22M027: Introduction to Linear Algebra

Chapter 1 Review

- Linear equations.
- Geometrical interpretation.
- Number of solutions of a linear system.
- Solving linear systems by row reductions.
- Row-echelon form and reduced row-echelon form of a matrix.
- Matrix operations (addition, scalar mutiplication, multiplication including block multiplication) and their properties; matrix transpose.
- Matrix inverse: elementary matrices, finding matrix inverse, using inverses in solving linear system.
- Invertible Matrix Theorem.
- Scalar, diagonal, triangular and symmetric matrices and their properties.

1. Mark each statement either True or False. Justify your answer.
(a) If a matrix is reduced to reduced row-echelon form by two different sequences of elemenary row operations, the resulting matrices will be different.
(b) Every matrix is row equivalent to a unique matrix in row-echelon form.
(c) If three lines in the $x y$-plane are sides of a triangle, then the system formed from their equations has three solutions, one corresponding to each vertex.
(d) A linear system of three equations in five unknowns must be consistent.
(e) A linear system of five equations in three unknowns cannot be consistent.
(f) If a system of linear equations has two different solutions, then it has infinitely many solutions.
(g) If a system $A x=b$ has more than one solutions, then so does the system $A x=0$.
(h) $A x=0$ implies $x=0$.
(i) If matrices A and B are row equivalent then they have the same reduced echelon form.
(j) If A is an $m \times n$ matrix and if the equation $A x=b$ has a solution for every b in \mathbb{R}^{m}, then A has m pivot columns.
(k) If an $m \times n$ matrix A has a pivot position in every row, then the equation $A x=b$ has a solution for every b in \mathbb{R}^{m}.
(l) If an $n \times n$ matrix A has n pivot positions, then the reduced echelon form of A is the $n \times n$ identity matrix.
(m) Every square matrix can be expressed as a product of elementary matrices.
(n) The product of two elementary matrices is an elementary matrix.
(o) If A is invertible and $A B=O$, then it must be true that $B=O$.
2. Let A and B be $n \times n$ matrices. Indicate whether the following statements are always true or sometimes false:
(a) $(A B)^{2}=A^{2} B^{2}$.
(b) $\left(A B^{-1}\right)\left(B A^{-1}\right)=I_{n}$.
(c) $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
3. Find a formula for the product of two diagonal matrices.
4. Use block product to find the product $A B$ of the following matrices

$$
A:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \quad B:=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

