the gain has an increasing trend in the vicinity of
th. Therefore, the release mechanism is indeed much more easily obtained.

Remark 5.2. The function S defined by (5.1) does not entirely satisfy the hypotheses in-
troduced in section 2. In this case F ′′′(u0) does not exist anymore at u0 �= 1/2 even if we
still have F as C2(0, 1) and C∞ ((0, 1) \ {u0}). Nevertheless this property does not affect our
analytical results (e.g., the expansion we used in section 3 to prove the existence of stable os-
cillatory solutions still makes sense since it is done locally about some point u∗ different than
u0). Consequently, all the results found for system (2.1) in previous sections remain valid.

5.1. A competition model that favors escape. In [31] we investigated four distinct
neuronal competition models: a model by Wilson [37], one by Laing and Chow (the LC-
model [17]), and two other variations of the LC-model that we called depression-LC and
adaptation-LC. The latter is exactly the system (2.1) with symmetric sigmoid function. Be-
sides the models’ commonalities we also noticed some differences: in some cases the bifurcation
diagrams show a preference of the system to the escape mechanism (the region of I that cor-
responds to the decreasing I-T branch is wider; see Figures 3 and 4 in [31]). Moreover, for
sufficiently low inhibition in Wilson’s and the depression-LC models the increasing (release-
related) branch can disappear completely. Based on the results obtained in the present paper,
we can explain those numerical observations.

Let us take, for example, Wilson’s model for binocular rivalry [37, 31]. Since the time-scale
for inhibition is much shorter than the time-scale for the (excitatory) firing rate, we can assume
that the inhibitory population tracks the excitatory population almost instantaneously. Thus
Wilson’s model becomes equivalent to a system of the form

u̇1 = −u1 +
γ(I − βu2)

2
+

(θ + a1)2 + (I − βu2)2+
,

u̇2 = −u2 +
γ(I − βu1)

2
+

(θ + a2)2 + (I − βu1)2+
,

τ ȧ1 = −a1 + gu1,(5.2)

τ ȧ2 = −a2 + gu2,

where γ is a positive constant and [x]+ is defined as [x]+ = 0 if x < 0 and [x]+ = x if x ≥ 0.
As in (2.1), parameters β and g represent here the strength of the inhibition and adaptation; I
is the external input strength. We see that in the differential equations for uj the nonlinearity
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is introduced through a function

S̃(x; Θ) =
γ[x]2+

Θ2 + [x]2+
,

that is, u̇1 = −u1 + S̃(I − βu2; θ + a1) and u̇2 = −u2 + S̃(I − βu1; θ + a2). We note that S̃
is asymptotic to γ as x → ∞ and satisfies S̃ = 0 for x ≤ 0 and S̃(Θ; Θ) = γ/2, which means
Θ is the threshold. To compare system (5.2)’s dynamics with that of (2.1), we will assume
without loss of generality that γ = 1.

By the change of variables w1 = βu1 − I, w2 = βu2 − I, A1 = βa1/g− I, A2 = βa2/g− I,
the system (5.2) is diffeomorphic equivalent to

ẇ1 = −w1 + βS̃(−w2; θ1) − I,

ẇ2 = −w2 + βS̃(−w1; θ2) − I,

τȦ1 = −A1 + w1,(5.3)

τȦ2 = −A2 + w2

with θ1(t) = θ + g
β (A1(t) + I) and θ2(t) = θ + g

β (A2(t) + I).
On the other hand, let us consider the system (2.1) with S as in (2.2). By a similar

change of variables w1 = βu1 − I, w2 = βu2 − I, A1 = βa1 − I, A2 = βa2 − I this system is
diffeomorphic equivalent to

ẇ1 = −w1 + βS(−w2; θ1) − I,

ẇ2 = −w2 + βS(−w1; θ2) − I,

τȦ1 = −A1 + w1,(5.4)

τȦ2 = −A2 + w2

with θ1(t) and θ2(t) as above. The threshold of S (rewritten as S(x; θ) = 1/(1 + e−r(x−θ)))
is θ.

