MathViz Champaign-Urbana March 282009

Geometric generation of permutation sequences

Dennis Roseman

Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Overture

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation

Music

Original motivation: apply mathematics to the composition of music.

Mathematics Focus:

Some geometry of the n-dimensional permutahedron.

Visualization Focus

Higher dimensional visualization including braids used as a visualization tool.

From Abstract Mathematics to Musical Composition

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Two very different musical examples:

- change ringing
- Nomos Alpha of Xenankis

From Change Ringing by Wilfrid G. Wilson

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

CHANGE RINGING

The Art and Science of Change Ringing on Church and Hand Bells
by
WILFRID G. WILSON
Master of the London Countr Asociation of Change Ringers
${ }^{1963-65}$
Vice President of the Oxford Diocesan Guild
of Church Bell Ringers Member of the Central Councll of Charch Bell Ringers

OCTOBER HOUSE INC.
New York

From Change Ringing by Wilfrid G. Wilson

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation

1. A BELL AT REST

A, Headstock; B, Wheel: C, Stay; D, Slider; E, Clapper;
F, Frame; G, Gudgeons and Bearings; H , Rope

From Change Ringing by Wilfrid G. Wilson

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron

Change

Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

From Change Ringing by Wilfrid G. Wilson

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers

CHAPTER FIVE

Plain Bob-The Method

The simplest of the even bell methods and the one best suited for use as an introduction to the inexhaustible complexities and problems of change ringing is Plain Bob. The basis of the method is the plain hunt (see Chapter Four) and the variations from it are the simplest possible by which to produce additional changes. A thorough knowledge of Plain Bob is essential to a study of other aspects of change ringing.

On Four Bells

Very little change ringing is practised on four bells, but the whole principle of Plain Bob can be seen clearly and concisely on this number, thus making it easier to understand the method on the higher numbers of bells.
Starting from rounds ($\begin{array}{llll}1 & 2 & 3 & 4\end{array}$) write out a plain hunt on four bells (as on p. 14) until the first lead of the treble (number I) is reached. Then, while the treble leads twicc, let the bell which is sccond strike twice in that position. This is called making second place. It is then impossible without clashing for the bells in the third and fourth positions to return to their original positions as they otherwise would, so they dodge with each other. Each of these two bells takes a step backward in its hunting course. This block of changes from the time the treble left the front until it got back to it again is called a lead, and the backstroke row when the treble is leading is called the lead end.* We now have a new lead end I 342 -see row A p. 19.
From this new lead end write out a plain hunt again until the treble s once more leading. As these changes start from I 342 instead of from I 234 they will be different ones. Then at the second lead of the treble make similar variations -the bell that is second makes second place and the other two bells dodge with each other in 3-4 (i.e. the third and fourth positions). This completes another lead and produces another lead end, $14_{2} 3$, marked B.
*For note on this see p. 37 .

From Change Ringing by Wilfrid G. Wilson

Geometric generation of permutation sequences
\section*{Dennis}
Roseman
\section*{Permutahedron}
\section*{Change}
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers use us of hunt

plain bob - the method

From this new lead end write out another plain hunt until the treble reaches the front again. Make similar variations to those at the other lead ends and we are back at rounds (row C). We have produced all the possible 24 changes on four bells, we have no repetitions and we have missed none out. This block of changes (three complete leads) is called a plain course of Plain Bob Minimus, sometimes Plain Bob Singles. The major factor in this plain course is the continued plain hunting of the treble and you will find that there is a whole large class of methods in which the treble plain hunts continually among the other bells - however many there may be.

Now on the table of 24 changes draw a line through all the 2 's. It will be this shape, though less squashed up:

From Formal Music by I. Xenakis-Nomos Alpha

Geometric generation of permutation sequences

Dennis

 Roseman
Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Formalized Music

THOUGHT AND MATHEMATICS IN COMPOSITION

Revised Edition
Iannis Xenakis

Additional material compiled and edited
by Sharon Kanach

HARMONOLOGIA SERIES No. 6

From Formal Music by I. Xenakis-Nomos Alpha

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

From Formal Music by I. Xenakis-Nomos Alpha

From Formal Music by I. Xenakis-Nomos Alpha

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron

Change

Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Music and Mathematics

Geometric generation of permutation sequences

Dennis
Roseman

Definition

A musical composition is a family of sequences of related musical events.

