
Introduction To Discrete Mathematics

Review

If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one
pigeon.
If n(r− 1) + 1 objects are put into n boxes, then at least one of the boxes contains r or more of
the objects.
If the average of n nonnegative integers a1, a2, . . . an is greater than r − 1, i.e.,

a1 + a2 + · · ·+ an

n
> r − 1,

then at least one of the integers is greater than or equal to r.
The number of r-permutations of an n-set equals

P (n, r) = n(n− 1) · · · (n− r + 1) =
n!

(n− r)!
.

The number of permutations of an n-set is P (n, n) = n!.
The number of circular r-permutations of an n-set equals

P (n, r)

r
=

n!

(n− r)!r
.

The number of circular permutations of an n-set is equal to (n− 1)!
The number of r-combinations of an n-set equals

(

n

r

)

=
P (n, r)

r!
=

n!

(n− r)!r!
.

The number of r-permutations of the multiset {∞ · x1,∞ · x2, . . . ,∞ · xk} equals kr.

The number of permutations of the multiset {n1 · x1, n2 · x2, . . . , nk · xk} equals

n!

n1!n2! · · ·nk!
, where n = n1 + n2 + · · ·+ nk

Then the number of r-combinations of the multiset {∞ · a1,∞ · a2, . . . ,∞ · ak} (the number of
r-combinations with repetition allowed) equals

(

k+r−1
r

)

=
(

k+r−1
k−1

)

.

The number of nonnegative integer solutions for the equation x1 + x2 + · · · + xk = r equals
(

k+r−1
r

)

=
(

k+r−1
k−1

)

.

The number of positive integer solutions for the equation x1 + x2 + · · · + xk = r equals
(

r−1
k−1

)

.

The number of ways to place r identical balls into k distinct boxes equals
(

k+r−1
r

)

=
(

k+r−1
k−1

)

.

The number of ways to place r identical balls into k distinct boxes such that no box remains
empty equals

(

r−1
k−1

)

.
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Algorithm for generating the permutations of {1, 2, . . . , n− 1, n}:

Begin with
←−
1
←−
2 · · ·←−n .

While there exists a mobile integer, do
(1) Find the largest mobile integer m

(2) Switch m and the adjacent integer its arrow points to.
(30 Switch thew direction of all the arrows above integers p with p > m.

Algorithm 1 for construction of a permutation from its inversion sequence (a1, a2, . . . , an):
(n) Write down n.
. . .
(n-k) Insert n− k to the right of the an−kth existing number
. . .

Algorithm 2 for construction of a permutation from its inversion sequence (a1, a2, . . . , an):
(0) Mark down n empty spaces.
For k = 1 till n

Put k into the ak + 1st empty space from the left.

Algorithm for generating combinations of {xn−1, xn−2, . . . , x1, x0} :
Begin with an−1an−2 · · · a1a0 = 00 . . . 00.
While an−1an−2 · · · a1a0 6= 11 . . . 11, do
(1) Find the smallest integer j such that aj = 0.
(2) Replace aj by 1 and each of aj−1, . . . , a1, a0 by 0.
The algorithm stops when an−1an−2 · · · a1a0 = 11 . . . 11.

Algorithm for generating reflected Gray codes of order n:
Begin with an−1an−2 · · · a1a0 = 00 . . . 00.
While an−1an−2 · · · a1a0 6= 10 . . . 00, do
(1) If an−1 + an−2 + · · ·+ a1 + a0 = even, then change a0 (from 0 to 1 or 1 to 0).
(2) If an−1 + an−2 + · · · + a1 + a0 = odd, find the smallest j such that aj = 1 and change aj+1

(from 0 to 1 or 1 to 0).

Algorithm for generating r-combinations of S = {1, 2, . . . , n− 1, n}:
Begin with 12 · · · r.
While a1a2 · · · ar 6= (n− r + 1) · · · (n− 1)n, do
(1) Find the largest integer k such that ak < n and ak + 1 is not in the a1a2 · · · ar.
(2) Replace a1a2 · · · ar with

a1a2 · · · ak−1(ak + 1)(ak + 2) · · · (ak + r − k + 1).

