
1.3 Matrices and Matrix Operations

Matrix Notation: Two ways to denote m × n matrix A:

In terms of the entries of A:

A =










a11 · · · a1j · · · a1n

...
...

ai1 · · · aij · · · ain

...
...

...
am1 · · · amj · · · amn










A = (ai,j)

(A)i,j is the (i, j)-entry of matrix A

In terms of the columns of A:

A =
[

a1 a2 · · · an

]

Main diagonal entries:

Zero matrix:

0 =










0 · · · 0 · · · 0
...

...
0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0










Matrix addition: Let A, B be matrices of the same size

(A + B)i,j = (A)i,j + (B)i,j

Scalar multiple:

(rA)i,j = r(A)i,j

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

a. A + B = B + A d. r(A + B) = rA + rB

b. (A + B) + C = A + (B + C) e. (r + s) A = rA + sA

c. A + 0 = A f. r (sA) = (rs) A



Matrix Multiplication

Row-Column Rule for Computing AB: Let A is m × n and B is n × p matrices
and let (AB)ij denote the entry in the ith row and jth column of AB. Then

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj .








ai1 ai2 · · · ain
















b1j

b2j

...
bnj








=









(AB)ij









If A is m × n and B is n × p, then AB is m × p.

EXAMPLE A =

[
2 3 6

−1 0 1

]

, B =





2 −3
0 1
4 −7



 . Compute AB, if it is defined.

Solution: Since A is 2 × 3 and B is 3 × 2, then AB is defined and AB is × .

AB =

[
2 3 6

−1 0 1

]




2 −3
0 1
4 −7



 =

[
28 �

� �

]

[
2 3 6

−1 0 1

]




2 −3

0 1

4 −7



 =

[
28 −45

� �

]

[
2 3 6

−1 0 1

]




2 −3
0 1
4 −7



 =

[
28 −45
2 �

]

[
2 3 6

−1 0 1

]




2 −3

0 1

4 −7



 =

[
28 −45
2 −4

]

So AB =

[
28 −45
2 −4

]

.

When A and B have small sizes, the Row-Column Rule is more efficient when working by
hand.



EXAMPLE: If A is 4 × 3 and B is 3 × 2, then what are the sizes of AB and BA?

Solution:

AB =







∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗











∗ ∗

∗ ∗

∗ ∗



 =













BA would be





∗ ∗

∗ ∗

∗ ∗











∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗







which is .

THEOREM 2

Let A be m × n and let B and C have sizes for which the indicated sums and products
are defined.

a. A (BC) = (AB)C (associative law of multiplication)
b. A (B + C) = AB + AC (left - distributive law)
c. (B + C) A = BA + CA (right-distributive law)
d. r(AB) = (rA)B = A(rB)

for any scalar r

e. ImA = A = AIn (identity for matrix multiplication)

WARNINGS

Properties above are analogous to properties of real numbers. But NOT ALL real
number properties correspond to matrix properties.

1. It is not the case that AB always equal BA.
2. Even if AB = AC, then B may not equal C.
3. It is possible for AB = 0 even if A 6= 0 and B 6= 0.

Powers of A

Ak = A · · ·A
︸ ︷︷ ︸

k

EXAMPLE:

[
1 0
3 2

]3

=

[
1 0
3 2

] [
1 0
3 2

] [
1 0
3 2

]

=

[ ] [
1 0
3 2

]

=

[
1 0
21 8

]



If A is m × n, the transpose of A is the n × m matrix, denoted by AT , whose columns
are formed from the corresponding rows of A.

EXAMPLE:

A =





1 2 3 4 5
6 7 8 9 8
7 6 5 4 3



 =⇒ AT =









1 6 7
2 7 6
3 8 5
4 9 4
5 8 3









EXAMPLE: Let A =

[
1 2 0
3 0 1

]

, B =





1 2
0 1

−2 4



 . Compute AB, (AB)T , AT BT

and BT AT .

Solution:

AB =

[
1 2 0
3 0 1

]




1 2
0 1

−2 4



 =

[ ]

(AB)T =

[ ]

AT BT =





1 3
2 0
0 1





[
1 0 −2
2 1 4

]

=





7 3 10
2 0 −4
2 1 4





BT AT =

[
1 0 −2
2 1 4

]




1 3
2 0
0 1



 =

[ ]

THEOREM 3

Let A and B denote matrices whose sizes are appropriate for the following sums and
products.

a.
(
AT

)T
= A (I.e., the transpose of AT is A)

b. (A + B)T = AT + BT

c. For any scalar r, (rA)T = rAT

d. (AB)T = BT AT (I.e. the transpose of a product of matrices equals the product of
their transposes in reverse order. )

EXAMPLE: Prove that (ABC)T = .

Solution: By Theorem 3d,

(ABC)T = ((AB)C)T = CT ( )T

= CT ( ) = .