Time and voices

Progression in time is related to succession in a sequence; each sequence represents a "voice".

The mathematical objects we chose are permutations.
Construct families of sequences length k of permutations of order n, where k and n are independent.

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$
(2) They are n-tuples-plot them as points in R^{n}.

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$
(2) They are n-tuples-plot them as points in R^{n}.

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$
(2) They are n-tuples-plot them as points in R^{n}.
(3) Take the convex hull.

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$
(2) They are n-tuples-plot them as points in R^{n}.
(3) Take the convex hull.

Permutations Geometrically: the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

The Permutahedron

(1) Take the n ! permutations S_{n} to be all permutations of $(1,2, \ldots, n)$
(2) They are n-tuples-plot them as points in R^{n}.
(3) Take the convex hull.
(3) The resulting polytope is the permutahedron $\mathcal{P}(n)$

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Some Examples:
(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Some Examples:
(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$, a subset of the line $x+y=1+2$.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Some Examples:
(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$, a subset of the line $x+y=3$.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Some Examples:
(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$.
(2) $\mathcal{P}(3)$ is a hexagon in R^{3} in the plane.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Some Examples:

(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$.
(2) $\mathcal{P}(3)$ is a hexagon in R^{3} in the plane subset of the plane $x+y+z=6$.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
Some Examples:
(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$.
(2) $\mathcal{P}(3)$ is a hexagon in R^{3} in the plane.
(3) $\mathcal{P}(4)$ is a truncated octahedron in R^{3}.

Low Dimensional Cases

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

Some Examples:

(1) $\mathcal{P}(2)$ is the line segment in R^{2} with endpoints $(1,2)$ and $(2,1)$.
(2) $\mathcal{P}(3)$ is a hexagon in R^{3} in the plane.
(3) $\mathcal{P}(4)$ is a truncated octahedron in R^{3} subset of the hyperplane $x+y+z+w=10$.

The Permutahedron of order 2

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Figure: The two permutations $(1,2)$ and $(2,1)$: a line segment in R^{2}

The Permutahedron of order 3

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: Hexagon in R^{3} of the six permutations of order 3: $(1,2,3),(2,1,3),(3,1,2),(3,2,1),(2,3,1),(1,3,2),(1,2,3)$

The Permutahedron of order 4

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: The 24 permutations of order 4 determine a truncated octahedron in R^{4} which we show in R^{3}

Change Ringing n bells

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Definition

A sequence Σ of permutations is a change ringing composition if

- Σ begins and ends with the identity permutation of S_{n}
- Otherwise each of the n ! order n permutations occurs exactly one time
- Two consecutive permutations of Σ differ by switching two consecutive integers.

Ringing Changes on Three Bells

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

1	2	3
2	1	3
3	1	2
3	2	1
2	3	1
1	3	2
1	2	3

Table: One way to ring changes on 3 bells; the second reverses the order.

Ringing Changes Geometrically

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: The change Double Canterbury Pleasure Minimus corresponds to a Hamiltonian path in the edge set of $\mathcal{P}(4)$

Change Ringing

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Critique of Change Ringing

- Change ringing is very limited-hard to get non-trivial examples.

Change Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Critique of Change Ringing

- Change ringing is very limited-hard to get non-trivial examples.
- There is no relationship between one change and another

Change Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Critique of Change Ringing

- Change ringing is very limited-hard to get non-trivial examples.
- There is no relationship between one change and another
- Each permutation is treated equally. Musically one expects to make choices.