As we can see, up to the specific expression of the gain function, Wilson’s and the
adaptation-LC models are equivalent. The reason Wilson’s model shows preference to the
escape mechanism instead of release (while for the adaptation-LC model the interval ranges
for escape and release dynamics have equal length) resides in the asymmetric shape of S̃ with
respect to its threshold. The threshold is Θ but the maximum gain is obtained at Θ√

3
< Θ

(S̃′′
xx(x; Θ) = 0 at x = Θ√

3
). The resulting behavior is similar to that of S as in (5.1) with

u0 < 1/2 (S′′(θ) = 0, S(θ) = u0, and θ < th). The role of θ is played by Θ√
3

and the

corresponding value for u0 is S̃( Θ√
3
; Θ) = 1/4.

Remark 5.3. In fact, the difference between S̃ and asymmetric S from (5.1) is more subtle.
Take again γ = 1; the restriction of S̃ on (0,∞) is invertible with inverse F̃ defined on (0, 1)

by F̃ (u; Θ) = Θ
√

u
1−u . In systems (5.3) and (5.4) the graph of F̃ ′

u, F̃
′
u(u; θj) =

θj

2(1−u)
√

u(1−u)

has a well-like shape similar to that of the graph of F ′
u(u; θj) =

4u2
0

ru(2u0−u) if u ∈ (0, u0] and
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4(1−u0)2

r(1−u)(1−2u0+u) if u ∈ (u0, 1). However, F̃ ′
u depends on θj (that implicitly means dependence

on the slow variable) while F ′
u does not. That explains why, for S as in (5.1), when they exist,

the Hopf bifurcation points always come in pairs (and oscillations start at both points with the
same frequency—see (3.5) and (3.6) in section 3); so release and escape oscillatory regimes
(even if not equally balanced) always coexist for (2.1). On the contrary, in Wilson’s model
(5.2) the dependence of F̃ ′

u on the slow variable allows us to find a (reduced) parameter regime
where only the escape mechanism is possible [31].

5.2. Competition models with nonlinear slow negative feedback. The local analysis
pursued in section 3 shows that the uniform equilibrium point eI can lose its stability through
either a Hopf bifurcation (at exactly two values I∗hb and I∗∗hb ) or a pitchfork bifurcation (at
exactly two values I∗pf and I∗∗pf ). This result comes from the intersection of the graph of F ′

(which has a well-like shape) with the straight horizontal lines y = β

1+ 1
τ

and y = β − g,

respectively. This type of intersection restricts the possibilities to either I∗hb < I∗pf < I∗∗pf < I∗∗hb
or I∗pf < I∗hb < I∗∗hb < I∗∗pf . The first case corresponds to a feedback/adaptation-dominated
neuronal competition model and ensures the existence of stable oscillations in (2.1). Moreover,

these appear with the same frequency ω = 1
τ

√
g(τ+1)

β − 1 at both values I∗hb and I∗∗hb , and they

are due to two different mechanisms: escape (for larger values of I) and release (for lower
values of I). Thus we conclude that in system (2.1) escape and release oscillatory regimes
always coexist. The choice of asymmetric gain function with respect to its threshold helps to
reduce one or another regime but cannot eliminate it completely.

Nevertheless there is a way to modify (2.1) such that the new obtained system shows
preference to either the escape or release mechanim; moreover, as for Wilson’s model, in some
parameter regime we can find only escape-based oscillations (or, vice versa, only release-based
oscillations). In this sense we consider the neuronal competition model with nonlinear slow
negative feedback

u̇1 = −u1 + S(I − βu2 − ga1),

u̇2 = −u2 + S(I − βu1 − ga2),

τ ȧ1 = −a1 + a∞(u1),(5.5)

τ ȧ2 = −a2 + a∞(u2)

with S as in (2.2) and

(5.6) a∞(x; θa) = 1/
(
1 + e−ra(x−θa)

)
.

