Introduction To Discrete Mathematics

Review

If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one
pigeon.

If n(r — 1) 4+ 1 objects are put into n boxes, then at least one of the boxes contains 7 or more of
the objects.

If the average of n nonnegative integers a1, as, ... a, is greater than r — 1, i.e.,

ay+ag+---+a
n

s 1,

then at least one of the integers is greater than or equal to r.
The number of r-permutations of an n-set equals

n!

P(n,r):n(n—l)---(n—r—{—l):m.

The number of permutations of an n-set is P(n,n) = nl.

The number of circular r-permutations of an n-set equals

P(n,r)  n!

r (n—r)lr

The number of circular permutations of an n-set is equal to (n — 1)!
The number of r-combinations of an n-set equals

<Z> - P(:fr) (i —ni“)!r!'

The number of r-permutations of the multiset {oo - x1,00 - z2,...,00 - 2} } equals k".
The number of permutations of the multiset {nj - x1,n9 - x2,...,ng - %} equals
n!

ﬁ, Wheren:nl—i-ng—l-"'—l—nk
1:N9: ng:

Then the number of r-combinations of the multiset {oco - ay,00 - ag,...,00 - a;} (the number of

r-combinations with repetition allowed) equals (k+:_1) = (k:izl)

The number of nonnegative integer solutions for the equation xy + x9 + -+ + 21 = r equals
(k—i—r—l) _ (k—i—r—l)

r - k—1 /-
The number of positive integer solutions for the equation z1 + x9 + - - - + x = r equals (,’;j)
The number of ways to place r identical balls into k distinct boxes equals (k+:_1) = (k;gizl)
The number of ways to place r identical balls into k distinct boxes such that no box remains

empty equals (2:1) )



Algorithm for generating the permutations of {1,2,...,n — 1,n}:
Begin with 12...%7.

While there exists a mobile integer, do

(1) Find the largest mobile integer m

(2) Switch m and the adjacent integer its arrow points to.

(30 Switch thew direction of all the arrows above integers p with p > m.

Algorithm 1 for construction of a permutation from its inversion sequence (a1, as, ..., ay):
(n) Write down n.

(n-k) Insert n — k to the right of the a,_jth existing number

Algorithm 2 for construction of a permutation from its inversion sequence (ay,ag, ..., a,):
(0) Mark down n empty spaces.

For k=1tilln

Put k into the aj + 1st empty space from the left.

Algorithm for generating combinations of {x,,—1,Zn—2,...,21,Z0} :
Begin with a,,_1a,—2---a1ag = 00...00.

While Ap—1Qp—9 - A1040 75 11... 11, do

(1) Find the smallest integer j such that a; = 0.

(2) Replace a; by 1 and each of aj_1,...,a1,a9 by 0.

The algorithm stops when a,_1aG,_9---ajag = 11...11.

Algorithm for generating reflected Gray codes of order n:

Begin with a,,_1a,_2---ai1a9 = 00...00.

While a,,—1an—9 - -aijag # 10...00, do

(1) If ap—1 + an—o + -+ a1 + ag = even, then change ay (from 0 to 1 or 1 to 0).

(2) If ap—1 +ap—2+ -+ a1 + ap = odd, find the smallest j such that a; = 1 and change a4
(from 0 to 1 or 1 to 0).

Algorithm for generating r-combinations of S = {1,2,...,n—1,n}:

Begin with 12--- 7.

While ajag---ar #(n—r+1)---(n—1)n, do

(1) Find the largest integer k such that ax < n and ax + 1 is not in the ajas - - - a,.
(2) Replace ajas - --a, with

arag---ap_1(ag + 1)(ag +2) - (ap +r —k+1).

Algorithm for a linear extension of an n-poset:

Step 1. Choose a minimal element x; from X (with respect to the ordering <).
Step 2. Delete z1 from X; choose a minimal element x5 from X.

Step 3. Delete x5 from X and choose a minimal element x3 from X.

Step n. Delete z,,_1 from X and choose the only element x, in X.



For a real o and an integer k,

ala—1)--(a—k+1) if k >1

Ie% k!
<k‘> = 1 if k=0
0 if k< -1.