Change Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Critique of Change Ringing

- Change ringing is very limited-hard to get non-trivial examples.
- There is no relationship between one change and another
- Each permutation is treated equally. Musically one expects to make choices.
- There is a fixed length to a ring of changes

Change Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam Calculation

Critique of Change Ringing

- Change ringing is very limited-hard to get non-trivial examples.
- There is no relationship between one change and another
- Each permutation is treated equally. Musically one expects to make choices.
- There is a fixed length to a ring of changes
- The difficulty of calculation increases rapidly with n

A new way to get a sequences of permutations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing a light in a mirrored $\mathcal{P}(4)$

A new way to get a sequences of permutations

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing a light in a mirrored $\mathcal{P}(4)$

- Build room in the shape of $\mathcal{P}(4)$ with all walls made of mirror.

A new way to get a sequences of permutations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing a light in a mirrored $\mathcal{P}(4)$

- Build room in the shape of $\mathcal{P}(4)$ with all walls made of mirror.
- From inside the room shine a "generic" laser beam from point x_{0} in direction λ_{0}.

A new way to get a sequences of permutations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Bouncing a light in a mirrored $\mathcal{P}(4)$

- Build room in the shape of $\mathcal{P}(4)$ with all walls made of mirror.
- From inside the room shine a "generic" laser beam from point x_{0} in direction λ_{0}.
- The beam as it reflects will hit successive walls giving a sequence of points x_{1}, x_{2}, \ldots.

A new way to get a sequences of permutations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change Ringing

Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation

Bouncing a light in a mirrored $\mathcal{P}(4)$

- Build room in the shape of $\mathcal{P}(4)$ with all walls made of mirror.
- From inside the room shine a "generic" laser beam from point x_{0} in direction λ_{0}.
- The beam as it reflects will hit successive walls giving a sequence of points x_{1}, x_{2}, \ldots.
- Since the beam is generic there will be a unique vertex (permutation) π_{i} of $\mathcal{P}(4)$ nearest to x_{i}.

A new way to get a sequences of permutations

Geometric

Bouncing a light in a mirrored $\mathcal{P}(4)$

- Build room in the shape of $\mathcal{P}(4)$ with all walls made of mirror.
- From inside the room shine a "generic" laser beam from point x_{0} in direction λ_{0}.
- The beam as it reflects will hit successive walls giving a sequence of points x_{1}, x_{2}, \ldots.
- Since the beam is generic there will be a unique vertex (permutation) π_{i} of $\mathcal{P}(4)$ nearest to x_{i}.
- Thus we generate our sequence of permutations $S\left(x_{0}, \lambda_{0}\right)=\left(\pi_{1}, \pi_{2}, \ldots\right)$

Bounce points

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

Definition

The points x_{1}, x_{2}, \ldots are called either intersection points (they are calculated as an intersection of a ray and $\partial \mathcal{P}(n)$) or bounce points (since our beam bounces there).

Bouncing for $\mathcal{P}(n)$

Cleary we can define this process for permutations of order n.

Lets bounce

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling
Figure: An example of 16 bounces

Corresponding Sequence of Permutations

Lets bounce

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: Another example of 16 bounces

The numbers we use are not necessarily pitches

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Figure: Any knob or input/output on the Control Panel of this Moog corresponds to a number. Photo by Kevin Lightner

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Comparing Bouncing to Change Ringing

- Change ringing: finite number of possibilities

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities

Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Change ringing is hard is it to calculate.

Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate

Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate as we will see

Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Change Ringing-no relationship between one change and another

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Bouncing: if one varies x and λ one gets related permutation sequences $S(x, \lambda)$

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Bouncing: if one varies x and λ one gets related permutation sequences $S(x, \lambda)$
- Change Ringing: each permutation is treated equally

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Bouncing: if one varies x and λ one gets related permutation sequences $S(x, \lambda)$
- Bouncing: distinct sequences have distinct characteristics

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Bouncing: if one varies x and λ one gets related permutation sequences $S(x, \lambda)$
- Bouncing: distinct sequences have distinct characteristics
- Change Ringing: difficulty of calculation increases rapidly with n

Bouncing, Ringing

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids

Comparing Bouncing to Change Ringing

- Bouncing:infinite number of possibilities
- Bouncing is easy to calculate
- Bouncing: if one varies x and λ one gets related permutation sequences $S(x, \lambda)$
- Bouncing: distinct sequences have distinct characteristics
- Bouncing: calculation is quadratic with respect to n

The rest of the talk: mathematics and visualization

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation

Questions we now address
(1) How fast can we calculate the bouncing path for fairly high orders- $8,12,16,32$?
(2) How can we visualize the calculational process and the results?
(3) What is the geometry of a high dimensional permutahedron?
(4) How does the geometry of the permutahedron change with n ?

