1.7 Linear Independence

A homogeneous system such as

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

can be viewed as a vector equation

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The vector equation has the trivial solution ($x_1 = 0$, $x_2 = 0$, $x_3 = 0$), but is this the *only solution*?

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{V}_1 + x_2\mathbf{V}_2 + \cdots + x_p\mathbf{V}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1\mathbf{V}_1 + c_2\mathbf{V}_2 + \dots + c_p\mathbf{V}_p = \mathbf{0}.$$

linear dependence relation (when weights are not all zero)

EXAMPLE Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

- a. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Solution: (a)

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Augmented matrix:

$$\begin{bmatrix}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

 x_3 is a free variable \Rightarrow there are nontrivial solutions.

 $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a linearly dependent set

Let $x_3 =$ (any nonzero number).

Then $x_1 =$ ____ and $x_2 =$ ____.

or

$$\underline{}$$
 $\mathbf{v}_1 + \underline{}$ $\mathbf{v}_2 + \underline{}$ $\mathbf{v}_3 = \mathbf{0}$

(one possible linear dependence relation)

Linear Independence of Matrix Columns

A linear dependence relation such as

$$\begin{bmatrix}
1 \\
3 \\
5
\end{bmatrix} + 18 \begin{bmatrix}
2 \\
5 \\
9
\end{bmatrix} + 1 \begin{bmatrix}
-3 \\
9 \\
3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

can be written as the matrix equation:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution.

Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

1. A Set of One Vector

Consider the set containing one nonzero vector: $\{\mathbf{v}_1\}$

The only solution to $x_1\mathbf{v}_1 = 0$ is $x_1 = \underline{\hspace{1cm}}$.

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

2. A Set of Two Vectors

EXAMPLE Let

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

- a. Determine if $\{\mathbf{u}_1,\mathbf{u}_2\}$ is a linearly dependent set or a linearly independent set.
- b. Determine if $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = \underline{} \mathbf{u}_1$. Therefore

This means that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly _____ set.

(b) Suppose

$$c\mathbf{v}_1+d\mathbf{v}_2=\mathbf{0}.$$

Then $\mathbf{v}_1 = - \mathbf{v}_2$ if $c \neq 0$. But this is impossible since \mathbf{v}_1 is

_____ a multiple of \mathbf{v}_2 which means c = _____.

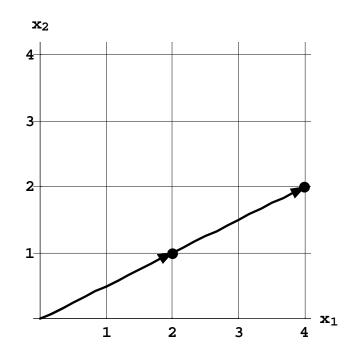
Similarly, $\mathbf{v}_2 = \mathbf{v}_1$ if $d \neq 0$.

But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so d=0.

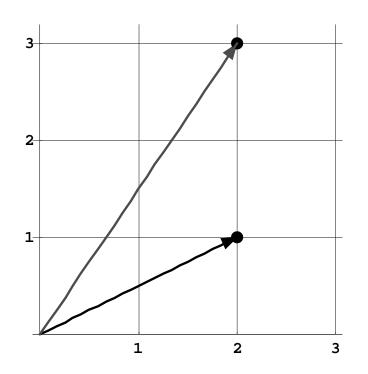
This means that $\{\mathbf{v}_1,\mathbf{v}_2\}$ is a linearly _____ set.

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.



linearly _____



linearly _____

3. A Set Containing the 0 Vector

Theorem 9

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_1 = \underline{\hspace{1cm}}$. Then

$$\underline{}$$
 $\mathbf{v}_1 + \underline{}$ $\mathbf{v}_2 + \cdots + \underline{}$ $\mathbf{v}_p = \mathbf{0}$

which shows that S is linearly ______.

4. A Set Containing Too Many Vectors

Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is linearly dependent if p > n.

Outline of Proof:

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix}$$
 is $n \times p$

Suppose p > n.

 $\Rightarrow A\mathbf{x} = \mathbf{0}$ has more variables than equations

 $\Rightarrow Ax = 0$ has nontrivial solutions

 \Rightarrow columns of A are linearly dependent

EXAMPLE With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

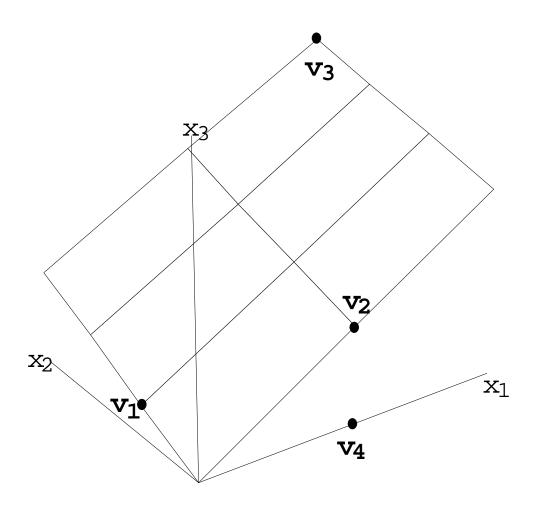
$$\mathbf{a.} \quad \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix} \right\}$$

$$\mathbf{c}.\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\mathsf{d}.\left\{ \begin{bmatrix} 8 \\ 2 \\ 1 \\ 4 \end{bmatrix} \right\}$$

Characterization of Linearly Dependent Sets

EXAMPLE Consider the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathbf{R}^3 in the following diagram. Is the set linearly dependent? Explain



Theorem 7

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j $(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.