We obtain the following result, which is similar to Theorem 5.1.
Theorem 5.2. Consider the nonlinear term a∞(x; θa) defined by (5.6). If the gain function

S satisfies S(θ + x) + S(θ − x) = 1, then system (5.5) with input I∗ and slow equation
nonlinearity a∞(x; θa) is diffeomorphic equivalent to system (5.5) with input I = 2θ+β+g−I∗

and slow nonlinearity a∞(x; 1 − θa).
Proof. With the change of variables u1 = 1 − ũ1, u2 = 1 − ũ2, a1 = 1 − ã1, a2 = 1 − ã2,

system (5.5) with input I∗ and nonlinear term in the slow equation a∞(x; θa) takes the form
(5.5) with input (2θ + β + g − I∗) and a∞(x; 1 − θa).
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Figure 12. Bifurcation diagrams for neuronal competition model (5.5): (A) population activity u1 versus
input strength I; (B) period T of the network oscillations versus I. Parameter values are β = 1.1, g = 0.5,
τ = 100, θ = 0.2, r = 10, ra = 10, and θa = 0.7. Functions S and a∞ are defined by (2.2) and (5.6).

If θa = 1/2, we have a∞(x; θa) = a∞(x; 1 − θa), and thus the system (5.5) has the same
type of solutions for any two values of input strength I1 and I∗1 such that 1

2(I1 +I∗1 ) = θ+ β+g
2 .

As for the case of linear adaptation (where the choice was a∞(u) = u), the intervals of I where
the period of oscillations increases and decreases have the same length and are symmetric to
the line I = θ + β+g

2 .

The symmetry of the I-T bifurcation diagram can be destroyed by choosing θa �= 1/2. As
numerical simulations of system (5.5) show, the choice of θa > 1/2 leads to a preference of the
system for the escape mechanism (decreasing T versus I). On the contrary, for θa < 1/2 the
system shows preference to the release mechanism (increasing T versus I).

For parameters β = 1.1, g = 0.5, τ = 100, and θ = 0.2, r = 10 for S and ra = 10 and
θa = 0.7 for a∞, we plot in Figure 12 the bifurcation diagram of population activity u1 versus
the stimulus strength I and then the period T versus I. In Figure 12A we observe that the
Hopf bifurcation point that existed for low value of I in case of linear adaptation disappears
now. Instead we find a supercritical pitchfork bifurcation where stable nonuniform equilibrium
points are born (they correspond to the winner-take-all case). The increasing branch of T
versus I graph disappears while the decreasing branch is still present (Figure 12B). We find
only four dynamical regimes (as opposed to the five described in Figure 3F and G): fusion
(equal activity levels) for large and low input, winner-take-all, and oscillations with decreasing
T as function of I for intermediate values of stimulus strength.

By choosing θa = 0.3 the bifurcation diagrams in Figure 12 are virtually mirrored along
the stimulus axis; in this case only the increasing I-T branch exists.

We explain these numerical results through an analytical approach. Similarly to the
local analysis in section 3, we note that system (5.5) has a unique uniform equilibrium eI =
(uI , uI , a∞(uI), a∞(uI)) for any real I. The value uI ∈ (0, 1) is defined by equation I =
F (uI) + βuI + ga∞(uI) and decreases with a decrease in I; moreover, limI→∞ uI = 1 and
limI→−∞ uI = 0. The characteristic equation of the linearization matrix about eI is a product

of two factors: λ2 + λ
(
1 + 1

τ + β
F ′(uI)

)
+ 1

τ

(
1 + ga′∞(uI)+β

F ′(uI)

)
= 0 and λ2 + λ

(
1 + 1

τ − β
F ′(uI)

