Generating r-Combinations

September 26, 2008

Let S be an n-set

$$S = \{1, 2, \dots, n - 1, n\}$$

with a natural order

$$1 < 2 < 3 < \dots < n$$
.

For simplicity, we write an r-combination $\{a_1, a_2, \dots a_r\}$ as an r-permutation

$$a_1 a_2 \cdots a_r$$
 with $a_1 < a_2 < \cdots < a_r$.

For two r-combinations $A = a_1 a_2 \cdots a_r$ and $B = b_1 b_2 \cdots b_r$ of S, we say that A precedes B in the lexicographic order, written A < B, if there is an integer k $(1 \le k \le r)$ such that

$$a_1 = b_1, a_2 = b_2, \dots, a_{k-1} = b_{k-1}, a_k < b_k.$$

The first r-combination of S in lexicographic order is $12 \cdots r$, and the last r-combination in lexicographic order is $(n-r+1)\cdots(n-1)n$.

Theorem. Let $a_1 a_2 \cdots a_r$ be an r-combination of $S = \{1, 2, \dots, n-1, n\}$. If $a_1 a_2 \cdots a_r \neq (n-r+1)\cdots(n-1)n$ and k is the largest integer such that $a_k < n$ and $a_k + 1$ is not in the $a_1 a_2 \cdots a_r$, then the successor of $a_1 a_2 \cdots a_r$ is

$$a_1 a_2 \cdots a_{k-1} (a_k + 1)(a_k + 2) \cdots (a_k + r - k + 1).$$

Algorithm for generating r-combinations of $S = \{1, 2, ..., n - 1, n\}$: Begin with $12 \cdot ... r$.

While $a_1 a_2 \cdots a_r \neq (n-r+1) \cdots (n-1)n$, do

- (1) Find the largest integer k such that $a_k < n$ and $a_k + 1$ is not in the $a_1 a_2 \cdots a_r$.
- (2) Replace $a_1 a_2 \cdots a_r$ with

$$a_1 a_2 \cdots a_{k-1} (a_k+1)(a_k+2) \cdots (a_k+r-k+1).$$

The collection of all 4-combinations of $\{1, 2, 3, 4, 5, 6\}$ are listed by the algorithm:

Theorem. Let r-combination $a_1a_2\cdots a_r$ of $S=\{1,2,\ldots,n-1,n\}$ occurs in place number

$$\binom{n}{r} - \binom{n-a_1}{r} - \binom{n-a_2}{r-1} - \dots - \binom{n-a_{r-1}}{2} - \binom{n-a_r}{1}$$

in the lexicographic order.

- 1. Find the position of the 4-combination 1258 in the list of all 4-combinations of $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
- 2. Generate all 3-combinations of $\{1,2,3,4,5\}.$
- 3. Generate all 3-permutations of $\{1,2,3,4,5\}.$