Review I

October 14, 2008

If you put $n+1$ pigeons in n pigeonholes then at least one hole would have more than one pigeon.
If $n(r-1)+1$ objects are put into n boxes, then at least one of the boxes contains r or more of the objects.
If the average of n nonnegative integers $a_{1}, a_{2}, \ldots a_{n}$ is greater than $r-1$, i.e.,

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}>r-1,
$$

then at least one of the integers is greater than or equal to r.
The number of r-permutations of an n-set equals

$$
P(n, r)=n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!} .
$$

The number of permutations of an n-set is $P(n, n)=n!$. The number of circular r-permutations of an n-set equals

$$
\frac{P(n, r)}{r}=\frac{n!}{(n-r)!r} .
$$

The number of circular permutations of an n-set is equal to $(n-1)$! The number of r-combinations of an n-set equals

$$
\binom{n}{r}=\frac{P(n, r)}{r!}=\frac{n!}{(n-r)!r!} .
$$

The number of r-permutations of the multiset $\left\{\infty \cdot x_{1}, \infty \cdot x_{2}, \ldots, \infty \cdot x_{k}\right\}$ equals k^{r}. The number of permutations of the multiset $\left\{n_{1} \cdot x_{1}, n_{2} \cdot x_{2}, \ldots, n_{k} \cdot x_{k}\right\}$ equals

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}, \quad \text { where } n=n_{1}+n_{2}+\cdots+n_{k}
$$

Then the number of r-combinations of the multiset $\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}$ (the number of r-combinations with repetition allowed) equals $\binom{k+r-1}{r}=\binom{k+r-1}{k-1}$.
The number of nonnegative integer solutions for the equation $x_{1}+x_{2}+\cdots+x_{k}=r$ equals $\binom{k+r-1}{r}=\binom{k+r-1}{k-1}$.
The number of positive integer solutions for the equation $x_{1}+x_{2}+\cdots+x_{k}=r$ equals $\binom{r-1}{k-1}$. The number of ways to place r identical balls into k distinct boxes equals $\binom{k+r-1}{r}=\binom{k+r-1}{k-1}$. The number of ways to place r identical balls into k distinct boxes such that no box remains empty equals $\binom{r-1}{k-1}$.

Algorithm for generating the permutations of $\{1,2, \ldots, n-1, n\}$:
Begin with $\overleftarrow{1} \overleftarrow{2} \ldots \overleftarrow{n}$.
While there exists a mobile integer, do
(1) Find the largest mobile integer m
(2) Switch m and the adjacent integer its arrow points to.
(30 Switch thew direction of all the arrows above integers p with $p>m$.
Algorithm 1 for construction of a permutation from its inversion sequence ($a_{1}, a_{2}, \ldots, a_{n}$):
(n) Write down n.
(n-k) Insert $n-k$ to the right of the a_{n-k} th existing number

Algorithm 2 for construction of a permutation from its inversion sequence ($a_{1}, a_{2}, \ldots, a_{n}$): (0) Mark down n empty spaces.

For $k=1$ till n
Put k into the $a_{k}+1$ st empty space from the left.
Algorithm for generating combinations of $\left\{x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right\}$:
Begin with $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=00 \ldots 00$.
While $a_{n-1} a_{n-2} \cdots a_{1} a_{0} \neq 11 \ldots 11$, do
(1) Find the smallest integer j such that $a_{j}=0$.
(2) Replace a_{j} by 1 and each of $a_{j-1}, \ldots, a_{1}, a_{0}$ by 0 .

The algorithm stops when $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=11 \ldots 11$.
Algorithm for generating reflected Gray codes of order n :
Begin with $a_{n-1} a_{n-2} \cdots a_{1} a_{0}=00 \ldots 00$.
While $a_{n-1} a_{n-2} \cdots a_{1} a_{0} \neq 10 \ldots 00$, do
(1) If $a_{n-1}+a_{n-2}+\cdots+a_{1}+a_{0}=$ even, then change a_{0} (from 0 to 1 or 1 to 0).
(2) If $a_{n-1}+a_{n-2}+\cdots+a_{1}+a_{0}=$ odd, find the smallest j such that $a_{j}=1$ and change a_{j+1} (from 0 to 1 or 1 to 0).
Algorithm for generating r-combinations of $S=\{1,2, \ldots, n-1, n\}$:
Begin with $12 \cdots r$.
While $a_{1} a_{2} \cdots a_{r} \neq(n-r+1) \cdots(n-1) n$, do
(1) Find the largest integer k such that $a_{k}<n$ and $a_{k}+1$ is not in the $a_{1} a_{2} \cdots a_{r}$.
(2) Replace $a_{1} a_{2} \cdots a_{r}$ with

$$
a_{1} a_{2} \cdots a_{k-1}\left(a_{k}+1\right)\left(a_{k}+2\right) \cdots\left(a_{k}+r-k+1\right)
$$

Algorithm for a linear extension of an n-poset:
Step 1. Choose a minimal element x_{1} from X (with respect to the ordering \leq).
Step 2. Delete x_{1} from X; choose a minimal element x_{2} from X.
Step 3. Delete x_{2} from X and choose a minimal element x_{3} from X.
...
Step n. Delete x_{n-1} from X and choose the only element x_{n} in X.

