Permutation of Multisets

September 16, 2008

An r-permutation of M is a linearly ordered arrangements of r objects of M. If $|M|=n$, then an n-permutation of M objects is called a permutation of M.
Theorem 1 Let $M=\left\{\infty \cdot x_{1}, \infty \cdot x_{2}, \ldots, \infty \cdot x_{k}\right\}$ be a multiset of k different types where each type has infinitely many elements. Then the number of r-permutations of the multiset M equals

$$
k^{r} .
$$

Theorem 2 Let $M=\left\{n_{1} \cdot x_{1}, n_{2} \cdot x_{2}, \ldots, n_{k} \cdot x_{k}\right\}$ be a multiset of k types with repetition numbers $n_{1}, n_{2}, \ldots, n_{k}$ respectively, and $n=n_{1}+n_{2}+\cdots+n_{k}$. Then the number of permutations of the multiset M equals

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Corollary 3 The number of $0-1$ words of length n with exactly r ones and $n-r$ zeros is equal to

$$
\frac{n!}{(n-r)!r!}=\binom{n}{r}
$$

Theorem 4 Given n rooks of k colors with n_{1} rooks of the first color, n_{2} rooks of the second color, ..., and n_{k} rooks of the k th color. The number of ways to arrange these rooks on an n-by- n board so that no two rooks can attack another equals

$$
n!\times \frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}=\frac{(n!)^{2}}{n_{1}!n_{2}!\cdots n_{k}!} .
$$

1. What is the number of ternary numerals with at most 4 digits?
2. Find the number of permutations of the letters in the word "MISSISSIPPI".
3. In how many ways can 8 identical rooks be placed on an 8 -by- 8 chessboard so that no two rooks can attak one another?
4. In how many ways can 8 rooks of different color be placed on an 8 -by- 8 chessboard so that no two rooks can attak one another?
5. How about possibilities are there for one red rook, 3 blue rooks, and 4 yellow?
6. In how many ways can 8 identical non-attacking rooks be placed on a 12 -by- 12 chessboard?
7. Find the number of 8-permutations of the multiset $M=\{3 a, 2 b, 4 c\}$.
