1.3 Matrices and Matrix Operations

Matrix Notation: Two ways to denote $m \times n$ matrix A :
In terms of the entries of A :

$$
\begin{gathered}
A=\left[\begin{array}{rlrlr}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right] \\
A=\left(a_{i, j}\right)
\end{gathered}
$$

$(A)_{i, j}$ is the (i, j)-entry of matrix A
In terms of the columns of A :

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

Main diagonal entries: \qquad
Zero matrix:

$$
0=\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right]
$$

Matrix addition: Let A, B be matrices of the same size

$$
(A+B)_{i, j}=(A)_{i, j}+(B)_{i, j}
$$

Scalar multiple:

$$
(r A)_{i, j}=r(A)_{i, j}
$$

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
c. $A+0=A$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
f. $r(s A)=(r s) A$

Matrix Multiplication

Row-Column Rule for Computing AB: Let A is $m \times n$ and B is $n \times p$ matrices and let $(A B)_{i j}$ denote the entry in the ith row and jth column of $A B$. Then

$$
\begin{aligned}
& (A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} \\
& {\left[\begin{array}{cccc}
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
& =\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right] \\
& =\left[\begin{array}{l}
\\
\\
(A B)_{i j} \\
\end{array}\right]
\end{array} .\right.}
\end{aligned}
$$

If A is $m \times n$ and B is $n \times p$, then $A B$ is $m \times p$.
EXAMPLE $\quad A=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]$. Compute $A B$, if it is defined.
Solution: Since A is 2×3 and B is 3×2, then $A B$ is defined and $A B$ is \qquad - \qquad -.
$A B=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{rr}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]=\left[\begin{array}{ll}\mathbf{2 8} & \boldsymbol{\square} \\ \square & \square\end{array}\right]$
$\left[\begin{array}{rrr}\mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{rr}2 & -\mathbf{3} \\ 0 & \mathbf{1} \\ 4 & -\mathbf{7}\end{array}\right]=\left[\begin{array}{rr}28 & \mathbf{- 4 5} \\ \boldsymbol{\square} & \boldsymbol{\square}\end{array}\right]$
$\left[\begin{array}{rrr}2 & 3 & 6 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{rr}\mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7\end{array}\right]=\left[\begin{array}{rr}28 & -45 \\ \mathbf{2} & \boldsymbol{\square}\end{array}\right]$
$\left[\begin{array}{rrr}2 & 3 & 6 \\ \mathbf{- 1} & \mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{rr}2 & -\mathbf{3} \\ 0 & \mathbf{1} \\ 4 & \mathbf{- 7}\end{array}\right]=\left[\begin{array}{rr}28 & -45 \\ 2 & \mathbf{- 4}\end{array}\right]$
So $A B=\left[\begin{array}{cc}28 & -45 \\ 2 & -4\end{array}\right]$.
When A and B have small sizes, the Row-Column Rule is more efficient when working by hand.

EXAMPLE: If A is 4×3 and B is 3×2, then what are the sizes of $A B$ and $B A$? Solution:

$$
\begin{gathered}
A B=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]=\left[\begin{array}{l}
\\
B A \text { would be }\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]
\end{array} .\right.
\end{gathered}
$$

which is \qquad

THEOREM 2

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C \quad$ (associative law of multiplication)
b. $A(B+C)=A B+A C \quad$ (left - distributive law)
c. $(B+C) A=B A+C A \quad$ (right-distributive law)
d. $r(A B)=(r A) B=A(r B)$
for any scalar r
e. $I_{m} A=A=A I_{n} \quad$ (identity for matrix multiplication)

WARNINGS

Properties above are analogous to properties of real numbers. But NOT ALL real number properties correspond to matrix properties.

1. It is not the case that $A B$ always equal $B A$.
2. Even if $A B=A C$, then B may not equal C.
3. It is possible for $A B=0$ even if $A \neq 0$ and $B \neq 0$.

Powers of A

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

EXAMPLE:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]^{3}=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]} \\
=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
21 & 8
\end{array}\right]
\end{gathered}
$$

If A is $m \times n$, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.
EXAMPLE:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 8 \\
7 & 6 & 5 & 4 & 3
\end{array}\right] \quad \Longrightarrow \quad A^{T}=\left[\begin{array}{lll}
1 & 6 & 7 \\
2 & 7 & 6 \\
3 & 8 & 5 \\
4 & 9 & 4 \\
5 & 8 & 3
\end{array}\right]
$$

EXAMPLE: Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -2 & 4\end{array}\right]$. Compute $A B,(A B)^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$.
Solution:

$$
\begin{gathered}
A B=\left[\begin{array}{lll}
1 & 2 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & 1 \\
-2 & 4
\end{array}\right]=[\\
(A B)^{T}=[\\
A^{T} B^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
7 & 3 & 10 \\
2 & 0 & -4 \\
2 & 1 & 4
\end{array}\right] \\
B^{T} A^{T}=\left[\begin{array}{llc}
1 & 0 & -2 \\
2 & 1 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]=[
\end{gathered}
$$

THEOREM 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\quad\left(A^{T}\right)^{T}=A$ (I.e., the transpose of A^{T} is A)
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)
EXAMPLE: Prove that $(A B C)^{T}=$
Solution: By Theorem 3d,

$$
\begin{aligned}
(A B C)^{T} & =((A B) C)^{T}=C^{T}(\quad)^{T} \\
& =C^{T}(\quad)=
\end{aligned}
$$

