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Overture

Music

Original motivation: apply mathematics to the composition of
music.

Mathematics Focus:

Some geometry of the n-dimensional permutahedron.

Visualization Focus

Higher dimensional visualization including braids used as a
visualization tool.
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From Abstract Mathematics to Musical
Composition

Two very different musical examples:

change ringing

Nomos Alpha of Xenankis
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From Change Ringing by Wilfrid G. Wilson
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From Formal Music by I. Xenakis—Nomos Alpha
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Music and Mathematics

Definition

A musical composition is a family of sequences of related
musical events.

Time and voices

Progression in time is related to succession in a sequence; each
sequence represents a “voice”.

The mathematical objects we chose are permutations.

Construct families of sequences length k of permutations of
order n , where k and n are independent.
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Permutations Geometrically: the Permutahedron

The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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Permutations Geometrically: the Permutahedron

The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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Permutations Geometrically: the Permutahedron

The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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Permutations Geometrically: the Permutahedron

The Permutahedron

1 Take the n! permutations Sn to be all permutations of
(1, 2, . . . , n)

2 They are n-tuples—plot them as points in Rn.

3 Take the convex hull.

4 The resulting polytope is the permutahedron P(n)
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) .

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 .
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) , a subset of the line x + y = 1 + 2.

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 .



Geometric
generation of
permutation
sequences

Dennis
Roseman

Permutahedron

Change
Ringing

Bouncing

Problem List

Cell Structure

coloring edges

coloring facets

Braids

Beam
Calculation

Edges in layers

Tiling

Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) , a subset of the line x + y = 3.

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 .
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) .

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 .
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) .

2 P(3) is a hexagon in R3 in the plane subset of the plane
x + y + z = 6.

3 P(4) is a truncated octahedron in R3 .
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) .

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 .
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Low Dimensional Cases

Some Examples:

1 P(2) is the line segment in R2 with endpoints (1, 2) and
(2, 1) .

2 P(3) is a hexagon in R3 in the plane .

3 P(4) is a truncated octahedron in R3 subset of the
hyperplane x + y + z + w = 10.
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The Permutahedron of order 2

Figure: The two permutations (1, 2) and (2, 1) : a line segment in R2
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The Permutahedron of order 3

Figure: Hexagon in R3 of the six permutations of order 3:
(1, 2, 3), (2, 1, 3), (3, 1, 2), (3, 2, 1), (2, 3, 1), (1, 3, 2), (1, 2, 3)
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The Permutahedron of order 4

Figure: The 24 permutations of order 4 determine a truncated
octahedron in R4 which we show in R3
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Change Ringing n bells

Definition

A sequence Σ of permutations is a change ringing
composition if

Σ begins and ends with the identity permutation of Sn

Otherwise each of the n! order n permutations occurs
exactly one time

Two consecutive permutations of Σ differ by switching
two consecutive integers.
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Ringing Changes on Three Bells

1 2 3
2 1 3
3 1 2
3 2 1
2 3 1
1 3 2
1 2 3

Table: One way to ring changes on 3 bells; the second reverses the
order.
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Ringing Changes Geometrically

Figure: The change Double Canterbury Pleasure Minimus
corresponds to a Hamiltonian path in the edge set of P(4)
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Change Ringing

Critique of Change Ringing

Change ringing is very limited—hard to get non-trivial
examples.

There is no relationship between one change and another

Each permutation is treated equally. Musically one expects
to make choices.

There is a fixed length to a ring of changes

The difficulty of calculation increases rapidly with n
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Critique of Change Ringing

Change ringing is very limited—hard to get non-trivial
examples.

There is no relationship between one change and another

Each permutation is treated equally. Musically one expects
to make choices.

There is a fixed length to a ring of changes

The difficulty of calculation increases rapidly with n
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Critique of Change Ringing

Change ringing is very limited—hard to get non-trivial
examples.

There is no relationship between one change and another

Each permutation is treated equally. Musically one expects
to make choices.

There is a fixed length to a ring of changes

The difficulty of calculation increases rapidly with n
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Critique of Change Ringing

Change ringing is very limited—hard to get non-trivial
examples.

There is no relationship between one change and another

Each permutation is treated equally. Musically one expects
to make choices.