Algorithm for a linear extension of an n-poset:
Step 1. Choose a minimal element x1 from X (with respect to the ordering ≤).
Step 2. Delete x1 from X; choose a minimal element x2 from X.
Step 3. Delete x2 from X and choose a minimal element x3 from X.
...
Step n. Delete xn−1 from X and choose the only element xn in X.



For a real α and an integer k,

(

α

k

)

=







α(α−1)···(α−k+1)
k! if k ≥ 1

1 if k = 0
0 if k ≤ −1.

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

(1 ≤ k ≤ n− 1)

(

n

k

)

=

(

n

n− k

)

(0≤ k ≤ n)

k

(

n

k

)

= n

(

n− 1

k − 1

)

(1≤ n)

(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+

(

n

n

)

= 2n ( n≥ 0)

(

n

0

)

−

(

n

1

)

+

(

n

2

)

− · · ·+ (−1)n
(

n

n

)

= 0 ( n≥ 1)

(

n

0

)

+

(

n

2

)

+ · · · =

(

n

1

)

+

(

n

3

)

+ · · · (= 2n−1) ( n≥ 1)

1

(

n

1

)

+ 2

(

n

2

)

+ · · ·+ n

(

n

n

)

= n2n−1 ( n≥ 1)

12

(

n

1

)

+ 22

(

n

2

)

+ · · ·+ n2

(

n

n

)

= n(n + 1)2n−2 ( n≥ 1)

(

n

0

)2

+

(

n

1

)2

+

(

n

2

)2

+ · · ·+

(

n

n

)2

=

(

2n

n

)

( n≥ 0)

(

n

0

)

+

(

n + 1

1

)

+

(

n + 2

2

)

+ · · ·+

(

n + k

k

)

=

(

n + k + 1

k

)

(

0

k

)

+

(

1

k

)

+

(

2

k

)

+ · · · +

(

n

k

)

=

(

n + 1

k + 1

)

(1 ≤ k ≤ n)

Binomial expansion. For integer n ≥ 1 and variables x and y,

(x + y)n =

n
∑

k=0

(

n

k

)

xn−kyk.

Newton’s binomial expansion. For a real α and variables x and y with 0 ≤ |x| ≤ |y|,

(x + y)α =
∞

∑

k=0

(

α

k

)

xkyα−k.

Multinomial expansion. For integer n ≥ 1 and variables x1, x2, . . . , xk,

(x1 + x2 + · · ·+ xt)
n =

∑

n1+n2+···+nt=n;n1,n2,...,nt≥0

(

n

n1, n2, . . . , nt

)

xn1

1 xn2

2 · · · x
nt

t .



Sperner’s theorem. Any clutter of an n-set S contains at most
(

n
⌊n

2
⌋

)

subsets of S.

The power set P (S) can be partitioned into m disjoint chains C1, C2, . . . , C( n

⌊ n

2
⌋)

.

Construction of a symmetric chain partition for the case n given a symmetric chain partition
for the case n − 1: for each chain A1 ⊂ A2 ⊂ · · · ⊂ Ak for the case n − 1: if k ≥ 2, do
A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ Ak ∪ {n} and A1 ∪ {n} ⊂ A2 ∪ {n} ⊂ · · · ⊂ Ak−1 ∪ {n}; if k = 1, do
A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ Ak ∪ {n}.
Dilworth’s theorem.

min{k : A1 ∪ · · · ∪Ak is an antichain partition } = max{|C| : C is a chain }.

min{k : C1 ∪ · · · ∪Ck is a chain partition } = max{|A| : A is an antichain }.

Let P1, P2, . . . , Pn be properties of the objects of a finite set S. Let Ai be the set of all elements
of S that have the property Pi. The number of objects of S that have none of the properties
P1, P2, . . . , Pn is given by

|Ā1∩Ā2∩· · ·∩Ān| = |S|−
∑

i

|Ai|+
∑

i<j

|Ai∩Aj |−
∑

i<j<k

|Ai∩Aj∩Ak|+· · ·+(−1)n|A1∩A2∩· · ·∩An|.

