22M027: Introduction to Linear Algebra

- Linear equations.
- Geometrical interpretation.
- Number of solutions of a linear system.
- Solving linear systems by row reductions.
- Row-echelon form and reduced row-echelon form of a matrix.
- Matrix operations (addition, scalar mutiplication, multiplication including block multiplication) and their properties; matrix transpose.
- Matrix inverse: elementary matrices, finding matrix inverse, using inverses in solving linear syste;
- Invertible Matrix Theorem.
- Scalar, diagonal, triangular and symmetric matrices and their properties.
- Determinants: evaluating by cofactor expansion.
- Determinants: properties; evaluating by row reduction.
- Application of Determinants: Cramer's rule, inverse of a Matrix.
- Vector operation, norm, dot product.
- Projections, distance between a point and a line.
- Cross product: properties, applications (area of a parallelogram, volume of a parallelepiped).
- Equations of a plane (normal vector and a point; three points.
- Parametric equations of a line.
- When planes intersect, are parallel, perpendicular.
- Distance between a point and a plane, two parallel planes.

Review Problems

1. Solve the following system of linear equations

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3}-x_{4} & =-1 \\
2 x_{1}+x_{2}-2 x_{3}-2 x_{4} & =-2 \\
-x_{1}+2 x_{2}-4 x_{3}+x_{4} & =1 \\
3 x_{1}-3 x_{4} & =-3
\end{aligned}
$$

2. Use block product to find the product $A B$ of the following matrices

$$
A:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \quad B:=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

3. A is a 2 -by- 5 matrix and B is a 3 -by- 2 .
(a) Is the product $A B$ defind? If yes, state its size.
(b) Is the product $B A$ defind? If yes, state its size.
4. Find the product $C D$ of the following matrices

$$
C:=\left[\begin{array}{rr}
1 & 2 \\
-5 & 0 \\
2 & -3
\end{array}\right], \quad D:=\left[\begin{array}{rrrr}
-1 & 0 & 1 & -2 \\
10 & 2 & 5 & 3
\end{array}\right]
$$

5. Find the inverse of the following matrix:

$$
A:=\left[\begin{array}{rrr}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right]
$$

(a) using row reduction;
(b) using adjoint matrix.
6. Solve the following linear system:

$$
\begin{aligned}
2 x_{1}+3 x_{3} & =-3 \\
3 x_{2}+2 x_{3} & =3 \\
-2 x_{1}-4 x_{3} & =6
\end{aligned}
$$

(a) using row reduction algorithm;
(b) using the inverse of the coefficient matrix;
(c) using Cramer's rule.
7. Consider the following matrix

$$
E:=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
1 & 3 & 3 & 4 \\
1 & -1 & 7 & 4 \\
1 & -2 & 5 & 9
\end{array}\right]
$$

(a) evaluate the determinant of E;
(b) is this matrix E invertible? If yes, give the determinant of its inverse E^{1}.
8. Find the components of the vector having initial point $P_{1}(-1,0,2)$ and terminal point $P_{2}(0,-1,0)$.
9. Find the distance between the points P_{1} and P_{2} above.
10. Find the components of the orthogonal projection of $\vec{u}=(-1,-2)$ on $\vec{a}=(-2,3)$.
11. Find the angle between vectors $\vec{u}=(-1,-2)$ and $\vec{a}=(-2,3)$.
12. Find a vector perpendicular to the line $2 x+3 y-5=0$.
13. Find the distance between the origin $O=(0,0)$ and the line $2 x+3 y-$ $5=0$.
14. Find the components of a vector perpendicular to both vectors $\vec{u}=$ $(1,2,0)$ and $\vec{v}=(-2,3,0)$.
15. Find the area of a parallelogram defined by vectors $\vec{u}=(1,2)$ and $\vec{v}=(-2,3)$.
16. Find the volume of a parallelepiped defined by vectors $\vec{u}=(1,2,0)$, $\vec{v}=(-2,3,0)$, and $\vec{v}=(1,1,1)$.
17. Find an equation of the line passing through the points $P_{1}(-1,0,2)$ and $P_{2}(0,-1,0)$.
18. Find an equation of the line passing through the point $P_{1}(0,-1,0)$ and parallel to vector $(-1,1,2)$.
19. Find an equation of the plane passing through the point $P_{1}(0,-1,0)$ and perpendicular to vector $(-1,1,2)$.
20. Find an equation of the plane passing through the points $P_{1}(-1,0,2)$, $P_{2}(0,-1,0)$ and $P_{3}(1,1,1)$.
21. Are the two planes $2 x+3 y-5 z=10$ and $6 x+9 y-15 z=12$ parallel? Explain.
22. Are the two planes $2 x+3 y-2 z=10$ and $5 x-2 y+2 z=15$ perpendicular? Explain.
23. Find the distance between the origin $O=(0,0,0)$ and the plane $2 x+$ $3 y-5 z=10$.
24. Find the distance between parallel planes $2 x+3 y-5 z=10$ and $6 x+$ $9 y-15 z=12$.

