Review II

For a real α and an integer k,

$$
\begin{align*}
& \binom{\alpha}{k}= \begin{cases}\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} & \text { if } \quad k \geq 1 \\
1 & \text { if } k=0 \\
0 & \text { if } \quad k \leq-1 .\end{cases} \\
& \binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \\
& (1 \leq k \leq n-1) \\
& \binom{n}{k}=\binom{n}{n-k} \\
& (0 \leq k \leq n) \\
& k\binom{n}{k}=n\binom{n-1}{k-1} \\
& \binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n} \\
& \binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}=0 \\
& \binom{n}{0}+\binom{n}{2}+\cdots=\binom{n}{1}+\binom{n}{3}+\cdots\left(=2^{n-1}\right) \\
& 1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=n 2^{n-1} \\
& 1^{2}\binom{n}{1}+2^{2}\binom{n}{2}+\cdots+n^{2}\binom{n}{n}=n(n+1) 2^{n-2} \\
& \binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n} \\
& \binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\cdots+\binom{n+k}{k}=\binom{n+k+1}{k} \\
& \binom{0}{k}+\binom{1}{k}+\binom{2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
\end{align*}
$$

Binomial expansion. For integer $n \geq 1$ and variables x and y,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

Newton's binomial expansion. For a real α and variables x and y with $0 \leq|x| \leq|y|$,

$$
(x+y)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} y^{\alpha-k}
$$

Multinomial expansion. For integer $n \geq 1$ and variables $x_{1}, x_{2}, \ldots, x_{k}$,

$$
\left(x_{1}+x_{2}+\cdots+x_{t}\right)^{n}=\sum_{n_{1}+n_{2}+\cdots+n_{t}=n n_{1}, n_{2}, \ldots, n_{t} \geq 0}\binom{n}{n_{1}, n_{2}, \ldots, n_{t}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{t}^{n_{t}} .
$$

Sperner's theorem. Any clutter of an n-set S contains at most $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ subsets of S.
The power set $P(S)$ can be partitioned into m disjoint chains $C_{1}, C_{2}, \ldots, C_{m}$, where $m=$ $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Construction of a symmetric chain partition for the case n given a symmetric chain partition for the case $n-1$: for each chain $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ for the case $n-1$: if $k \geq 2$, do $A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset A_{k} \cup\{n\}$ and $A_{1} \cup\{n\} \subset A_{2} \cup\{n\} \subset \cdots \subset A_{k-1} \cup\{n\}$; if $k=1$, do $A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset A_{k} \cup\{n\}$.

Dilworth's theorem.

$\min \left\{k: A_{1} \cup \cdots \cup A_{k}\right.$ is an antichain partition $\}=\max \{|C|: C$ is a chain $\}$. $\min \left\{k: C_{1} \cup \cdots \cup C_{k}\right.$ is a chain partition $\}=\max \{|A|: A$ is an antichain $\}$.

Let $P_{1}, P_{2}, \ldots, P_{n}$ be properties of the objects of a finite set S. Let A_{i} be the set of all elements of S that have the property P_{i}. The number of objects of S that have none of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by
$\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right|=|S|-\sum_{i}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|$.
The number of objects of S that have at least one of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|$.

A permutation $i_{1} i_{2} \ldots i_{n}$ of $\{1,2, \ldots, n\}$ is called a derangement if $i_{k} \neq k$ for any $1 \leq k \leq n$ (no number remains in its position). The number D_{n} of derangements of $\{1,2, \ldots, n\}$ is given by

$$
\begin{gathered}
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right) \\
D_{1}=0, \quad D_{2}=1, \quad D_{3}=2, \quad D_{4}=9, \quad D_{5}=44, \quad D_{6}=265 \\
\lim _{n \rightarrow \infty} \frac{D_{n}}{n!}=e^{-1} .
\end{gathered}
$$

The derangement sequence D_{n} satisfies the following recurrence relations

$$
\begin{gathered}
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right), \quad D_{1}=0, D_{2}=1, \quad \text { and } \\
D_{n}=n D_{n-1}+(-1)^{n}, \quad D_{1}=0
\end{gathered}
$$

