Introduction To Discrete Mathematics

Review

If you put n+1 pigeons in n pigeonholes then at least one hole would have more than one pigeon.

If n(r-1) + 1 objects are put into n boxes, then at least one of the boxes contains r or more of the objects.

If the average of n nonnegative integers $a_1, a_2, \ldots a_n$ is greater than r-1, i.e.,

$$\frac{a_1+a_2+\cdots+a_n}{n} > r-1,$$

then at least one of the integers is greater than or equal to r. The number of r-permutations of an n-set equals

$$P(n,r) = n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

The number of permutations of an *n*-set is P(n, n) = n!. The number of circular r-permutations of an n-set equals

$$\frac{P(n,r)}{r} = \frac{n!}{(n-r)!r}$$

The number of circular permutations of an *n*-set is equal to (n-1)!The number of r-combinations of an n-set equals

$$\binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{(n-r)!r!}$$

The number of r-permutations of the multiset $\{\infty \cdot x_1, \infty \cdot x_2, \ldots, \infty \cdot x_k\}$ equals k^r . The number of permutations of the multiset $\{n_1 \cdot x_1, n_2 \cdot x_2, \ldots, n_k \cdot x_k\}$ equals

$$\frac{n!}{n_1!n_2!\cdots n_k!},$$
 where $n = n_1 + n_2 + \cdots + n_k$

Then the number of r-combinations of the multiset $\{\infty \cdot a_1, \infty \cdot a_2, \dots, \infty \cdot a_k\}$ (the number of r-combinations with repetition allowed) equals $\binom{k+r-1}{r} = \binom{k+r-1}{k-1}$. The number of nonnegative integer solutions for the equation $x_1 + x_2 + \dots + x_k = r$ equals $\binom{k+r-1}{r} = \binom{k+r-1}{k-1}$.

The number of positive integer solutions for the equation $x_1 + x_2 + \cdots + x_k = r$ equals $\binom{r-1}{k-1}$. The number of ways to place r identical balls into k distinct boxes equals $\binom{k+r-1}{r} = \binom{k+r-1}{k-1}$. The number of ways to place r identical balls into k distinct boxes such that no box remains empty equals $\binom{r-1}{k-1}$.

Algorithm for generating the permutations of $\{1, 2, ..., n-1, n\}$:

Begin with $\overleftarrow{1}\,\overleftarrow{2}\,\cdots\,\overleftarrow{n}$.

While there exists a mobile integer, do

(1) Find the largest mobile integer m

(2) Switch m and the adjacent integer its arrow points to.

(30 Switch thew direction of all the arrows above integers p with p > m.

Algorithm 1 for construction of a permutation from its inversion sequence (a_1, a_2, \ldots, a_n) : (n) Write down n.

(n-k) Insert n - k to the right of the a_{n-k} th existing number ...

Algorithm 2 for construction of a permutation from its inversion sequence (a_1, a_2, \ldots, a_n) : (0) Mark down *n* empty spaces.

For k = 1 till n

Put k into the $a_k + 1$ st empty space from the left.

Algorithm for generating combinations of $\{x_{n-1}, x_{n-2}, \ldots, x_1, x_0\}$:

Begin with $a_{n-1}a_{n-2}\cdots a_1a_0 = 00\dots 00$.

While $a_{n-1}a_{n-2}\cdots a_1a_0 \neq 11...11$, do

(1) Find the smallest integer j such that $a_j = 0$.

(2) Replace a_j by 1 and each of $a_{j-1}, \ldots, a_1, a_0$ by 0.

The algorithm stops when $a_{n-1}a_{n-2}\cdots a_1a_0 = 11\dots 11$.

Algorithm for generating reflected Gray codes of order *n*:

Begin with $a_{n-1}a_{n-2}\cdots a_1a_0 = 00\dots 00$.

While $a_{n-1}a_{n-2}\cdots a_1a_0 \neq 10...00$, do

(1) If $a_{n-1} + a_{n-2} + \cdots + a_1 + a_0 =$ even, then change a_0 (from 0 to 1 or 1 to 0).

(2) If $a_{n-1} + a_{n-2} + \cdots + a_1 + a_0 = \text{odd}$, find the smallest j such that $a_j = 1$ and change a_{j+1} (from 0 to 1 or 1 to 0).

