Linear Homogeneous Recurrence Relations

November 3, 2008

A number sequence $\left(x_{n}\right)$ is said to satisfy a linear recurrence relation of order k if

$$
\begin{equation*}
h_{n}=a_{1}(n) h_{n-1}+a_{2}(n) h_{n-2}+\cdots+a_{k}(n) h_{n-k}+b_{n}(n) ; \quad a_{k}(n) \neq 0, n \geq k \tag{1}
\end{equation*}
$$

where the coefficients $a_{1}(n), a 2(n), \ldots, a_{k}(n)$, and $b_{n}(n)$ are functions of n or constants. The linear recurrence relation (1) is called homogeneous if $b_{n}=0$, and is said to have constant coeffcients if $a_{1}(n), a 2(n), \ldots, a_{k}(n)$ are constants. The recurrence relation

$$
\begin{equation*}
h_{n}=a_{1}(n) h_{n-1}+a_{2}(n) h_{n-2}+\cdots+a_{k}(n) h_{n-k} ; \quad a_{k}(n) \neq 0, n \geq k \tag{2}
\end{equation*}
$$

is called the corresponding homogeneous linear recurrence relation of (1).
In this section we consider linear homogeneous recurrence relations of order k with constant coefficients of the form

$$
\begin{equation*}
h_{n}=a_{1} h_{n-1}+a_{2} h_{n-2}+\cdots+a_{k} h_{n-k} ; \quad a_{k} \neq 0, n \geq k \tag{3}
\end{equation*}
$$

where $a_{1}, a 2, \ldots, a_{k}$ are constants. The following polynomial equation

$$
\begin{equation*}
x_{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\cdots-a_{k-1} x-a_{0}=0 \tag{4}
\end{equation*}
$$

is called the characteristic equation associated with the recurrence relation (3).
Theorem 1. Let $q \neq 0$. The geometric sequence $h_{n}=q^{n}$ is a solution of the recurrence relation (3) if and only if the number q is a root of the characteristic equation (4).

Theorem 2. If the characteristic equation (4) has k distinct roots $q_{1}, q_{2}, \ldots, q_{k}$, then the general solution of (3) is

$$
h_{n}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}+\cdots+c_{k} q_{k}^{n} .
$$

Theorem 3. (a) Let q be a root with multiplicity m of the characteristic equation (4) associated with the recurrence relation (3). Then the m sequences $q^{n}, n q^{n}, n^{2} q^{n}, \ldots, n^{m-1} q^{n}$ are linearly independent solutions of the recurrence relation (3).
(b) Let $q_{1}, q_{2}, \ldots, q_{s}$ be distinct roots with the multiplicities $m_{1}, m_{2}, \ldots, m_{s}$ respectively for the characteristic equation (4). Then the sequences

$$
\begin{aligned}
& q_{1}^{n}, n q_{1}^{n}, n^{2} q_{1}^{n}, \ldots, n^{m_{1}-1} q_{1}^{n} ; \\
& q_{2}^{n}, n q_{2}^{n}, n^{2} q_{2}^{n}, \ldots, n^{m_{2}-1} q_{2}^{n} \\
& \ldots \\
& q_{s}^{n}, n q_{s}^{n}, n^{2} q_{s}^{n}, \ldots, n^{m_{s}-1} q_{s}^{n} ;
\end{aligned}
$$

are linearly independent solutions of the recurrence relation (3). Their linear combinations form the general solution of the recurrence relation (3).

Problems:

1. Find the general term of the Fibonacci sequence.
2. Find the sequence $\left(h_{n}\right)$ satisfying the recurrence relation

$$
h_{n}=2 h_{n-1}+h_{n-2}-2 h_{n-3}, \quad n \geq 3
$$

and the initial conditions $h_{0}=1, h_{1}=2$, and $h_{2}=0$.
3. Find the sequence $\left(h_{n}\right)$ satisfying the recurrence relation

$$
h_{n}=4 h_{n-1}-4 h_{n-2}, \quad n \geq 2
$$

and the initial conditions $h_{0}=a$ and $h_{1}=b$.
4. Let h_{n} equal the number of different ways in which the squares of a 1 -by- n chessboard can be colored using the colors red and blue so that no two squares that are colored red are adjacent. Find a recurrence relation that h_{n} satifies; then find a formula for h_{n}.