)
+

1
τ

(
1 + ga′∞(uI)−β

F ′(uI)

)
= 0. Thus two of the eigenvalues always have negative real part, while the
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other two show the type of stability for eI . Decreasing I, the stability of eI is lost either
through a pair of purely imaginary eigenvalues at F ′(uI) = β/(1 + 1

τ ), F ′(uI) + ga′∞(uI) > β
or through a zero eigenvalue at F ′(uI) + ga′∞(uI) = β and F ′(uI) > β/(1 + 1

τ ).
Assume now that θa is greater than 1/2 and close to 1. For large I the corresponding

fixed point eI has uI close to 1 and in the vicinity of θa. Since this is the steeper (almost
linear) part of a∞, we can approximate a∞(uI) ≈ kuI . The condition F ′(uI) = β/(1 + 1

τ ),
F ′(uI) > β− ga′∞(uI) = β− gk, can be attained (at least for adaptation-dominated systems)
and stable oscillations occur. On the other hand, for small I, the fixed point eI has uI close
to 0 and further away from θa. The function a∞ is almost constant there, so a′∞(uI) ≈ 0. Then
F ′(uI) + ga′∞(uI) ≈ β > β/(1 + 1

τ ) and the stability of eI is lost through a zero eigenvalue (a
pitchfork bifurcation).

Remark 5.4. We note that the choice of θa > 1/2 sufficiently close to 1 helps the slow
variable for the suppressed population, say, a1, to change faster than the slow variable for the
dominant population, say, a2. Since a∞(u1) is approximately constant to zero and a∞(u2) falls
onto the linear part of the sigmoid, a1 decays almost exponentially according to τ ȧ1 ≈ −a1,
while a2 grows more slowly according to τ ȧ2 ≈ −a2 + ku2. The input-output function of
the suppressed population changes faster, favoring escape. An opposite effect is obtained for
θa < 1/2.

6. Discussion. We investigated a class of competition models that describe rhythmic
(alternating) phenomena that arise in a range of neural contexts including perception of
ambiguous sensory stimuli (such as binocular rivalry) and motor coordination (as in CPGs).
These models rely on mutual inhibition between populations of neurons and a slow process
in the form of spike frequency adaptation and/or synaptic depression, and they have the
following commonalities [31].

A decrease in the strength of the input to the noise-free system leads to five possible types
of dynamics: (i) at high values of input strength both competing populations are active at
equal levels; (ii) by decreasing the input strength the system enters an oscillatory regime with
the oscillation period increasing as input decreases; (iii) then for lower input the system is in
a winner-take-all regime where only one population is dominant while the other is suppressed
forever; (iv) continuing to decrease the input strength, the system oscillates again; in this
region the oscillation period decreases as the input decreases; (v) at low values of input,
oscillations disappear and both competing populations are inactive at an equal level. In
addition, for weak inhibition the winner-take-all regime does not occur; however, the period
of oscillations still depends on the input strength in a nonmonotonic fashion.

In a computational study of a model similar to (2.1), the authors of [23] also report
transitions between simultaneous activity (single equilibrium), oscillations, and winner-take-
all. The bifurcation diagram (Figure 4) in the parameter plane (I, β) resembles Figure 9
in [23]. However, Moldakarimov et al. were interested mostly in how the system’s dynamics
changes with inhibition strength (an internal parameter of the system) and not with stimulus
strength. By analyzing the influence of stimulus on the oscillations’ frequency/period, we
provide a refined characterization of possible behaviors in this class of competition models.