The number of objects of S that have at least one of the properties P1, P2, . . . , Pn is given by

|A1∪A2∪· · ·∪An| =
∑

i

|Ai|−
∑

i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak|−· · ·+(−1)n+1|A1∩A2∩· · ·∩An|.

A permutation i1i2 . . . in of {1, 2, . . . , n} is called a derangement if ik 6= k for any 1 ≤ k ≤ n (no
number remains in its position).The number Dn of derangements of {1, 2, . . . , n} is given by

Dn = n!(1−
1

1!
+

1

2!
−

1

3!
+ · · ·+ (−1)n

1

n!
).

The derangement sequence Dn satisfies the following recurrence relations

Dn = (n− 1)(Dn−1 + Dn−2), D1 = 0,D2 = 1, and

Dn = nDn−1 + (−1)n, D1 = 0.

A permutation of {1, 2, . . . , n} is called nonconsecutive if none of 12, 23, . . . , (n−1)n occurs. The
number Qn of nonconsecutive permutations of {1, 2, . . . , n} is given by

Qn =
n−1
∑

k=0

(−1)k
(

n− 1

k

)

(n− k)!

For n ≥ 2, Qn = Dn + Dn−1.

A circular permutation of {1, 2, . . . , n} is called nonconsecutive if none of 12, 23, . . . , n1 occurs.
The number Cn of nonconsecutive circular permutations is given by

Cn =

n−1
∑

k=0

(−1)k
(

n

k

)

(n− k − 1)! + (−1)n.

Let |X| = m and let |Y | = n. The number of all functions from X to Y equals nm. The number
of injective functions from X to Y equals

(

n
m

)

m! = P (n,m). The number S(m,n) of surjective
functions from X to Y is given by

S(m,n) =
n

∑

k=0

(−1)k
(

n

k

)

(n− k)m.



Theorem 1. Let q 6= 0. The geometric sequence hn = qn is a solution of the recurrence relation

hn = a1hn−1 + a2hn−2 + · · ·+ akhn−k; ak 6= 0, n ≥ k (1)

if and only if the number q is a root of the characteristic equation

xk − a1x
k−1 − a2x

k−2 − · · · − ak−1x− a0 = 0. (2)

Theorem 2. If the characteristic equation (2) has k distinct roots q1, q2, . . . , qk, then the general
solution of (1) is

hn = c1q
n
1 + c2q

n
2 + · · · + ckq

n
k .

Theorem 3. Let q1, q2, . . . , qs be distinct roots with the multiplicities m1,m2, . . . ,ms respec-
tively for the characteristic equation (2). Then the sequences

qn
1 , nqn

1 , n2qn
1 , . . . , nm1−1qn

1 ;

qn
2 , nqn

2 , n2qn
2 , . . . , nm2−1qn

2 ;

. . .

qn
s , nqn

s , n2qn
s , . . . , nms−1qn

s ;

are linearly independent solutions of the recurrence relation (1). Their linear combinations form
the general solution of the recurrence relation (1).
Theorem 4. Let h∗

n be any particular solution of the recurrence relation

hn = a1hn−1 + a2hn−2 + · · · + akhn−k + bn; ak 6= 0, n ≥ k, (3)

and let hn be the general solution of its corresponding the homogeneous recurrence relation.
Then hn = hn + h∗

n is the general solution of the recurrence relation (3).
Consider a first-order linear nonhomogeneous recurrence relation

hn = ahn−1 + bn; n ≥ 1 (4)

Theorem 5. Let bn = cqn. Then (4) has a particular solution of the following form:

• If q 6= a, then h∗
n = Aqn.

• If q = a, then h∗
n = Anqn.

Theorem 6. Let bn =
∑k

i=0 cin
i.

• If a 6= 1, then (4) has a particular solution of the form h∗
n = A0 +A1n+A2n

2 + · · ·+Akn
k.

• If a = 1, then the solution of (4) is hn = h0 +
∑k

i=0 bi,

Theorem 7. Given a nonhomogeneous linear recurrence relation of the second order

hn = a1hn−1 + a2hn−2 + cqn; n ≥ 2 (5)

Let q1 and q2 be solutions of its characteristic equation x2 − a1x − a2 = 0. Then (6) has a
particular solution of the following forms:

• If q 6= q1, q 6= q2, then h∗
n = Aqn.