There is a fixed length to a ring of changes

The difficulty of calculation increases rapidly with n
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Change Ringing

Critique of Change Ringing

Change ringing is very limited—hard to get non-trivial
examples.

There is no relationship between one change and another

Each permutation is treated equally. Musically one expects
to make choices.

There is a fixed length to a ring of changes

The difficulty of calculation increases rapidly with n
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A new way to get a sequences of permutations

Bouncing a light in a mirrored P(4)

Build room in the shape of P(4) with all walls made of
mirror.

From inside the room shine a “generic” laser beam from
point x0 in direction λ0.

The beam as it reflects will hit successive walls giving a
sequence of points x1, x2, . . ..

Since the beam is generic there will be a unique vertex
(permutation) πi of P(4) nearest to xi .

Thus we generate our sequence of permutations
S(x0, λ0) = (π1, π2, . . .)
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Bouncing a light in a mirrored P(4)

Build room in the shape of P(4) with all walls made of
mirror.

From inside the room shine a “generic” laser beam from
point x0 in direction λ0.

The beam as it reflects will hit successive walls giving a
sequence of points x1, x2, . . ..

Since the beam is generic there will be a unique vertex
(permutation) πi of P(4) nearest to xi .

Thus we generate our sequence of permutations
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A new way to get a sequences of permutations

Bouncing a light in a mirrored P(4)

Build room in the shape of P(4) with all walls made of
mirror.

From inside the room shine a “generic” laser beam from
point x0 in direction λ0.

The beam as it reflects will hit successive walls giving a
sequence of points x1, x2, . . ..

Since the beam is generic there will be a unique vertex
(permutation) πi of P(4) nearest to xi .

Thus we generate our sequence of permutations
S(x0, λ0) = (π1, π2, . . .)
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Bounce points

Definition

The points x1, x2, . . . are called either intersection points
(they are calculated as an intersection of a ray and ∂P(n)) or
bounce points (since our beam bounces there).

Bouncing for P(n)

Cleary we can define this process for permutations of order n.
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Lets bounce

Figure: An example of 16 bounces
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Corresponding Sequence of Permutations

2 1 4 3
2 1 4 3
1 3 2 4
2 4 3 1
3 1 2 4
3 2 1 4
2 3 1 4
2 4 1 3
2 3 4 1
4 2 1 3
3 4 1 2
3 4 1 2
1 3 4 2
1 3 4 2
4 1 3 2
1 2 3 4
1 4 2 3

1 4 2 3
3 4 2 1
4 2 1 3
1 2 4 3
1 3 4 2
3 2 4 1
4 1 3 2
3 1 2 4
3 1 2 4
2 4 3 1
1 4 2 3
1 4 2 3
2 1 3 4
2 1 3 4
4 1 3 2
2 4 3 1
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Lets bounce

Figure: Another example of 16 bounces
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The numbers we use are not necessarily pitches

Figure: Any knob or input/output on the Control Panel of this Moog
corresponds to a number. Photo by Kevin Lightner
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Change ringing: finite number of possibilities
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Change ringing is hard is it to calculate.
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate as we will see
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Change Ringing—no relationship between one change
and another
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Bouncing: if one varies x and λ one gets related
permutation sequences S(x , λ)
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Bouncing: if one varies x and λ one gets related
permutation sequences S(x , λ)

Change Ringing: each permutation is treated equally
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Bouncing: if one varies x and λ one gets related
permutation sequences S(x , λ)

Bouncing: distinct sequences have distinct characteristics
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Bouncing: if one varies x and λ one gets related
permutation sequences S(x , λ)

Bouncing: distinct sequences have distinct characteristics

Change Ringing: difficulty of calculation increases rapidly
with n
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Bouncing, Ringing

Comparing Bouncing to Change Ringing

Bouncing:infinite number of possibilities

Bouncing is easy to calculate

Bouncing: if one varies x and λ one gets related
permutation sequences S(x , λ)

Bouncing: distinct sequences have distinct characteristics

Bouncing: calculation is quadratic with respect to n
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The rest of the talk: mathematics and visualization

Questions we now address

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32?