The five dynamical regimes mentioned above were illustrated in Figure 3 for system (2.1),
our choice as a particular example. Despite the fact that it has some limitations such as a lack
of recurrent excitation, a symmetric gain function, and a nonsaturating a∞(u), system (2.1)
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has the advantage of being simple enough to allow for a thorough analytical investigation while
still displaying the dynamical characteristics found in a larger class of models. Thus, for (2.1)
we proved the existence of oscillations and we showed that they are antiphase as expected for a
network of two competing populations. Moreover, by considering the period of oscillations T as
a function of input strength I, we proved that the I-T graph is nonmonotonic. We associated
the increasing I-T branch with a release mechanism and the decreasing branch with an escape
mechanism. Release occurs for lower values of I. It means that during oscillation the dominant
population loses control due to accumulating slow negative feedback and it becomes unable
to suppress its competitor; consequently the latter becomes active and thereby takes the role
of suppressor. On the contrary, escape occurs for higher values of I and it means that the
suppressed population regains control on its own, starts to inhibit its competitor, and forces
it into the down state. Moreover, using singular perturbation techniques, we characterized
in the limiting case the conditions for occurrence of winner-take-all dynamics at intermediate
values of stimulus strength.

Our presumption is that the potential for alternation of percepts depends on neuronal
competition. If competition were significantly reduced or eliminated (say, effectively making
β very small in the model), alternations would not occur in the presence of a stimulus. That is,
we suppose that an isolated population would not oscillate. To satisfy this constraint we have
disallowed recurrent excitation in (2.1): this precludes oscillations in an isolated population
for any input value I. Perhaps for this goal the complete elimination of recurrent excitation is
an extreme way to satisfy the constraint. Alternatively, we could consider systems with fast
equations of the form u̇j = −uj+S(I+αuj−βuk−gaj) and allow for some recurrent excitation
but not strong enough to let an isolated population oscillate (e.g., take α < (1 + 1

τ )/S′(θ)).
This modification, however, does not affect our conclusion on the nonmonotonicity of the
period of oscillations versus input strength curve (not shown): both “release” and “escape”
branches still appear.

Other modifications of (2.1) that favor either release or escape as responsible for oscillations
were discussed in section 5. One extension of (2.1) allows the gain function to be asymmetric
with respect to the threshold. This maintains one of the two oscillatory regimes while reducing
the other one. A different rendition of (2.1) invokes a nonlinear slow negative feedback (a
sigmoidal-shaped a∞(u)) and completely eliminates one of the two regimes. The existence of
the saturating branches for a sigmoidal a∞(u) introduces an asymmetry in the system; thus
under some specific conditions either the suppressed population recovers from slow negative
feedback faster than the dominant population accumulates its own negative feedback (favoring
escape, see Figure 12), or the reverse occurs. Interestingly, adding noise to these specially
designed models, we automatically recover the nonmonotonicity of the period versus input
curve [31].

Oscillations in mutually inhibitory neuronal networks based on fast-slow dynamics [27]
as well as the terms “release” and “escape” [36, 32] were previously discussed for neuronal
networks in the presence of local autocatalysis. The autocatalysis was either an intrinsic pro-
cess (like voltage-gated persistent inward currents) or a synaptic process (like intrapopulation
recurrent excitation). Other models assumed networks of excitatory cells interacting through
a global inhibitory feedback that typically produce the winner-take-all dynamics; the inhibi-
tion was dynamic with a slow time-scale and induced more complicated oscillatory patterns
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with one cell being active for a while and then spontaneously turning off and allowing another
one to take over [8]. Contrary to these examples, there is no autocatalysis in the neuronal
competition models we investigate here. Instead the alternation is a combined result of two
processes: mutual inhibition that acts effectively as a fast positive feedback (disinhibition) and
a slow negative feedback (adaptation, but that could alternatively be synaptic depression).

Appendix A. Normal form for Hopf bifurcation. To construct the normal form for the
Hopf bifurcation, in section 3 we use the expansion of S(k)(F (uI)), k = 1, 2, 3, . . . , with respect
to ε. That is obtained as follows: take, for example,

f1(I)
def
= S ′(F (uI)) = f1(I

∗ + ε2α) = f1(I
∗) + f ′

1(I
∗)ε2α + O(ε4).

