Combinations of Multisets

September 17, 2008

Let M be a multiset. An r-combination of M is an unordered collection of r objects of M. For a multiset $M=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}$ an r-combination of M is also called an r-combination with repetition allowed of the n-set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

Theorem 1 The number of nonnegative integer solutions for the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=r
$$

equals

$$
\binom{k+r-1}{r}=\binom{k+r-1}{k-1}
$$

Theorem 2 The number of positive integer solutions for the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=r
$$

equals

$$
\binom{r-1}{k-1} .
$$

Theorem 3 Let $M=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}$ be a multiset of k different types where each type has infinitely many elements. Then the number of r-combinations of the multiset M (the number of r-combinations with repetition allowed) equals

$$
\binom{k+r-1}{r}=\binom{k+r-1}{k-1} .
$$

Corollary 4 The number of ways to place r identical balls into k distinct boxes equals

$$
\binom{k+r-1}{r}=\binom{k+r-1}{k-1}
$$

Corollary 5 The number of ways to place r identical balls into k distinct boxes such that no box remains empty equals

$$
\binom{r-1}{k-1} .
$$

1. Find the number of integer solutions for the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=10
$$

where $x_{1} \geq 3, x_{2} \geq 0, x_{3} \geq-2, x_{4} \geq 5$.
2. Find the number of nonnegative integer solutions for the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}<19 .
$$

3. A bakery sells 8 different kinds of doughnuts. If the bakery has virtually unlimited supply of each kind, how many different options for a dozen of doughnuts are there? What if a box is to contain at least one of each kind of doughnuts?
4. In how many ways can 12 indistiguishable apples and 1 orange be distributed among three children in such a way that each child gets at least one piece of fruit?
5. Find the number of nondecreasing sequences of length r whose terms are taken from the set $\{1,2, \ldots, k\}$.
