1.5, 1.6 Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. The the following statements are equivalent (i.e., for a given A, they are either all true or all false).
a. A is an invertible matrix.
b. A is row equivalent to I_{n}.
c. A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. A is expressible as a product of elementary matrices.
f. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbf{R}^{n}.
g. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbf{R}^{n}.
h. There is an $n \times n$ matrix C such that $C A=I_{n}$.
i. There is an $n \times n$ matrix D such that $A D=I_{n}$.
j. A^{T} is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if A is invertible, where

$$
A=\left[\begin{array}{rrr}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{array}\right]
$$

Solution

$$
A=\left[\begin{array}{rrr}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{array}\right] \sim \cdots \sim \underbrace{\left[\begin{array}{rrr}
1 & -3 & 0 \\
0 & -1 & 1 \\
0 & 0 & 16
\end{array}\right]}_{3 \text { pivots positions }}
$$

Circle correct conclusion: Matrix A is / is not invertible.

Theorem

Every system of linear equations has no solutions, or has exactly one solution, or has infinitely many solutions.

EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all \mathbf{b} ?
If not, find all \mathbf{b} such that the equation $A \mathbf{x}=\mathbf{b}$ is consistent.
Solution: Augmented matrix corresponding to $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{cccc}
1 & 4 & 5 & b_{1} \\
-3 & -11 & -14 & b_{2} \\
2 & 8 & 10 & b_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 4 & 5 & b_{1} \\
0 & 1 & 1 & 3 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}+b_{3}
\end{array}\right]
$$

$A \mathbf{x}=\mathbf{b}$ is ____-_ consistent for all \mathbf{b} since some choices of \mathbf{b} make $-2 b_{1}+b_{3}$ nonzero.

The equation $A \mathbf{x}=\mathbf{b}$ is consistent if

$$
\begin{gathered}
-2 b_{1}+b_{3}=0 \\
\text { (equation of a plane in } \mathbf{R}^{3} \text {) }
\end{gathered}
$$