Here f1(I
∗) = S ′(F (u∗)) = 1/F ′(u∗) = (1 + 1

τ )/β and f ′
1(I) = S ′′(F (uI)) · F ′(uI) · duI/dI.

Based on (3.2), f ′
1(I) = S ′′(F (uI))·F ′(uI)/(β+g+F ′(uI)). On the other hand, since u ≡

S(F (u)), we have 1 ≡ S ′(F (u)) ·F ′(u), and further 0 ≡ S ′′(F (u)) ·F ′(u)2 +S ′(F (u)) ·F ′′(u),
i.e., S ′′(F (u)) = −F ′′(u)/F ′(u)3. Therefore,

f1(I) =
1 + 1/τ

β
− F ′′(u∗)

F ′(u∗)2(β + g + F ′(u∗))
ε2α + O(ε4) .

Similarly, we compute

f2(I)
def
= S ′′(F (uI)) = f2(I

∗ + ε2α) = f2(I
∗) + O(ε2) = − F ′′(u∗)

F ′(u∗)3
+ O(ε2)

and f3(I)
def
= S ′′′(F (uI)) = f3(I

∗ + ε2α) = f3(I
∗) + O(ε2) = S ′′′(F (u∗)) + O(ε2). From

S ′′(F (u)) = −F ′′(u)/F ′(u)3 we obtain S ′′′(F (u)) = [3F ′′(u)2 − F ′(u) · F ′′′(u)]/F ′(u∗)5, so

f3(I) =
3F ′′(u∗)2 − F ′(u∗) · F ′′′(u∗)

F ′(u∗)5
+ O(ε2).

Normal form. Let us now present the main steps in the algorithm for the construction of
the normal form starting with

(A.1) L0V0 = ε[B(V0, V0) − L0V1] + ε2[C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2] + O(ε3) .

In the limit ε → 0, the vector V0 is a solution of the linear system L0V0 = 0 with two
eigenvalues λ1,2 of negative real part and two purely imaginary eigenvalues λ3,4 = ±iω. Thus
V0 belongs to the center manifold; i.e., for an eigenvector ξ ∈ C4 of A0 that satisfies A0ξ = iωξ,
say,

(A.2) ξ = (−τω + i, τω − i, i, −i)T,

the solution V0 takes the form

V0(t) = w(t)ξeiωt + w̄(t)ξ̄e−iωt.

However, since L0V0 = O(ε), w(t) is ε-dependent, and it can be written in slow time s = ε2t
as w = w(s). In the singular perturbation expansion, w(s) = w(s)|ε=0 + dw

ds |ε=0
ε2t + O(ε4).
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With notation Z = w(s)|ε=0, Z
′ = dw

ds |ε=0
, and so on (here ′ stands for the derivative with

respect to the slow time), we have w = Z + ε2tZ ′ + O(ε4) and

V0 =
(
Zξeiωt + Z̄ξ̄e−iωt

)
+ ε2t

(
Z ′ξeiωt + Z̄ ′ξ̄e−iωt

)
+ O(ε4) .

Then we compute L0

(
teiωtξ

)
= eiωtξ, L0

(
te−iωtξ̄

)
= e−iωtξ̄ and B

(
ξeiωt, ξeiωt

)
= 1

2Bb2p e2iωt,
B
(
ξ̄e−iωt, ξ̄e−iωt

)
= 1

2Bb̄ 2p e−2iωt, B
(
ξeiωt, ξ̄e−iωt

)
= 1

2B|b|2p, where b = βτω + i(g− β) and
p = (1, 1, 0, 0)T. Equation (A.1) becomes

L0V1 =
1

2
Z2Bb2p e2iωt +

1

2
Z̄2Bb̄ 2p e−2iωt + ZZ̄B|b|2p + ε

[
−Z ′ξeiωt − Z̄ ′ξ̄e−iωt

+ C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2

]
+ O(ε2),

so we look for solutions V1 of the form

V1 = w2ξ1e
2iωt + 2ww̄ξ2 + w̄2ξ3e

−2iωt = Z2ξ1e
2iωt + 2ZZ̄ξ2 + Z̄2ξ3e

−2iωt + O(ε2).

