Partially Ordered Sets

September 29, 2008

Definition. A relation on a set X is a subset R of the product set $X \times X$. A relation R on X is called

- 1. reflexive if xRx for all $x \in X$;
- 2. *irreflexive* if $x \not R x$ for all $x \in X$;
- 3. symmetric provided that if xRy for some $x, y \in X$ then yRx;
- 4. antisymmetric provided that if xRy and yRx for some $x, y \in X$ then x = y;
- 5. *transitive* provided that if xRy and yRz for some $x, y, z \in X$ then xRz.

Example.

(1) The relation of subset, \subseteq , is a reflexive and transitive relation on the power set P(X). (2) The relation of divisibility, |, is a reflexive and transitive relation on the set of positive integers.

A partial order on a set X is a reflexive, antisymmetric, and transitive relation.

A strict partial order on a set X is an irreflexive, antisymmetric, and transitive relation. If a relation R is a partial order, we usually denote R by \leq ; then the relation < defined by a < b if and only if $a \leq b$ but $a \neq b$ is a strict partial order.

Conversely, for a strict partial order < on a set X, the relation \leq defined by $a \leq b$ if and only if a < b or a = b is a partial order.

A set X with a partial order \leq is called a *partially ordered set* (or *poset for short*) and is denoted by (X, \leq) .

Posets can be represented geometrically by *diagramms*. The cover relation $<_c$ is defined by

 $a <_c b$ iff a < b and there is no c such that a < c < b.

- 1. Find the cover relation for \subseteq .
- 2. Find the cover relation for the relation of divisibility, |.
- 3. Draw the diagram representing the poset $(P(\{1,2,3\}),\subseteq)$.
- 4. Draw the diagram representing the poset $(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}), |)$.

A linear order, or total order on a set X is a strict order < such that for any two distinct elements a and b, either a < b or b < a.

An element a of a poset X is called *minimal* if $b \leq a$ implies a = b for any $b \in X$.

An element a of a poset X is called the *smallest* if $a \leq b$ for any $b \in X$.

Theorem. Let X be a finite set. There is one-to-one correspondence between the total orders on X and the permutations of X.

Let \leq_1 and \leq_2 be two partial orders on a set X. The poset (X, \leq_2) is called an *extension* of the poset (X, \leq_1) if, whenever $a \leq_1 b$, then $a \leq_2 b$. In particular, an extension of a partial order has more comparable pairs.

We show that every finite poset has a *linear extension*, that is, an extension which is a linearly ordered set.

Theorem Let (X, \leq) be a finite partially ordered set. Then there is a linear order \leq such that (X, \leq) is an extension of (X, \leq) .

Proof. We need to show that the elements of X can be listed in some order $\{x_1, x_2, \ldots, x_n\}$ in such a way that if $x_i \leq x_j$ then x_i comes before x_j in this list, i.e., $i \leq j$. The following algorithm does the job.

Algorithm for a linear extension of an *n*-poset:

Step 1. Choose a minimal element x_1 from X (with respect to the ordering \leq).

Step 2. Delete x_1 from X; choose a minimal element x_2 from X.

Step 3. Delete x_2 from X and choose a minimal element x_3 from X.

•••

Step n. Delete x_{n-1} from X and choose the only element x_n in X.

- 1. Find a linear extention of $(\{1, 2, 3, ..., n\}, |)$.
- 2. Find a linear extention of $(P(\{1,2,3\}), \subseteq)$.

Equivalence Relations

A relation R on X is called an *equivalence relation* if R is reflexive, symmetric, and transitive. For an equivalence relation R on a set X and an element $x \in X$, we call the set $[x] = \{y \in X : xRy\}$ an *equivalence class* of R and x a *representative* of the equivalence class [x].

A collection $P = \{A_1, A_2, \dots, A_k\}$ of nonempty subsets of a set X is called a *partition* of X if $A_i \bigcap A_j = \emptyset$ for $i \neq j$ and $X = \bigcup A_i$.

Theorem If R is an equivalence relation on a set X, then the collection

$$P_R = \{ [x] : x \in X \}$$

is a partition of X. **Theorem** If $P = \{A_1, A_2, \dots, A_k\}$ is a partition of X, then the relation

$$R_P = \bigcup A_i \times A_i$$

is an equivalence relation on X.