(@) ()r () ()=
(0)= (1)) () =
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() () ()= 60)

Binomial expansion. For integer n > 1 and variables x and y,

(z+y)" = f: (Z) T

k=0

(e ()45

Newton’s binomial expansion. For a real o and variables x and y with 0 < |z| < |y|,

(x+y)* = i <Z> akyok,

k=0

Multinomial expansion. For integer n > 1 and variables =1, zs,..., T,

n
(1 + x4+ )" = > < )
ny, N2, ..., Nt

ni+ng+-+ne=n;ni,ng,...,nt >0

ni ,.n2
L1 Ty~

n

Syt



Sperner’s theorem. Any clutter of an n-set S contains at most (Lg J) subsets of S.

The power set P(S) can be partitioned into m disjoint chains Cy, Cs, ... ,C’(LQJ).

Construction of a symmetric chain partition for the case n given a symmetfic chain partition
for the case n — 1: for each chain A; C Ay C --- C Ay for the case n — 1: if & > 2, do
Al C Ay C - CAy, C Ay U{n} and AyU{n} C AsU{n} C -+ C Ap_1U{n};if k =1, do
Al C Ay C"'CAkCAkU{n}.

Dilworth’s theorem.

min{k : Ay U---U Ay is an antichain partition } = max{|C|: C is a chain }.
min{k : C1 U---UC} is a chain partition } = max{|A|: A is an antichain }.

Let Py, Ps,..., P, be properties of the objects of a finite set S. Let A; be the set of all elements
of S that have the property FP;. The number of objects of S that have none of the properties
P, P, ..., P, is given by

|A1NAsn - NA| = [S]=) 1A+ TANA = ) JANA DAL+ +(=1)"[A1NAoN- N A,|.
i i<j i<j<k

The number of objects of S that have at least one of the properties Py, Ps, ..., P, is given by
|ATUAU- - UA,| =D A= JANA [+ > [ANAN AR =+ (= 1) A N AN N A,|.

i<j i<j<k
A permutation iyig ... 14, of {1,2,...,n} is called a derangement if iy, # k for any 1 < k <n (no
number remains in its position).The number D,, of derangements of {1,2,...,n} is given by
1 1 1 1
=nl(l = = [ . I I
D,, = n!(1 TR +(-1) n!).

The derangement sequence D,, satisfies the following recurrence relations
D, = (n — 1)(Dn_1 + Dn_g), D1 =0,Dy =1, and
D, =nD,_1+ (—1)”, D, =0.

A permutation of {1,2,...,n} is called nonconsecutive if none of 12,23,..., (n—1)n occurs. The
number @,, of nonconsecutive permutations of {1,2,...,n} is given by
n—1 n—1
Q=0 (" i

Forn>2, Q,=D,+D,_1.
A circular permutation of {1,2,...,n} is called nonconsecutive if none of 12,23,...,nl occurs.
The number C), of nonconsecutive circular permutations is given by

n—1 n
Cp = Z(—l)k<k> (n—k—1)!+ (=)™
k=0

Let | X| = m and let |Y| = n. The number of all functions from X to Y equals n™. The number
of injective functions from X to Y equals (")m! = P(n,m). The number S(m,n) of surjective
functions from X to Y is given by

n

S(m,n) =Y (~1) <Z> (n — k)™,

k=0



Theorem 1. Let ¢ # 0. The geometric sequence h,, = ¢" is a solution of the recurrence relation
hp = a1hp—1 4+ ashp_o+ -+ aghp_i; ar #0,n >k (1)

if and only if the number ¢ is a root of the characteristic equation

k—2

o — a1z — a2 — o — a1z —ap = 0. (2)

Theorem 2. If the characteristic equation (2) has k distinct roots q1, g, . . ., gk, then the general
solution of (1) is
hn = c1q] + c2q3 + -+ + cxq-

Theorem 3. Let q1,q2,...,qs be distinct roots with the multiplicities m1, mo, ..., ms respec-
tively for the characteristic equation (2). Then the sequences

n n 2 n mi1—1 _n.
q1,Nq1, N q1,---,1 qi;
n n 2 n mo—1 _n.
q2,Nqo, N g3, ...,1 qz2;
n n 2. n ms—1 _n.
QS7nqs7n qs?"'?” # QS7

are linearly independent solutions of the recurrence relation (1). Their linear combinations form
the general solution of the recurrence relation (1).
Theorem 4. Let h) be any particular solution of the recurrence relation

hp = arhp_1+ aghy o+ -+ aphp_p +by;  ap #0,n >k, (3)

