Generating Combinations

September 24, 2008

Let S be an n-set. For convenience of generating combinations, we take S to be the set

$$
S=\left\{x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right\} .
$$

Each subset A of S can be identified as a function $\chi_{A}: S \rightarrow\{0,1\}$, called the characteristic function of A, defined by

$$
\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

In practice, χ_{A} is represented by a $0-1$ sequence or a base 2 numeral. For example, for $S=\left\{x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right\}$,

$$
\begin{array}{rr}
\emptyset & 00000000 \\
\left\{x_{7}, x_{5}, x_{2}, x_{1}\right\} & 10100110 \\
\left\{x_{6}, x_{5}, x_{3}, x_{1}, x_{0}\right\} & 01101011 \\
\left\{x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right\} & 11111111
\end{array}
$$

Algorithm for generating combinations of $\left\{x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right\}$:
Begin with $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=00 \ldots 00$.
While $a_{n-1} a_{n-2} \cdots a_{1} a_{0} \neq 11 \ldots 11$, do
(1) Find the smallest integer j such that $a_{j}=0$.
(2) Replace a_{j} by 1 and each of $a_{j-1}, \ldots, a_{1}, a_{0}$ by 0 .

The algorithm stops when $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=11 \ldots 11$.
For $n=3$, the algorithm produces the list

$$
000 \quad 100
$$

001101
010110
011111.

For $n=4$, the algorithm produces the list

0000	0100	1000	1100
0001	0101	1001	1101
0010	0110	1010	1110
0011	0111	1011	1111.

1. For $n=8$, find the position of the combination $\left\{x_{6}, x_{5}, x_{3}, x_{1}, x_{0}\right\}$ in the list.
2. Which combination comes after $\left\{x_{6}, x_{5}, x_{3}, x_{1}, x_{0}\right\}$?

Gray code order

The unit n-cube Q_{n} is a graph whose vertex set is the set of all $0-1$ sequences of length n, and two sequences are adjacent if they differ in only one place.
A Gray code of order n is a path of Q_{n} that visits every vertex of Q_{n} exactly once, i.e., a Hamilton path of Q_{n}. For example,

$$
000 \longrightarrow 001 \longrightarrow 101 \longrightarrow 100 \longrightarrow 110 \longrightarrow 010 \longrightarrow 011 \longrightarrow 111
$$

is a Gray code of order 3. It is obvious that this Gray code can not be a part of any Hamilton cycle since 000 and 111 are not adjacent.
A cyclic Gray code of order n is a Hamilton cycle of Q_{n}. For example, the closed path

$$
000 \longrightarrow 001 \longrightarrow 011 \longrightarrow 010 \longrightarrow 110 \longrightarrow 111 \longrightarrow 101 \longrightarrow 100 \longrightarrow 000
$$

is a cyclic Gray code of order 3.

Reflected Gray codes (inductive definition).

For $n=1$, we have the Gray code $0 \longrightarrow 1$.
For $n=2$, we use $0 \longrightarrow 1$ to produce the path $00 \longrightarrow 01$ by adding a 0 in the front, and use $1 \longrightarrow 0$ to produce $11 \longrightarrow 10$ by adding a 1 in the front, then combine the two paths to produce the Gray code $00 \longrightarrow 01 \longrightarrow 11 \longrightarrow 10$.
For $n=k$, we combine the Gray code of order $k-1$ with 0 added in the front of each ($k-1$)-tuple, and the Gray code of order $k-1$ in the reverse order with 1 added in the front of each $(k-1)$-tuple.
The Gray codes obtained in this way are called reflected Gray codes.

Reflected Gray codes (algorithm).

Algorithm for generating reflected Gray codes of order n :
Begin with $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=00 \ldots 00$.
While $a_{n-1} a_{n-2} \cdots a_{1} a_{0} \neq 10 \ldots 00$, do
(1) If $a_{n-1}+a_{n-2}+\cdots+a_{1}+a_{0}=00 \ldots 00=$ even, then change a_{0} (from 0 to 1 or 1 to $0)$.
(2) If $a_{n-1}+a_{n-2}+\cdots+a_{1}+a_{0}=00 \ldots 00=$ odd, find the smallest j such that $a_{j}=1$ and change a_{j+1} (from 0 to 1 or 1 to 0).

1. Construct the reflected Gray code of order $n=3$ using the algorithm.
2. For $n=8$, which 8 -tuples follow 10100110 and 00011111 in the reflected Gray code?