2 How can we visualize the calculational process and the
results?

3 What is the geometry of a high dimensional
permutahedron?

4 How does the geometry of the permutahedron change
with n?
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Basic approach

Change Ringing

1 Construct a special polygonal path in the wireframe of a
permutahedron.

2 The sequence of vertices on that path is the desired
permutation sequence.

Bouncing, an alternative

1 Take a generically generated generic path in Rn that
avoids the wireframe

2 Obtain the sequence of permutations by “digitizing” to
permutations near the path.
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Vertices of the Permutahedron

Theorem

There are n! vertices in P(n).

All vertices of P(n) all lie on an (n − 2)-sphere with center Cn,
the centroid of P(n), and radius ρn.

Definition

This sphere is the permutahedral sphere of order n and ρn

the permutahedrdal radius. The distance between Cn and the
centroid of Yα is the inner permutahedrdal radius.
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Generators of the Symmetric Group

Definition

An elementary transposition is a permutation that
interchanges consecutive integers,

Note:

This is interchange of consecutive integers (wherever they are)
not interchange of integers in consecutive positions (whatever
the integers are).
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Edges of the Permutahedron

Definition

The union of edges of P(n) is called the wireframe of P(n)

Example

The four edges from (1, 2, 3, 4, 5) go to (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (1, 2, 4, 3, 5), and (1, 2, 3, 5, 4).

Basic general edge facts

Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Thus any edge corresponds to an elementary transposition.

Thus all edges have length
√

2.

The order of any vertex is (n − 1).
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Edges of the Permutahedron

Definition

The union of edges of P(n) is called the wireframe of P(n)

Example

The four edges from (1, 2, 3, 4, 5) go to (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (1, 2, 4, 3, 5), and (1, 2, 3, 5, 4).

Basic general edge facts

Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Thus any edge corresponds to an elementary transposition.

Thus all edges have length
√

2.

The order of any vertex is (n − 1).
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Edges of the Permutahedron

Definition

The union of edges of P(n) is called the wireframe of P(n)

Example

The four edges from (1, 2, 3, 4, 5) go to (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (1, 2, 4, 3, 5), and (1, 2, 3, 5, 4).

Basic general edge facts

Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Thus any edge corresponds to an elementary transposition.

Thus all edges have length
√

2.

The order of any vertex is (n − 1).
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Edges of the Permutahedron

Definition

The union of edges of P(n) is called the wireframe of P(n)

Example

The four edges from (1, 2, 3, 4, 5) go to (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (1, 2, 4, 3, 5), and (1, 2, 3, 5, 4).

Basic general edge facts

Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Thus any edge corresponds to an elementary transposition.

Thus all edges have length
√

2.

The order of any vertex is (n − 1).
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Edges of the Permutahedron

Definition

The union of edges of P(n) is called the wireframe of P(n)

Example

The four edges from (1, 2, 3, 4, 5) go to (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (1, 2, 4, 3, 5), and (1, 2, 3, 5, 4).

Basic general edge facts

Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Thus any edge corresponds to an elementary transposition.

Thus all edges have length
√

2.

The order of any vertex is (n − 1).
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Visualizing the edges

Rotate and project to low dimensions

We can generically rotate a wireframe of any order
permutahedron then project homemorphically into R3.

We can generically rotate a wireframe of any order
permutahedron then project non-homemorphically into R2 and
still get a meaningful image.

Color the edges

We can use (n − 1) colors on the edges to code the
corresponding transpositions.
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Coloring Edges: Order 4
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Coloring Edges: Order 5
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Coloring Edges: Order 6
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Cells of the Permutahedron

Proposition

An k-cell of P(n) is either subgroup which is a product of k
symmetric groups or a coset of one of such subgroup. Here
P(0) = {1}.

Definition

Let Yα = {(x1, . . . , xn) ∈ Sn : x1 = 1} and
Yω = {(x1, . . . , xn) ∈ Sn : xn = n}. We call Yα the first Young
subgroup of Sn,Yω the last Young subgroup of Sn.

Remark

Yα and Yω are isomorphic to Sn−1
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Re-examining P(4)

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2)× P(2).
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Re-examining P(4)

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2)× P(2).
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Re-examining P(4)

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2)× P(2).
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Facets of the Permutahedron

Definition

The facets are the the (n − 2)-cells of P(n) .

Proposition

P(n) has 2n − 2 facets

Example

So P(8) has 254 facets and P(12) has 4094.

Implication

The number of facets is exponential in n. Our light beam
calculation should not be based on examination of all facets.
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A duality of facets and edges

Transposition colors for facets

At a vertex v of facet F you see (n − 1) edges all of distinct
colors.

