Section 1.9 (Through Theorem 10) The Matrix of a Linear Transformation

Identity Matrix I_n is an $n \times n$ matrix with 1's on the main left to right diagonal and 0's elsewhere. The ith column of I_n is labeled \mathbf{e}_i .

EXAMPLE:

$$I_3 = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that

In general, for \mathbf{x} in \mathbf{R}^n ,

$$I_n \mathbf{X} = _$$

1

From Section 1.8, if $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v}).$

Generalized Result:

$$T(c_{1}\mathbf{v}_{1} + \dots + c_{p}\mathbf{v}_{p}) = c_{1}T(\mathbf{v}_{1}) + \dots + c_{p}T(\mathbf{v}_{p}).$$
EXAMPLE: The columns of $I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
and $\mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose *T* is a linear transformation from \mathbf{R}^{2}
to \mathbf{R}^{3} where

$$T(\mathbf{e}_{1}) = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$$
 and $T(\mathbf{e}_{2}) = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$.
Compute $T(\mathbf{x})$ for any $\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$.

Solution: A vector \mathbf{x} in \mathbf{R}^2 can be written as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \underline{\qquad} \mathbf{e}_1 + \underline{\qquad} \mathbf{e}_2$$

Then

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = \underline{\qquad} T(\mathbf{e}_1) + \underline{\qquad} T(\mathbf{e}_2)$$
$$= \underline{\qquad} \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Note that

$$T(\mathbf{x}) = \begin{bmatrix} & & \\ & &$$

So

$$T(\mathbf{x}) = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \mathbf{x} = A\mathbf{x}$$

To get *A*, replace the identity matrix $\begin{bmatrix} e_1 & e_2 \end{bmatrix}$ with $\begin{bmatrix} T(e_2) & T(e_2) \end{bmatrix}$.

Theorem 10

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbf{R}^n .

 $A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$

1

standard matrix for the linear transformation T

EXAMPLE: $\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{bmatrix}$

Solution:

$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \text{standard matrix of the linear transformation } T$$
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} =$$

EXAMPLE: Find the standard matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