• If q = q1, q 6= q2, then h∗
n = Anqn.



• If q = q1 = q2, then h∗
n = An2qn.

Theorem 8. Given a nonhomogeneous linear recurrence relation of the second order

hn = a1hn−1 + a2hn−2 + bn; n ≥ 2 (6)

where bn is a polynomial function of n with degree k.

• If a1 + a2 6= 1, then (6) has a particular solution of the form:

h∗
n = A0 + A1n + A2n

2 + · · ·+ Akn
k,

where the coefficients A0, A1, . . . , Ak are to be determined. If k ≤ 2, then a particular
solution has the form

h∗
n = A0 + A1n + A2n

2.

• If a1 + a2 = 1, then (6) can be reduced to a first order recurrence relation

gn = (a1 − 1)gn−1 + bn, where gn = hn − hn−1 for n ≥ 1.

For the sequence a0, a1, a2, . . . , ak, . . . , its ordinary and exponential generating functions are
given by

A(x) = a0 + a1x + a2x
2 + · · ·+ anxn + . . .

A(e)(x) = a0 + b1
x

1!
+ a2

x2

2!
+ · · ·+ ak

xk

k!
+ . . .

A(x)B(x) =

∞
∑

k=0

(

k
∑

i=0

aibk−i)x
k

A(e)(x)B(e)(x) =
∞
∑

k=0

(
k

∑

i=0

(

k

i

)

aibk−i)
xk

k!

Some ordinary generating functions:

ai 1 ci i i2
(

n
i

) (

n+i−1
i

)

1
i
; a0 = 0

A(x) 1
1−x

1
1−cx

x
(1−x)2

x(1+x)
(1−x)3

(1 + x)n (1− x)−n ln 1
1−x

Some exponential generating functions:
ai 1 ci i i2 i! (n)i n(i)

A(e)(x) ex ecx xex x(x + 1)ex (1− x)−1 (1 + x)n (1− x)−n



Given a coloring c ∈ C, the stabilazor of c is the set G(c) = {f ∈ G | f ∗ c = c}.
Given a permutation f ∈ G, the invariant set of f is the set C(f) = {c ∈ C | f ∗ c = c}.
Given a coloring c ∈ C, the orbit of c is the set c̄ = {f(c) | f ∈ G}.
Let C be the set of all kn colorings of X into k colors. Then |C(f)| = k#(f), where #(f) is the
number of cycles in the disjoint cycle factorization of f .

Burnside’s Lemma Suppose a group G of permutations of X acts on a set C of colorings of
X. Then the number N(G,C) of nonequivalent colorings in C is given by

N(G,C) =
1

|G|

∑

f∈G

|C(f)|.

Given a permutation f ∈ G, the type of f is an n-tuple type(f) = (e1, e2, . . . , en), where ei is
the number of i-cycles in a disjoint cycle factorization of f .

e1 + e2 + · · ·+ en = #(f), 1e1 + 2e2 + · · ·+ nen = n.

To each permutation f ∈ G with type type(f) = (e1, e2, . . . , en) we associate a monomial

mon(f) = ze1

1 ze2

2 . . . zen

n

The cycle index of G is

PG(z1, z2, . . . , zn) =
1

|G|

∑

f∈G

mon(f) =
1

|G|

∑

f∈G

ze1

1 ze2

2 . . . zen

n .

Theorem Suppose there are k colors. Let C be a set of all kn colorings of X. Then the number
N(G,C) of nonequivalent colorings in C is given by

N(G,C) = PG(k, k, . . . , k).

Theorem (Polya) Let {u1, u2, . . . , uk} be a set of k colors. Let C be a set of any colorings of
X such that the group G of permutations of X acts on the set C. Then the generating function
for the number of nonequivalent colorings in C according to the number of colors of each kind
is given by

PG(u1 + · · · uk, u
2
1 + · · · u2

k, . . . , u
n
1 + · · · un

k).