One of these colors is not an edge of F .

This color will identify our corresponding elementary
transposition.
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Coloring the facets

Figure: Here we color the three generators: σ1 σ2 σ3

The facet
color is the unique color not an edge color of the facet.
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Coloring the facets

Figure: Here we color the three generators: red green blue

The
facet color is the unique color not an edge color of the facet.
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Coloring the facets

Figure: Here we color the three generators: σ1 σ2 σ3

The facet
color is the unique color not an edge color of the facet.
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Coloring the facets

Figure: Here we color the three generators: σ1 σ2 σ3 The facet
color is the unique color not an edge color of the facet.
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Two group presentations:

Presentation of Order n Braid Group

Generators: σ1, . . . , σn−1

Relations:

σiσj = σjσi if j 6= i ± 1

σiσi+1σi = σi+1σiσi+1

Presentation of Order n Symmetric Group

Generators: σ1, . . . , σn−1

Relations:

σi = σ−1
i

σiσj = σjσi if j 6= i ± 1

σiσi+1σi = σi+1σiσi+1
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Inverses and elementary transpositions

From the symmetric group to the braid group

A finite sequence of elementary transpositions τ1, τ2, . . . , τn
corresponds to a word in the symmetric group:

τ1 τ2 · · · τn.

But if (somehow) we can distinguish elementary transpositions
from their inverses we would obtain a word in the braid group:

τ ε11 τ ε22 · · · τ
εn
n .
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Signs for transpositions: one of many methods

Definition

A braid sign convention is a function that associates to any
bounce point xi of any bouncing path ε(xi ) = ±1.

Example

Let
−→
N be the vector from the identity permutation to the

reverse of the identity. Define the sign at xi to be the sign of

the dot product −−−→xi−1xi ·
−→
N . Think of the identity as the “south

pole ”. Positive means we were heading north before we
“bounced”; negative means heading “south”.
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A bouncing path braid

Definition

Given a bouncing path x0, x1, x2, x3 . . . and a braid sign
convention we obtain a bounce path braid— the braid given
by the word in the braid group:

σ(x1)ε1 σ(x2)ε2 σ(x3)ε3 · · ·
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Example of Bounce Braid for Order 4



Geometric
generation of
permutation
sequences

Dennis
Roseman

Permutahedron

Change
Ringing

Bouncing

Problem List

Cell Structure

coloring edges

coloring facets

Braids

Beam
Calculation

Edges in layers

Tiling

Example of Bounce Braid for Order 8
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Example of Bounce Braid for Order 12
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Example of Bounce Braid for Order 16
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Bounce Braids

Braid as an Aid

In general we need to look at the bounce permutations
together with the bounce braid.

The bounce path indicates where the bounce occurs, the braid
tells us something about how the “type” of bounce.
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The nearest permutation to a point

Definition

A generic point z = (z1, . . . , zn) of Rn will have n distinct
coordinate values.

The rank of zi , denoted r(zi ), is one plus the number of
coordinates of z smaller than zi .

Definition

The rank vector ρ(z) = (r(z1), . . . , r(zn))

In other words:

Simply Put: The rank of z is the closest permutation to z .

Or not: A generic point is mapped to a chamber of the real
n-braid arrangement
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Finding the intersection of a ray and ∂P(n)

The key

Focus on the plane P that contains the three points

1 the centroid C of P(n),

2 the initial point x0

3 the tip of our vector x0 + λ.

We then project the wireframe of P(n) onto this plane.
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Projection wireframe P(5)
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Projection wireframe P(6)
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Projection wireframe P(7)
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Observations

The higher permutahedra are not round.

(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )
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Observations

The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )
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Observations

The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.

(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )



Geometric
generation of
permutation
sequences

Dennis
Roseman

Permutahedron

Change
Ringing

Bouncing

Problem List

Cell Structure

coloring edges

coloring facets

Braids

Beam
Calculation

Edges in layers

Tiling

Observations

The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )
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Observations

The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.