Basic approach

Geometric

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Change Ringing

(1) Construct a special polygonal path in the wireframe of a permutahedron.
(2) The sequence of vertices on that path is the desired permutation sequence.

Bouncing, an alternative

(1) Take a generically generated generic path in R^{n} that avoids the wireframe
(2) Obtain the sequence of permutations by "digitizing" to permutations near the path.

Vertices of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Theorem

There are n ! vertices in $\mathcal{P}(n)$.
All vertices of $\mathcal{P}(n)$ all lie on an $(n-2)$-sphere with center \mathcal{C}_{n}, the centroid of $\mathcal{P}(n)$, and radius ρ_{n}.

Definition

This sphere is the permutahedral sphere of order n and ρ_{n} the permutahedrdal radius. The distance between \mathcal{C}_{n} and the centroid of Y_{α} is the inner permutahedrdal radius.

Generators of the Symmetric Group

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Definition

An elementary transposition is a permutation that interchanges consecutive integers,

Note:

This is interchange of consecutive integers (wherever they are) not interchange of integers in consecutive positions (whatever the integers are).

Edges of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing

Definition

The union of edges of $\mathcal{P}(n)$ is called the wireframe of $\mathcal{P}(n)$

Example

The four edges from $(1,2,3,4,5)$ go to $(2,1,3,4,5)$, $(1,3,2,4,5),(1,2,4,3,5)$, and (1, 2, 3, 5, 4).

Edges of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedror
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Definition

The union of edges of $\mathcal{P}(n)$ is called the wireframe of $\mathcal{P}(n)$

Example

The four edges from $(1,2,3,4,5)$ go to $(2,1,3,4,5)$, $(1,3,2,4,5),(1,2,4,3,5)$, and (1, 2, 3, 5, 4).

Basic general edge facts

- Two permutations are connected by an edge if and only if coordinates differ by a switch of two coordinates of consecutive value.

Edges of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Definition

The union of edges of $\mathcal{P}(n)$ is called the wireframe of $\mathcal{P}(n)$

Example

The four edges from $(1,2,3,4,5)$ go to $(2,1,3,4,5)$, $(1,3,2,4,5),(1,2,4,3,5)$, and (1, 2, 3, 5, 4).

Basic general edge facts

- Two permutations are connected by an edge if and only if coordinates differ by a switch of two coordinates of consecutive value.
- Thus any edge corresponds to an elementary transposition.

Edges of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

Definition

The union of edges of $\mathcal{P}(n)$ is called the wireframe of $\mathcal{P}(n)$

Example

The four edges from $(1,2,3,4,5)$ go to $(2,1,3,4,5)$, $(1,3,2,4,5),(1,2,4,3,5)$, and (1, 2, 3, 5, 4).

Basic general edge facts

- Two permutations are connected by an edge if and only if coordinates differ by a switch of two coordinates of consecutive value.
- Thus any edge corresponds to an elementary transposition.
- Thus all edges have length $\sqrt{2}$.

Edges of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Cell Structure coloring edges coloring facets

Braids
Beam

Definition

The union of edges of $\mathcal{P}(n)$ is called the wireframe of $\mathcal{P}(n)$

Example

The four edges from $(1,2,3,4,5)$ go to $(2,1,3,4,5)$, $(1,3,2,4,5),(1,2,4,3,5)$, and (1, 2, 3, 5, 4).

