1.5, 1.6 Characterizations of Invertible Matrices

The Invertible Matrix Theorem

- Let A be a square $n \times n$ matrix. The following statements are equivalent (i.e., for a given A, they are either all true or all false).
 - a. A is an invertible matrix.
 - b. A is row equivalent to I_n .
 - c. A has n pivot positions.
 - d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - e. A is expressible as a product of elementary matrices.
 - f. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbf{R}^n .
 - g. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbf{R}^n .
 - h. There is an $n \times n$ matrix C such that $CA = I_n$.
 - i. There is an $n \times n$ matrix D such that $AD = I_n$.
 - j. A^T is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if A is invertible, where

$$A = \left[\begin{array}{rrrr} 1 & -3 & 0 \\ -4 & 11 & 1 \\ 2 & 7 & 3 \end{array} \right].$$

Solution

$$A = \begin{bmatrix} 1 & -3 & 0 \\ -4 & 11 & 1 \\ 2 & 7 & 3 \end{bmatrix} \sim \dots \sim \underbrace{\begin{bmatrix} 1 & -3 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 16 \end{bmatrix}}_{2 \text{ pinots p}}$$

3 pivots positions

Circle correct conclusion: Matrix A is / is not invertible.

Theorem

Every system of linear equations has no solutions, or has exactly one solution, or has infinitely many solutions.

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all \mathbf{b} ?

If not, find all **b** such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

Solution: Augmented matrix corresponding to $A\mathbf{x} = \mathbf{b}$:

Γ	1	4	5	b_1	1	4	5	b_1
	-3	-11	-14	b_2	0	1	1	$3b_1 + b_2$
L	2	8	10	b_3	0	0	0	$\begin{bmatrix} b_1 \\ 3b_1 + b_2 \\ -2b_1 + b_3 \end{bmatrix}$

 $A\mathbf{x} = \mathbf{b}$ is _____ consistent for all \mathbf{b} since some choices of \mathbf{b} make $-2b_1 + b_3$ nonzero.

The equation $A\mathbf{x} = \mathbf{b}$ is consistent if

$$-2b_1 + b_3 = 0.$$
 (equation of a plane in \mathbf{R}^3)