(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )
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Observations

The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
the projection of a simple closed polygonal path of P(n)
edges )
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Creating great path: projection to the plane P
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Same as previous figure after rotation in R3
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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1 Let P be the plane through points: x0, x0 + λ and the
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3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.
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A Great Path Method

1 Let P be the plane through points: x0, x0 + λ and the
centroid of P(n).

2 Let π0 = ρ(x0).

3 Consider the projection φ of the wireframe W of P(n)
onto P. Let D be the convex hull of φ(W ).

4 Each edge of ∂D is a projection of a single edge of W .

5 A union of these edges which form a polygonal arc in P(n)
is called a great path.

6 From π0, follow this great path in the general direction of
λ obtaining vertex sequence p0, p1, . . ..

7 At each pi find the intersection point of the ray with
hyperplanes determined by facets at pi .

8 By convexity of P(n) the closest such intersection point is
our bounce point.



Geometric
generation of
permutation
sequences

Dennis
Roseman

Permutahedron

Change
Ringing

Bouncing

Problem List

Cell Structure

coloring edges

coloring facets

Braids

Beam
Calculation

Edges in layers

Tiling

Yet more braids!

A braid from edges, not facets

1 Put together the great paths used in calculating a bounce
sequence.

2 This sequence of edges of ∂P(n) gives a sequence of
elementary transpositions.

3 There are ways to define signs to this sequence giving yet
more braids.
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Very briefly—one way to get signs

Example

1 Consider the polygonal path β = P ∩ ∂P(n)

2 orient β using λ

3 orient the (n − 3)-cells of ∂P(n)

4 use intersection numbers of the β with those cells to get
our sign

Note:

There is a quick indirect way to calculate this from the
construction of the great path.
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Sorting networks

A connection to topic in computer science

There is a relationship between a colored great path which
joins two antipodal permutations and the concept of a sorting
network.
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A different bouncing braid

A braid based on edges near bounce

1 Take bounce points x1, x2, . . . xn where xi lies in facet Fi

2 Let ei be the edge of Fi closest to xi with associated an
elementary transposition Σ(xi )

3 There are a number of ways to assign a braid sign
convention εi

4 This gives a braid word

Σ(x1)ε1Σ(x2)ε2 . . .Σ(xn)εn
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A different bouncing braid

There is not time to go into detail . . .

To give a sense that the color of an edge tells something about
the nature of the bounce consider the following graphics.
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A projection of labeled wireframe of P(5)
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A projection of labeled wireframe of P(5)
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A projection of labeled wireframe of P(6)
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A projection of labeled wireframe of P(7)
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An alternative to bouncing: permutahedral tiles

Theorem

Rn can be tiled with translated copies P(n)
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A black and white tiling of the plane by hexagons
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Fitting two adjacent P(4)s
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Fitting three adjacent P(4)s
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Fitting four adjacent P(4)s
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A “black and white tiling of R3 by P(4)s
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A “black and white tiling of R3 by P(4)s
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Review

Our Questions:

and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32?

Quadratic, not exponential.

2 How can we visualize the calculational process and the
results?

Projections, color code, braids.

3 What is the geometry of a high dimensional
permutahedron?

Related to Young subgroups and cosets

.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32?

Quadratic, not exponential.

2 How can we visualize the calculational process and the
results?
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3 What is the geometry of a high dimensional
permutahedron?

Related to Young subgroups and cosets

.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32?

Quadratic, not exponential.

2 How can we visualize the calculational process and the
results?
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3 What is the geometry of a high dimensional
permutahedron?

Related to Young subgroups and cosets

.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Review

Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

2 How can we visualize the calculational process and the
results?

Projections, color code, braids.

3 What is the geometry of a high dimensional
permutahedron?

Related to Young subgroups and cosets

.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Review

Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

2 How can we visualize the calculational process and the
results? Projections, color code, braids.

3 What is the geometry of a high dimensional
permutahedron?

Related to Young subgroups and cosets

.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Review

Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

2 How can we visualize the calculational process and the
results? Projections, color code, braids.

3 What is the geometry of a high dimensional
permutahedron? Related to Young subgroups and cosets.

4 How does the geometry of the permutahedron change
with n?

It does not become rounder. In fact in some
directions it “flattens out”.
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Review

Our Questions: and some answers

1 How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

2 How can we visualize the calculational process and the
results? Projections, color code, braids.

3 What is the geometry of a high dimensional
permutahedron? Related to Young subgroups and cosets.

4 How does the geometry of the permutahedron change
with n? It does not become rounder. In fact in some
directions it “flattens out”.
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Thank you
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