Basic general edge facts

- Two permutations are connected by an edge if and only if coordinates differ by a switch of two coordinates of consecutive value.
- Thus any edge corresponds to an elementary transposition.
- Thus all edges have length $\sqrt{2}$.
- The order of any vertex is $(n-1)$.

Visualizing the edges

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation

Rotate and project to low dimensions

We can generically rotate a wireframe of any order permutahedron then project homemorphically into R^{3}.

We can generically rotate a wireframe of any order permutahedron then project non-homemorphically into R^{2} and still get a meaningful image.

Color the edges

We can use $(n-1)$ colors on the edges to code the corresponding transpositions.

Coloring Edges: Order 4

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers

Tiling

Coloring Edges: Order 5

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Coloring Edges: Order 6

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Cells of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change Ringing

Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling

Proposition
An k-cell of $\mathcal{P}(n)$ is either subgroup which is a product of k symmetric groups or a coset of one of such subgroup. Here $P(0)=\{1\}$.

Definition

$$
\begin{aligned}
& \text { Let } Y_{\alpha}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S_{n}: x_{1}=1\right\} \text { and } \\
& Y_{\omega}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S_{n}: x_{n}=n\right\} \text {. We call } Y_{\alpha} \text { the first Young } \\
& \text { subgroup of } S_{n}, Y_{\omega} \text { the last Young subgroup of } S_{n} \text {. }
\end{aligned}
$$

Remark

Y_{α} and Y_{ω} are isomorphic to S_{n-1}

Re-examining $\mathcal{P}(4)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: The edges of one color are all the cosets of a Young subgroup of order two. The hexagons are all cosets of the two Young subgroups isomorphic to $\mathcal{P}(3)$. The squares are cosets of $\mathcal{P}(2) \times \mathcal{P}(2)$.

Re-examining $\mathcal{P}(4)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: The edges of one color are all the cosets of a Young subgroup of order two. The hexagons are all cosets of the two Young subgroups isomorphic to $\mathcal{P}(3)$. The squares are cosets of $\mathcal{P}(2) \times \mathcal{P}(2)$.

Re-examining $\mathcal{P}(4)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: The edges of one color are all the cosets of a Young subgroup of order two. The hexagons are all cosets of the two Young subgroups isomorphic to $\mathcal{P}(3)$. The squares are cosets of $\mathcal{P}(2) \times \mathcal{P}(2)$.

Facets of the Permutahedron

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedro
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids

Beam
Calculation
Edges in layers Tiling

Definition

The facets are the the $(n-2)$-cells of $\mathcal{P}(n)$.

Proposition

$$
\mathcal{P}(n) \text { has } 2^{n}-2 \text { facets }
$$

Example

So $\mathcal{P}(8)$ has 254 facets and $\mathcal{P}(12)$ has 4094.

Implication

The number of facets is exponential in n. Our light beam calculation should not be based on examination of all facets.

A duality of facets and edges

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets Braids

Beam
Calculation
Edges in layers Tiling

Transposition colors for facets

At a vertex v of facet F you see $(n-1)$ edges all of distinct colors.

One of these colors is not an edge of F.
This color will identify our corresponding elementary transposition.

Coloring the facets

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Figure: Here we color the three generators: $\sigma_{1} \sigma_{2} \sigma_{3}$

Coloring the facets

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Figure: Here we color the three generators: red green blue

Coloring the facets

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Figure: Here we color the three generators: $\sigma_{1} \sigma_{2} \sigma_{3}$

Coloring the facets

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Figure: Here we color the three generators: $\sigma_{1} \sigma_{2} \sigma_{3}$ The facet color is the unique color not an edge color of the facet.