and let h, be the general solution of its corresponding the homogeneous recurrence relation.
Then h,, = hy, + h} is the general solution of the recurrence relation (3).
Consider a first-order linear nonhomogeneous recurrence relation

hp=ahp_1+by; n>1 (4)
Theorem 5. Let b, = ¢¢™. Then (4) has a particular solution of the following form:
e If g # a, then b} = Aq".
o If ¢ =a, then b} = Ang™.
Theorem 6. Let b, = Zf:o ent.
e If a # 1, then (4) has a particular solution of the form h¥ = Ag+ Ajn+ Agn? +- - -+ AxnF.
e If a = 1, then the solution of (4) is h, = ho + Z?:o b;,
Theorem 7. Given a nonhomogeneous linear recurrence relation of the second order
hp = athp_1 + ashy_o +cq™; n>2 (5)

Let g1 and g2 be solutions of its characteristic equation zy — ajz — ag = 0. Then (6) has a
particular solution of the following forms:

o If ¢ # q1,q9 # qo, then h}, = Ag".

o If ¢ = q1,q # q, then h}, = Ang".



e If ¢ = q1 = qo, then h} = An?q".
Theorem 8. Given a nonhomogeneous linear recurrence relation of the second order
hpn = athp_1 4+ ashp_o +by; n > 2 (6)
where b, is a polynomial function of n with degree k.
e If a; +ay # 1, then (6) has a particular solution of the form:
hi = Ag + Ayn+ Agn® + - + Apn®,

where the coefficients Ay, A1,..., A, are to be determined. If £ < 2, then a particular

solution has the form
h; =Ag+ Ain+ Agnz.

e If a; +ag =1, then (6) can be reduced to a first order recurrence relation

gn = (a1 — 1)gp—1 + by, where g, = hy, — hy—1 for n > 1.

For the sequence ag,a1,as,...,a,..., its ordinary and exponential generating functions are
given by
Alz) = ag+ a1z +az®+ - +apz™ +...
2 k
x x x
A9 (z) = Go+biqy + a2y o F Ak

[ k
A(x)B(z) = Z(Z aibk_i)xk

k=0 i=0
[e%S) k L ﬂj‘k
(e) (e) — b )
A (2)B"Y(z) = Z(Z <i>azbk—z)k!
k=0 =0
Some ordinary generating functions:
o [1 e [i [2 [0 [ [ha=o
A@) | 5 | e | ol | g | (2" [ -2 [Indg

Some exponential generating functions:
a; 1| | i? i! (n); n(®
A€ () [e® [ e [ ae® [z(@+1)e* [ Q—2) | QA +2)* | (1 —2)™




Given a coloring ¢ € C, the stabilazor of ¢ is the set G(c) = {f € G| f *xc = c}.

Given a permutation f € G, the invariant set of f is the set C(f) ={c e C| f*c=c}.

Given a coloring ¢ € C, the orbit of ¢ is the set ¢ = {f(c) | f € G}.

Let C be the set of all &* colorings of X into k colors. Then |C(f)| = k#(/), where #(f) is the
number of cycles in the disjoint cycle factorization of f.

Burnside’s Lemma Suppose a group G of permutations of X acts on a set C of colorings of
X. Then the number N(G, C) of nonequivalent colorings in C' is given by

=g leu

feaq

Given a permutation f € G, the type of f is an n-tuple type(f) = (e1,e2,...,e,), where e; is
the number of i-cycles in a disjoint cycle factorization of f.

er+ex+--+e,=#(f), lei+2ex+---+ne,=n.

To each permutation f € G with type type(f) = (e1,ea,...,e,) we associate a monomial
mon(f) = 271257 ... 2"

The cycle index of G is

Po(z1,29, ..y 2n) = ]G! Zmon ]G! szlz?...
feaq fea

Theorem Suppose there are k colors. Let C' be a set of all k™ colorings of X. Then the number
N(G,C) of nonequivalent colorings in C' is given by

N(G,C) = Pa(k,k,... k).

Theorem (Polya) Let {uj,u,...,ux} be aset of k colors. Let C be a set of any colorings of
X such that the group G of permutations of X acts on the set C'. Then the generating function
for the number of nonequivalent colorings in C according to the number of colors of each kind
is given by

Po(uy + gyl oo,



