Partially Ordered Sets

September 29, 2008

Definition. A relation on a set X is a subset R of the product set $X \times X$. A relation R on X is called

1. reflexive if $x R x$ for all $x \in X$;
2. irreflexive if $x \not R x$ for all $x \in X$;
3. symmetric provided that if $x R y$ for some $x, y \in X$ then $y R x$;
4. antisymmetric provided that if $x R y$ and $y R x$ for some $x, y \in X$ then $x=y$;
5. transitive provided that if $x R y$ and $y R z$ for some $x, y, z \in X$ then $x R z$.

Example.

(1) The relation of subset, \subseteq, is a reflexive and transitive relation on the power set $P(X)$.
(2) The relation of divisibility, \mid, is a reflexive and transitive relation on the set of positive integers.
A partial order on a set X is a reflexive, antisymmetric, and transitive relation.
A strict partial order on a set X is an irreflexive, antisymmetric, and transitive relation. If a relation R is a partial order, we usually denote R by \leq; then the relation $<$ defined by $a<b$ if and only if $a \leq b$ but $a \neq b$ is a strict partial order.
Conversely, for a strict partial order $<$ on a set X, the relation \leq defined by $a \leq b$ if and only if $a<b$ or $a=b$ is a partial order.
A set X with a partial order \leq is called a partially ordered set (or poset for short) and is denoted by (X, \leq).
Posets can be represented geometrically by diagramms. The cover relation $<_{c}$ is defined by

$$
a<_{c} b \quad \text { iff } \quad a<b \quad \text { and there is no } c \text { such that } a<c<b .
$$

1. Find the cover relation for \subseteq.
2. Find the cover relation for the relation of divisibility, \mid.
3. Draw the diagram representing the poset $(P(\{1,2,3\}), \subseteq)$.
4. Draw the diagram representing the poset $(\{1,2,3,4,5,6,7,8,9,10\}), \mid)$.

A linear order, or total order on a set X is a strict order $<$ such that for any two distinct elements a and b, either $a<b$ or $b<a$.
An element a of a poset X is called minimal if $b \leq a$ implies $a=b$ for any $b \in X$.
An element a of a poset X is called the smallest if $a \leq b$ for any $b \in X$.
Theorem. Let X be a finite set. There is one-to-one correspondence between the total orders on X and the permutations of X.
Let \leq_{1} and \leq_{2} be two partial orders on a set X. The poset $\left(X, \leq_{2}\right)$ is called an extension of the poset $\left(X, \leq_{1}\right)$ if, whenever $a \leq_{1} b$, then $a \leq_{2} b$. In particular, an extension of a partial order has more comparable pairs.
We show that every finite poset has a linear extension, that is, an extension which is a linearly ordered set.
Theorem Let (X, \leq) be a finite partially ordered set. Then there is a linear order \preceq such that (X, \preceq) is an extension of (X, \leq).
Proof. We need to show that the elements of X can be listed in some order $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in such a way that if $x_{i} \leq x_{j}$ then x_{i} comes before x_{j} in this list, i.e., $i \leq j$. The following algorithm does the job.

Algorithm for a linear extension of an n-poset:
Step 1. Choose a minimal element x_{1} from X (with respect to the ordering \leq).
Step 2. Delete x_{1} from X; choose a minimal element x_{2} from X.
Step 3. Delete x_{2} from X and choose a minimal element x_{3} from X.
...
Step n. Delete x_{n-1} from X and choose the only element x_{n} in X.

1. Find a linear extention of $(\{1,2,3, \ldots, n\}, \mid)$.
2. Find a linear extention of $(P(\{1,2,3\}), \subseteq)$.

Equivalence Relations

A relation R on X is called an equivalence relation if R is reflexive, symmetric, and transitive. For an equivalence relation R on a set X and an element $x \in X$, we call the set $[x]=\{y \in X: x R y\}$ an equivalence class of R and x a representative of the equivalence class $[x]$.

A collection $P=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ of nonempty subsets of a set X is called a partition of X if $A_{i} \bigcap A_{j}=\emptyset$ for $i \neq j$ and $X=\bigcup A_{i}$.
Theorem If R is an equivalence relation on a set X, then the collection

$$
P_{R}=\{[x]: x \in X\}
$$

is a partition of X.
Theorem If $P=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ is a partition of X, then the relation

$$
R_{P}=\bigcup A_{i} \times A_{i}
$$

is an equivalence relation on X.