Two group presentations:

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Presentation of Order n Braid Group

Generators: $\sigma_{1}, \ldots, \sigma_{n-1}$
Relations:

- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $j \neq i \pm 1$
- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$

Presentation of Order n Symmetric Group

Generators: $\sigma_{1}, \ldots, \sigma_{n-1}$
Relations:

- $\sigma_{i}=\sigma_{i}^{-1}$
- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $j \neq i \pm 1$
- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$

Inverses and elementary transpositions

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation

From the symmetric group to the braid group
A finite sequence of elementary transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ corresponds to a word in the symmetric group:

$$
\tau_{1} \tau_{2} \cdots \tau_{n}
$$

But if (somehow) we can distinguish elementary transpositions from their inverses we would obtain a word in the braid group:

$$
\tau_{1}^{\epsilon_{1}} \tau_{2}^{\epsilon_{2}} \cdots \tau_{n}^{\epsilon_{n}}
$$

Signs for transpositions: one of many methods

Geometric generation of permutation sequences

Dennis
Roseman

Definition

A braid sign convention is a function that associates to any bounce point x_{i} of any bouncing path $\epsilon\left(x_{i}\right)= \pm 1$.

Example

Let \vec{N} be the vector from the identity permutation to the reverse of the identity. Define the sign at x_{i} to be the sign of the dot product $\overrightarrow{x_{i-1} x_{i}} \cdot \vec{N}$. Think of the identity as the "south pole ". Positive means we were heading north before we "bounced"; negative means heading "south".

A bouncing path braid

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Definition

Given a bouncing path $x_{0}, x_{1}, x_{2}, x_{3} \ldots$ and a braid sign convention we obtain a bounce path braid - the braid given by the word in the braid group:

$$
\sigma\left(x_{1}\right)^{\epsilon_{1}} \sigma\left(x_{2}\right)^{\epsilon_{2}} \sigma\left(x_{3}\right)^{\epsilon_{3}} \cdots
$$

Example of Bounce Braid for Order 4

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing

Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Example of Bounce Braid for Order 8

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure

coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Example of Bounce Braid for Order 12

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Beam
Calculation
Edges in layers
Tiling

Example of Bounce Braid for Order 16

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids

Beam
Calculation
Edges in layers
Tiling

Bounce Braids

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Braid as an Aid

In general we need to look at the bounce permutations together with the bounce braid.

The bounce path indicates where the bounce occurs, the braid tells us something about how the "type" of bounce.

The nearest permutation to a point

Geometric generation of permutation sequences

Dennis
Roseman

Definition

A generic point $z=\left(z_{1}, \ldots, z_{n}\right)$ of R^{n} will have n distinct coordinate values.

The rank of z_{i}, denoted $r\left(z_{i}\right)$, is one plus the number of coordinates of z smaller than z_{i}.

Definition

The rank vector $\rho(z)=\left(r\left(z_{1}\right), \ldots, r\left(z_{n}\right)\right)$

In other words:

Simply Put: The rank of z is the closest permutation to z.
Or not: A generic point is mapped to a chamber of the real n-braid arrangement

Finding the intersection of a ray and $\partial \mathcal{P}(n)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

The key
Focus on the plane P that contains the three points
(1) the centroid C of $\mathcal{P}(n)$,
(2) the initial point x_{0}
(3) the tip of our vector $x_{0}+\lambda$.

We then project the wireframe of $\mathcal{P}(n)$ onto this plane.

Projection wireframe $\mathcal{P}(5)$

Geometric
generation of permutation
sequences
Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(5)$

Geometric
generation of permutation
sequences
Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation

Projection wireframe $\mathcal{P}(5)$

Geometric
generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(5)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(5)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(6)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers

Projection wireframe $\mathcal{P}(6)$

Geometric generation of permutation
sequences
Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Projection wireframe $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Observations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

- The higher permutahedra are not round.

Observations

Geometric generation of permutation sequences

Dennis Roseman

- The higher permutahedra are not round. (This is important since if we do our bouncing inside a round ball, the path will be planar)

Observations

- The higher permutahedra are not round. (This is important since if we do our bouncing inside a round ball, the path will be planar)
- There seems to be some structure there that is evident from the projections.

Observations

- The higher permutahedra are not round. (This is important since if we do our bouncing inside a round ball, the path will be planar)
- There seems to be some structure there that is evident from the projections.
(Some will be clearer with a colored wireframe)

Observations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

- The higher permutahedra are not round. (This is important since if we do our bouncing inside a round ball, the path will be planar)
- There seems to be some structure there that is evident from the projections.
(Some will be clearer with a colored wireframe)
- The "central" portion of figures is hard to understand but the area around the edge is much clearer.