Algorithm for generating *r*-combinations of $S = \{1, 2, ..., n-1, n\}$: Begin with $12 \cdots r$. While $a_1a_2 \cdots a_r \neq (n-r+1) \cdots (n-1)n$, do (1) Find the largest integer k such that $a_k < n$ and $a_k + 1$ is not in the $a_1a_2 \cdots a_r$.

(2) Replace $a_1 a_2 \cdots a_r$ with

$$a_1a_2\cdots a_{k-1}(a_k+1)(a_k+2)\cdots (a_k+r-k+1).$$

Algorithm for a linear extension of an *n*-poset:

Step 1. Choose a minimal element x_1 from X (with respect to the ordering \leq).

Step 2. Delete x_1 from X; choose a minimal element x_2 from X.

Step 3. Delete x_2 from X and choose a minimal element x_3 from X.

•••

Step n. Delete x_{n-1} from X and choose the only element x_n in X.

For a real α and an integer k,

$$\begin{pmatrix} \alpha \\ k \end{pmatrix} = \begin{cases} & \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} & \text{if } k \ge 1 \\ & 1 & \text{if } k = 0 \\ & 0 & \text{if } k \le -1. \end{cases}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \qquad (1 \le k \le n-1)$$

$$\binom{n}{k} = \binom{n}{n-k} \tag{0 \le k \le n}$$

$$k\binom{n}{k} = n\binom{n-1}{k-1} \tag{1}{1}$$

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n \qquad (n \ge 0)$$

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0$$
 ($n \ge 1$)

$$\binom{n}{0} + \binom{n}{2} + \dots = \binom{n}{1} + \binom{n}{3} + \dots (= 2^{n-1})$$
 (n \ge 1)

$$1\binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1}$$
 ($n \ge 1$)

$$1^{2} \binom{n}{1} + 2^{2} \binom{n}{2} + \dots + n^{2} \binom{n}{n} = n(n+1)2^{n-2}$$
 (n \ge 1)

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n} \qquad (n \ge 0)$$

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k}{k} = \binom{n+k+1}{k}$$
$$\binom{0}{k} + \binom{1}{k} + \binom{2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$
$$(1 \le k \le n)$$

Binomial expansion. For integer $n \ge 1$ and variables x and y,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Newton's binomial expansion. For a real α and variables x and y with $0 \le |x| \le |y|$,

$$(x+y)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k y^{\alpha-k}.$$

Multinomial expansion. For integer $n \ge 1$ and variables x_1, x_2, \ldots, x_k ,

$$(x_1 + x_2 + \dots + x_t)^n = \sum_{n_1 + n_2 + \dots + n_t = n; n_1, n_2, \dots, n_t \ge 0} \binom{n}{n_1, n_2, \dots, n_t} x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}.$$

Sperner's theorem. Any clutter of an *n*-set *S* contains at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ subsets of *S*. The power set P(S) can be partitioned into *m* disjoint chains $C_1, C_2, \ldots, C_{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$.

Construction of a symmetric chain partition for the case n given a symmetric chain partition for the case n-1: for each chain $A_1 \subset A_2 \subset \cdots \subset A_k$ for the case n-1: if $k \geq 2$, do $A_1 \subset A_2 \subset \cdots \subset A_k \subset A_k \cup \{n\}$ and $A_1 \cup \{n\} \subset A_2 \cup \{n\} \subset \cdots \subset A_{k-1} \cup \{n\}$; if k = 1, do $A_1 \subset A_2 \subset \cdots \subset A_k \subset A_k \cup \{n\}$.

Dilworth's theorem.

 $\min\{k: A_1 \cup \cdots \cup A_k \text{ is an antichain partition }\} = \max\{|C|: C \text{ is a chain }\}.$

 $\min\{k: C_1 \cup \cdots \cup C_k \text{ is a chain partition }\} = \max\{|A|: A \text{ is an antichain }\}.$

Let P_1, P_2, \ldots, P_n be properties of the objects of a finite set S. Let A_i be the set of all elements of S that have the property P_i . The number of objects of S that have none of the properties P_1, P_2, \ldots, P_n is given by

$$|\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_n| = |S| - \sum_i |A_i| + \sum_{i < j} |A_i \cap A_j| - \sum_{i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_n|.$$

The number of objects of S that have at least one of the properties P_1, P_2, \ldots, P_n is given by

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_i |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|.$$

A permutation $i_1 i_2 \dots i_n$ of $\{1, 2, \dots, n\}$ is called a *derangement* if $i_k \neq k$ for any $1 \leq k \leq n$ (no number remains in its position). The number D_n of derangements of $\{1, 2, \dots, n\}$ is given by

