Number Sequences

October 31, 2008

An infinite number sequence is an ordered array

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

of countably many real or complex numbers, and is usually abbreviated as $\left(a_{n}\right)$. A sequence $\left(a_{n}\right)$ can be viewed as a function f from the set of nonnegative integers to the set of real or complex numbers, i.e., $f(n)=a_{n}, n=0,1,2, \ldots$.

We call a sequence $\left(a_{n}\right)$ an arithmetic sequence if it is of the form

$$
a_{0}, a_{0}+q, a_{0}+2 q, \ldots, a_{0}+n q, \ldots
$$

The general term satisfies the recurrence relation

$$
a_{n}=a_{n-1}+q, \quad n \geq 1
$$

A sequence $\left(b_{n}\right)$ is called a geometric sequence if it is of the form

$$
b_{0}, b_{0} q, b_{0} q^{2}, \ldots, b_{0} q^{n}, \ldots
$$

The general term satisfies the recurrence relation

$$
b_{n}=b_{n-1} q, \quad n \geq 1
$$

The partial sums of a sequence $\left(a_{n}\right)$ are the sums:

$$
\begin{aligned}
& s_{0}=a_{0} \\
& s_{1}=a_{0}+a_{1} \\
& s_{2}=a_{0}+a_{1}+a_{2}
\end{aligned}
$$

The partial sums form a new sequence $\left(s_{n}\right)$.
For an arithmetic sequence $a_{n}=a_{0}+n q \quad(n \geq 0)$, we have the partial sum

$$
s_{n}=\sum_{k=0}^{n}\left(a_{0}+k q\right)=(n+1) a_{0}+\frac{q n(n+1)}{2} .
$$

For a geometric sequence $b_{n}=b_{0} q^{n} \quad(n \geq 0)$, we have

$$
s_{n}=\sum_{k=0}^{n}\left(b_{0} q^{k}\right)=\left\{\begin{array}{llr}
\frac{q^{n+1}-1}{q-1} b_{0} & \text { if } & q \neq 1 \\
(n+1) b_{0} & \text { if } & q=1
\end{array}\right.
$$

The sequence $f_{0}, f_{1}, f_{2}, f_{3}, \ldots$ satisfying the recurrence relation

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 2)
$$

with the initial condition $f_{0}=0$ and $f_{1}=1$ is called the Fibonacci sequence, and the terms in the sequence are called Fibonacci numbers.

Proposition 1. The partial sum of Fibonacci sequence is $s_{n}=f_{0}+f_{1}+f_{2}+\cdots+f_{n}=$ $f_{n+2}-1$.

Theorem 2. The general term of the Fibonacci sequence $\left(f_{n}\right)$ is given by

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}, \quad(n \geq 0)
$$