From the singular perturbation expression we determine ξ1 = 1
2Bb2(2iωI − A0)

−1p, ξ2 =
−1

2B|b|2A−1
0 p, and ξ3 = ξ̄1, that is,

ξ1 =
Bb2ψ

2|ψ|2 (1 + 2iτω, 1 + 2iτω, 1, 1)T, ξ2 =
B|b|2

2
[
1 +

(
g
β + 1

) (
1 + 1

τ

)](1, 1, 1, 1)T,

where ψ = 1 − 4ω2τ +
( g
β + 1

) (
1 + 1

τ

)
− 4iω(τ + 1).

Then we compute C(V0, V0, V0), B(V0, V1) and ΛV0 = −αA(Zb eiωt + Z̄b̄ e−iωt)q + O(ε2)
with q = (1,−1, 0, 0)T and obtain

L0V2 = −(Z ′ξ + αAZbq) eiωt + Z2Z̄b2b̄q eiωt

⎛
⎝−D

2
+

(β + g)B2

1 +
(

g
β + 1

) (
1 + 1

τ

)

+
B2(β + g + 2iβωτ)ψ

2|ψ|2

⎞
⎠+ e3iωt(. . .) + cc + O(ε).

In order for the solution V2 to exist, the right-hand side of the above equation should be
orthogonal on the eigenvectors of the adjoint operator L∗

0 = − d
dt −AT

0 on the space of periodic
solutions V (t) = V (t + 2π

ω ) with inner product

〈V,W 〉 =
ω

2π

∫ 2π
ω

0

4∑
i=1

vi(t)w̄i(t) dt, V = (vi)
T
i=1,4, W = (wi)

T
i=1,4.

That means the right-hand side should be orthogonal on
{
ηeiωt, η̄e−iωt

}
with η solution of

AT
0 η = −iω η and ξ · η̄ = 1; that is,

η = − 1

4ωτ
(1, −1, −1 − iωτ, 1 + iωτ)T.
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We obtain the normal form Z ′ = αAϕZ − LZ2Z̄ with L as in Theorem 3.2.
By rescaling I−I∗ = ε2α and z(t) = εZ(ε2t) = εZ(s), we have ż = dz/dt = εdZds

ds
dt = ε3Z ′;

the above differential equation becomes exactly (3.11).
First Lyapunov coefficient. We would like to determine sufficient conditions for the Hopf

bifurcation to be supercritical, i.e., for Re(L) > 0.
We now use inequality (3.3) to show that the first term in the sum that defines L has

positive real part:

Re

(
ϕψ

(
β + g

2
+ iβωτ

))
= (2βg)τ +

1

4
(7g2 + 5βg − 6β2) +

1

4τ
(7g2 − 6βg + 3β2)

> 2β2 − 2βg +
1

4
(7g2 + 5βg − 6β2) +

1

4τ
(7g2 − 6βg + 3β2)

=
1

4
(7g2 − 3βg + 2β2) +

1

4τ
(7g2 − 6βg + 3β2) > 0 .(A.3)

For the second term, (3.3) implies

l1 =
2(β + g)

1 +
(

g
β + 1

) (
1 + 1

τ

) =
2

1
β+g + 1

F ′(u∗)

>

(
1 +

1

τ + 1

)
F ′(u∗) > F ′(u∗).

Therefore, the real part of the second term satisfies

(A.4) βτ2ω2|ϕ|2B2

(
l1 −

D

B2

)
> βτ2ω2|ϕ|2B2F ′(u∗)

(
F ′(u∗)F ′′′(u∗)

F ′′(u∗)2
− 2

)
.

