Binomial coefficients

October 3, 2008

Pascal's Formula

For integers n and k such that $1 \leq k \leq n$,

$$
\begin{gathered}
\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{n(n-1) \cdots(n-k+1)}{k!} . \\
\binom{n}{k}=0 \quad \text { if } \quad k>n \\
\binom{n}{0}=1 \quad \text { for any } n
\end{gathered}
$$

For integers n and k such that $0 \leq k \leq n$,

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Theorem 1 (Pascal's Formula.) For integers n and k such that $1 \leq k \leq n-1$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

The numbers in the second column of Pascal's triangle $(k=2):\binom{n}{2}=\frac{n(n-1)}{2}$ are triangle numbers.
The numbers in the third column of Pascal's triangle $(k=3):\binom{n}{3}=\frac{n(n-1)(n-2)}{3!}$ are tetrahedral numbers.

The Binomial Theorem

Theorem 2 (Binomial Expansion.) For integer $n \geq 1$ and variables x and y,

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} . \\
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
\end{gathered}
$$