Observations

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers Tiling

- The higher permutahedra are not round. (This is important since if we do our bouncing inside a round ball, the path will be planar)
- There seems to be some structure there that is evident from the projections.
(Some will be clearer with a colored wireframe)
- The "central" portion of figures is hard to understand but the area around the edge is much clearer. (In fact the bounding polygonal path of the projection is the projection of a simple closed polygonal path of $\mathcal{P}(n)$ edges)

Creating great path: projection to the plane P

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Same as previous figure after rotation in R^{3}

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

A Great Path Method

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids
Beam
Calculation
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.
(9) Each edge of ∂D is a projection of a single edge of W.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.
(9) Each edge of ∂D is a projection of a single edge of W.
(6) A union of these edges which form a polygonal arc in $\mathcal{P}(n)$ is called a great path.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.
(9) Each edge of ∂D is a projection of a single edge of W.
(6) A union of these edges which form a polygonal arc in $\mathcal{P}(n)$ is called a great path.
(0) From π_{0}, follow this great path in the general direction of λ obtaining vertex sequence p_{0}, p_{1}, \ldots.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change Ringing

Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers Tiling
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.
(9) Each edge of ∂D is a projection of a single edge of W.
(6) A union of these edges which form a polygonal arc in $\mathcal{P}(n)$ is called a great path.
(- From π_{0}, follow this great path in the general direction of λ obtaining vertex sequence p_{0}, p_{1}, \ldots.
(3) At each p_{i} find the intersection point of the ray with hyperplanes determined by facets at p_{i}.

A Great Path Method

Geometric generation of permutation sequences

Dennis
Roseman
(1) Let P be the plane through points: $x_{0}, x_{0}+\lambda$ and the centroid of $\mathcal{P}(n)$.
(2) Let $\pi_{0}=\rho\left(x_{0}\right)$.
(3) Consider the projection ϕ of the wireframe W of $\mathcal{P}(n)$ onto P. Let D be the convex hull of $\phi(W)$.
(9) Each edge of ∂D is a projection of a single edge of W.
(6) A union of these edges which form a polygonal arc in $\mathcal{P}(n)$ is called a great path.
(0) From π_{0}, follow this great path in the general direction of λ obtaining vertex sequence p_{0}, p_{1}, \ldots.
(3) At each p_{i} find the intersection point of the ray with hyperplanes determined by facets at p_{i}.
(8) By convexity of $\mathcal{P}(n)$ the closest such intersection point is our bounce point.

Yet more braids!

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
A braid from edges, not facets
(1) Put together the great paths used in calculating a bounce sequence.
(2) This sequence of edges of $\partial \mathcal{P}(n)$ gives a sequence of elementary transpositions.
(3) There are ways to define signs to this sequence giving yet more braids.

Beam
Calculation
Edges in layers
Tiling

Very briefly—one way to get signs

Geometric

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Example

(1) Consider the polygonal path $\beta=P \cap \partial \mathcal{P}(n)$
(2) orient β using λ

- orient the ($n-3$)-cells of $\partial \mathcal{P}(n)$
- use intersection numbers of the β with those cells to get our sign

Note:
There is a quick indirect way to calculate this from the construction of the great path.

Sorting networks

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

A connection to topic in computer science
There is a relationship between a colored great path which joins two antipodal permutations and the concept of a sorting network.

A different bouncing braid

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

A braid based on edges near bounce
(1) Take bounce points $x_{1}, x_{2}, \ldots x_{n}$ where x_{i} lies in facet F_{i}
(2) Let e_{i} be the edge of F_{i} closest to x_{i} with associated an elementary transposition $\Sigma\left(x_{i}\right)$
(3) There are a number of ways to assign a braid sign convention ϵ_{i}
(9) This gives a braid word

$$
\Sigma\left(x_{1}\right)^{\epsilon_{1}} \Sigma\left(x_{2}\right)^{\epsilon_{2}} \ldots \Sigma\left(x_{n}\right)^{\epsilon_{n}}
$$

A different bouncing braid

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

There is not time to go into detail ...
To give a sense that the color of an edge tells something about the nature of the bounce consider the following graphics.