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right).$$

The derangement sequence D_n satisfies the following recurrence relations

$$D_n = (n-1)(D_{n-1} + D_{n-2}), \quad D_1 = 0, D_2 = 1,$$
 and
 $D_n = nD_{n-1} + (-1)^n, \quad D_1 = 0.$

A permutation of $\{1, 2, ..., n\}$ is called *nonconsecutive* if none of 12, 23, ..., (n-1)n occurs. The number Q_n of nonconsecutive permutations of $\{1, 2, ..., n\}$ is given by

$$Q_n = \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} (n-k)!$$

For $n \ge 2$, $Q_n = D_n + D_{n-1}$.

A circular permutation of $\{1, 2, ..., n\}$ is called *nonconsecutive* if none of 12, 23, ..., n1 occurs. The number C_n of nonconsecutive circular permutations is given by

$$C_n = \sum_{k=0}^{n-1} (-1)^k \binom{n}{k} (n-k-1)! + (-1)^n.$$

Let |X| = m and let |Y| = n. The number of all functions from X to Y equals n^m . The number of injective functions from X to Y equals $\binom{n}{m}m! = P(n,m)$. The number S(m,n) of surjective functions from X to Y is given by

$$S(m,n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m.$$

Theorem 1. Let $q \neq 0$. The geometric sequence $h_n = q^n$ is a solution of the recurrence relation

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k}; \quad a_k \neq 0, n \ge k$$
(1)

if and only if the number q is a root of the characteristic equation

$$x_k - a_1 x^{k-1} - a_2 x^{k-2} - \dots - a_{k-1} x - a_0 = 0.$$
⁽²⁾

Theorem 2. If the characteristic equation (2) has k distinct roots q_1, q_2, \ldots, q_k , then the general solution of (1) is

$$h_n = c_1 q_1^n + c_2 q_2^n + \dots + c_k q_k^n$$

Theorem 3. Let q_1, q_2, \ldots, q_s be distinct roots with the multiplicities m_1, m_2, \ldots, m_s respectively for the characteristic equation (2). Then the sequences

$$q_1^n, nq_1^n, n^2q_1^n, \dots, n^{m_1-1}q_1^n; q_2^n, nq_2^n, n^2q_2^n, \dots, n^{m_2-1}q_2^n; \\ \dots \\ q_s^n, nq_s^n, n^2q_s^n, \dots, n^{m_s-1}q_s^n;$$

are linearly independent solutions of the recurrence relation (1). Their linear combinations form the general solution of the recurrence relation (1).

Theorem 4. Let h_n^* be any particular solution of the recurrence relation

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} + b_n; \quad a_k \neq 0, n \ge k,$$
(3)

and let $\overline{h_n}$ be the general solution of its corresponding the homogeneous recurrence relation. Then $h_n = \overline{h_n} + h_n^*$ is the general solution of the recurrence relation (3). Consider a first-order linear nonhomogeneous recurrence relation

$$h_n = ah_{n-1} + b_n; \quad n \ge 1 \tag{4}$$

Theorem 5. Let $b_n = cq^n$. Then (4) has a particular solution of the following form:

- If $q \neq a$, then $h_n^* = Aq^n$.
- If q = a, then $h_n^* = Anq^n$.

Theorem 6. Let $b_n = \sum_{i=0}^k c_i n^i$.

- If $a \neq 1$, then (4) has a particular solution of the form $h_n^* = A_0 + A_1 n + A_2 n^2 + \dots + A_k n^k$.
- If a = 1, then the solution of (4) is $h_n = h_0 + \sum_{i=0}^k b_i$,

Theorem 7. Given a nonhomogeneous linear recurrence relation of the second order

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + cq^n; \quad n \ge 2$$
(5)

Let q_1 and q_2 be solutions of its characteristic equation $x_2 - a_1x - a_2 = 0$. Then (6) has a particular solution of the following forms:

- If $q \neq q_1, q \neq q_2$, then $h_n^* = Aq^n$.
- If $q = q_1, q \neq q_2$, then $h_n^* = Anq^n$.

• If $q = q_1 = q_2$, then $h_n^* = An^2q^n$.

Theorem 8. Given a nonhomogeneous linear recurrence relation of the second order

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + b_n; \quad n \ge 2 \tag{6}$$

where b_n is a polynomial function of n with degree k.