Appendix B. Normal form for pitchfork bifurcation. The construction of this normal
form follows similar steps to those in section 3.1 and Appendix A. Here F ′(u◦) = β − g with
u◦ ∈ {u∗pf , u∗∗pf} and I◦ ∈ {I∗pf , I∗∗pf}.

The operators B, C, Λ, and L0 are defined in the same way as in section 3.1 with coefficients
A,B,D as in (3.10). However, the derivatives of F at the bifurcation point u◦ take different
values, so S ′(F (uI)) = 1/(β − g) +αAε2 + O(ε4), S ′′(F (uI)) = B + O(ε2), and S ′′′(F (uI)) =
D + O(ε2) with A, B, and D evaluated at either u∗pf or u∗∗pf . The matrix of the linearized
system is now

A0 =

⎛
⎜⎜⎜⎝

−1 − β
β−g − g

β−g 0

− β
β−g −1 0 − g

β−g
1
τ 0 − 1

τ 0
0 1

τ 0 − 1
τ

⎞
⎟⎟⎟⎠

and has a zero eigenvalue. Therefore, we find an eigenvector ξ (A0ξ = 0) and an eigenvector
η of the adjoint matrix (AT

0 η = 0) such that ξ · η = 1. They are

ξ = (1,−1, 1,−1)T, η =
1

2(β − g(τ + 1))
(β − g,−β + g,−τg, τg)T.

With the perturbation I − I◦ = ε2α, V (t) = εV0(t) + ε2V1(t) + ε3V2(t) + · · · , we obtain
that V0 belongs to the eigenspace, that is, V0 = w(t)ξ. The expansion with respect to the
slow time (s = ε2t, w = w(s), Z = w(s)|ε=0, etc.) implies V0 = (Z + ε2tZ ′ + O(ε4))ξ and

L0V1 = Z2B(ξ, ξ) + ε[−Z ′ξ + Z3C(ξ, ξ, ξ) + 2B(V0, V1) + ZΛξ − L0V2] + O(ε2).
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The vector V1 is chosen to be of the form V1 = w2ξ1 = Z2ξ1 + O(ε2) with ξ1 orthogonal on η.

It results in ξ1 = −A−1
0 B(ξ, ξ), i.e., ξ1 = B2(β−g)3

4β (1, 1, 1, 1)T. The normal form is

Z ′ = (Λξ · η)Z + [C(ξ, ξ, ξ) · η + 2B(ξ, ξ1) · η]Z3.

From Λξ = αA(β − g)q, C(ξ, ξ, ξ) = D
6 (β − g)3q, B(ξ, ξ1) = −B2

8β (β − g)4(β + g)q (where

q = (1,−1, 0, 0)T), and by rescaling I − I◦ = ε2α and z(t) = εZ(ε2t) = εZ(s), we obtain
exactly (3.15).

Appendix C. Additional material. To illustrate system (2.1)’s dynamics under the escape
and release mechanisms we run numerical simulations in XPPAUT [7, 9] with S as in (2.2),
r = 10, θ = 0.2, and parameters β = 1.1, g = 0.5, τ = 100 as in Figure 3F. Then in the
fast plane (u1, u2) we obtain the trajectory of the point on the rivalry limit cycle: the point
is drawn as a black thick dot; the u1-nullcline is colored in red, and the u2-nullcline is colored
in blue.

70584 01.gif [3.7MB] illustrates the escape mechanism for I = 1.5.
70584 02.gif [3.8MB] illustrates the release mechanism for I = 0.5.
The small black square corresponds to the slow plane (a1, a2), where we included in green

the projection of the limit cycle trajectory. This picture shows how the slow negative feed-
back accumulates for the dominant population and then how it recovers for the suppressed
population (e.g., if u1 is ON and u2 is OFF, then a1 increases and a2 decreases). Then the
cycle repeats.
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