A projection of labeled wireframe of $\mathcal{P}(5)$

Geometric generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets Braids

Beam Calculation

Edges in layers

A projection of labeled wireframe of $\mathcal{P}(5)$

Geometric generation of permutation sequences

Dennis Roseman

Permutahedron

Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets Braids

Beam
Calculation
Edges in layers

A projection of labeled wireframe of $\mathcal{P}(6)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers

A projection of labeled wireframe of $\mathcal{P}(7)$

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation

Edges in layers Tiling

An alternative to bouncing: permutahedral tiles

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Theorem
 R^{n} can be tiled with translated copies $\mathcal{P}(n)$

A black and white tiling of the plane by hexagons

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Fitting two adjacent $\mathcal{P}(4) s$

Geometric
generation of permutation
sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Fitting three adjacent $\mathcal{P}(4) s$

Geometric
generation of permutation
sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Fitting four adjacent $\mathcal{P}(4) s$

Geometric
generation of permutation
sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation

Edges in layers
Tiling

A "black and white tiling of R^{3} by $\mathcal{P}(4) \mathrm{s}$

Geometric
generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids

Beam
Calculation
Edges in layers
Tiling

A "black and white tiling of R^{3} by $\mathcal{P}(4) \mathrm{s}$

Geometric
generation of permutation sequences

Dennis

Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Review

Geometric generation of permutation sequences

Dennis

Our Questions:

Review

Geometric generation of permutation sequences

Dennis

Our Questions: and some answers

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges
coloring facets
Braids
Beam
Calculation
Edges in layers
Tiling

Review

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Our Questions: and

(1) How fast can we calculate the bouncing path for fairly high orders- $8,12,16,32$?
(3) How can we visualize the calculational process and the results?
(0) What is the geometry of a high dimensional permutahedron?

- How does the geometry of the permutahedron change with n ?

Review

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Our Questions: and

(1) How fast can we calculate the bouncing path for fairly high orders-8, 12, 16, 32? Quadratic, not exponential.
(2) How can we visualize the calculational process and the results?
(3) What is the geometry of a high dimensional permutahedron?
(9) How does the geometry of the permutahedron change with n ?

Review

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Our Questions: and

(1) How fast can we calculate the bouncing path for fairly high orders-8, 12, 16, 32? Quadratic, not exponential.
(2) How can we visualize the calculational process and the results? Projections, color code, braids.
(3) What is the geometry of a high dimensional permutahedron?
(4) How does the geometry of the permutahedron change with n ?

Review

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation
Edges in layers
Tiling

Our Questions: and

(1) How fast can we calculate the bouncing path for fairly high orders-8, 12, 16, 32? Quadratic, not exponential.
(2) How can we visualize the calculational process and the results? Projections, color code, braids.
(3) What is the geometry of a high dimensional permutahedron? Related to Young subgroups and cosets.
(9) How does the geometry of the permutahedron change with n ?

Review

Geometric generation of permutation sequences

Dennis
Roseman

Our Questions: and

(1) How fast can we calculate the bouncing path for fairly high orders-8, 12, 16, 32? Quadratic, not exponential.
(2) How can we visualize the calculational process and the results? Projections, color code, braids.
(3) What is the geometry of a high dimensional permutahedron? Related to Young subgroups and cosets.
(9) How does the geometry of the permutahedron change with n ? It does not become rounder. In fact in some directions it "flattens out".

Thank you

Geometric generation of permutation sequences

Dennis
Roseman

Permutahedron
Change
Ringing
Bouncing
Problem List
Cell Structure
coloring edges coloring facets

Braids
Beam
Calculation

Edges in layers
Tiling