• If $a_1 + a_2 \neq 1$, then (6) has a particular solution of the form:

$$h_n^* = A_0 + A_1 n + A_2 n^2 + \dots + A_k n^k,$$

where the coefficients A_0, A_1, \ldots, A_k are to be determined. If $k \leq 2$, then a particular solution has the form

$$h_n^* = A_0 + A_1 n + A_2 n^2$$

• If $a_1 + a_2 = 1$, then (6) can be reduced to a first order recurrence relation

$$g_n = (a_1 - 1)g_{n-1} + b_n$$
, where $g_n = h_n - h_{n-1}$ for $n \ge 1$.

For the sequence $a_0, a_1, a_2, \ldots, a_k, \ldots$, its ordinary and exponential generating functions are given by

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

$$A^{(e)}(x) = a_0 + b_1 \frac{x}{1!} + a_2 \frac{x^2}{2!} + \dots + a_k \frac{x^k}{k!} + \dots$$

$$A(x)B(x) = \sum_{k=0}^{\infty} (\sum_{i=0}^{k} a_{i}b_{k-i})x^{k}$$
$$A^{(e)}(x)B^{(e)}(x) = \sum_{k=0}^{\infty} (\sum_{i=0}^{k} \binom{k}{i}a_{i}b_{k-i})\frac{x^{k}}{k!}$$

Some ordinary generating functions:

a_i	1	c^i	i	i^2	$\binom{n}{i}$	$\binom{n+i-1}{i}$	$\frac{1}{i}; a_0 = 0$
A(x)	$\frac{1}{1-x}$	$\frac{1}{1-cx}$	$\frac{x}{(1-x)^2}$	$\frac{x(1+x)}{(1-x)^3}$	$(1+x)^n$	$(1-x)^{-n}$	$\ln \frac{1}{1-x}$

Some exponential generating functions:

a_i	1	c^i	i	i^2	i!	$(n)_i$	$n^{(i)}$
$A^{(e)}(x)$	e^x	e^{cx}	xe^x	$x(x+1)e^x$	$(1-x)^{-1}$	$(1+x)^n$	$(1-x)^{-n}$

Given a coloring $c \in C$, the stabilazor of c is the set $G(c) = \{f \in G \mid f * c = c\}$. Given a permutation $f \in G$, the invariant set of f is the set $C(f) = \{c \in C \mid f * c = c\}$. Given a coloring $c \in C$, the orbit of c is the set $\overline{c} = \{f(c) \mid f \in G\}$. Let C be the set of all k^n colorings of X into k colors. Then $|C(f)| = k^{\#(f)}$, where #(f) is the number of cycles in the disjoint cycle factorization of f.

Burnside's Lemma Suppose a group G of permutations of X acts on a set C of colorings of X. Then the number N(G, C) of nonequivalent colorings in C is given by

$$N(G, C) = \frac{1}{|G|} \sum_{f \in G} |C(f)|.$$

Given a permutation $f \in G$, the type of f is an *n*-tuple $type(f) = (e_1, e_2, \ldots, e_n)$, where e_i is the number of *i*-cycles in a disjoint cycle factorization of f.

$$e_1 + e_2 + \dots + e_n = \#(f), \quad 1e_1 + 2e_2 + \dots + ne_n = n$$

To each permutation $f \in G$ with type $type(f) = (e_1, e_2, \ldots, e_n)$ we associate a monomial

$$mon(f) = z_1^{e_1} z_2^{e_2} \dots z_n^{e_n}$$

The cycle index of G is

$$P_G(z_1, z_2, \dots, z_n) = \frac{1}{|G|} \sum_{f \in G} mon(f) = \frac{1}{|G|} \sum_{f \in G} z_1^{e_1} z_2^{e_2} \dots z_n^{e_n}.$$

Theorem Suppose there are k colors. Let C be a set of all k^n colorings of X. Then the number N(G, C) of nonequivalent colorings in C is given by

$$N(G,C) = P_G(k,k,\ldots,k).$$

Theorem (Polya) Let $\{u_1, u_2, \ldots, u_k\}$ be a set of k colors. Let C be a set of any colorings of X such that the group G of permutations of X acts on the set C. Then the generating function for the number of nonequivalent colorings in C according to the number of colors of each kind is given by

$$P_G(u_1 + \cdots + u_k, u_1^2 + \cdots + u_k^2, \dots, u_1^n + \cdots + u_k^n).$$