A permutation of $\{1,2, \ldots, n\}$ is called nonconsecutive if none of $12,23, \ldots,(n-1) n$ occurs. The number Q_{n} of nonconsecutive permutations of $\{1,2, \ldots, n\}$ is given by

$$
Q_{n}=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!
$$

For $n \geq 2, \quad Q_{n}=D_{n}+D_{n-1}$.
A circular permutation of $\{1,2, \ldots, n\}$ is called nonconsecutive if none of $12,23, \ldots, n 1$ occurs. The number C_{n} of nonconsecutive circular permutations is given by

$$
C_{n}=\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)!+(-1)^{n}
$$

Let $|X|=m$ and let $|Y|=n$. The number of all functions from X to Y equals n^{m}. The number of injective functions from X to Y equals $\binom{n}{m} m!=P(n, m)$. The number $S(m, n)$ of surjective functions from X to Y is given by

$$
S(m, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
$$

Practice Problems

1. Find the coefficient of x^{3} in the expansion of $(2+5 x)^{6}$.
2. Find the coefficient of $x_{1}^{3} x_{2} x_{3}^{2}$ in the expansion of $\left(2 x_{1}-3 x_{2}+5 x_{3}\right)^{6}$.
3. Find symmetric chain partition for $P(S)$, where S has one, two, three or four elements.
4. Find clutters of maximal size for $P(\{1,2,3,4,5\})$.
5. Prove that there is only one maximal clutter for $P(\{1,2,3,4\})$.
6. Consider the poset $(\{1,2, \ldots, 12\}, \mid)$:
(a) determine a chain of the largest size and a a partition of X into the smallest number of antichains;
(b) determine an antichain of the largest size and a a partition of X into the smallest number of chains.
7. Determine the number of 10 -combinations of the multiset $M=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
8. Find the number of integer solutions for the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=15
$$

where $2 \leq x_{1} \leq 6, \quad-2 \leq x_{2} \leq 1, \quad 0 \leq x_{3} \leq 6, \quad 3 \leq x_{4} \leq 8$.
9. How many ways can a hatcheck girl hand back the 10 hats of 10 gentlemen, one to each gentleman, with no man getting his hat?
10. Determine the number of permutations of $\{1,2, \ldots, n\}$ in which no odd integer is in its natural position.
11. How many ways are there to rearrange 10 camels in a caravan. so that every camel has a different camel in front of it (the position of the original first camel is arbitrary)?
12. How many ways are there for 8 children on a merry-go-round to change places so that somebody new is in front of each child? (The seats are indistinguishable and in a circle.)
13. Solve the recurrence relation $h_{n}=2 h_{n-1}+h_{n-2}-2 h_{n-3}$, with $h_{0}=1, h_{1}=2, h_{2}=0$.
14. Solve the recurrence relation $h_{n}=4 h_{n-1}-4 h_{n-2}$, with $h_{0}=a, h_{1}=b$.
15. Solve the recurrence relation $h_{n}=3 h_{n-1}-4 n$, with $h_{0}=2$.
16. Solve the recurrence relation $h_{n}=h_{n-1}-3 n^{2}-5 n^{3}$, with $h_{0}=2$.
17. Solve the recurrence relation $h_{n}=10 h_{n-1}-25 h_{n-2}+5^{n+1}$, with $h_{0}=5, h_{1}=15$.
18. Solve the recurrence relation $h_{n}=6 h_{n-1}-9 h_{n-2}+8 n^{2}-24 n$, with $h_{0}=5, h_{1}=5$.
19. Find the coefficient of x^{6} in $\left(x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)^{2}$.
20. Use (ordinary) generating fuctions to find the number of ways distribute r jelly beans among 8 children if
(a) each child gets at least one jelly bean;
(b) each child gets at even number of beans.
21. Find the number of nonnegative integer solutions for the equation

$$
y_{1}+2 y_{2}=n .
$$

22. Find the closed form for the (ordinary) generating function of the sequence $a_{i}=\frac{1}{i}$.
23. Solve the recurrence relation $a_{n}=2 a_{n-1}+a_{n-2}, a_{0}=1, a_{1}=3$.
24. Use $\frac{\left(1-x^{2}\right)^{n}}{(1-x)^{n}}$ to evaluate the sum $\sum_{i=0}^{\frac{m}{2}}(-1)^{i}\binom{n}{i}\binom{n+m-2 i-1}{n-1}$, if $m \leq n$ and m is even.
25. Find the closed form for the exponential generating function of the sequence $a_{i}=\frac{1}{i+1}$.
26. Use exponential generating functions to find the number of k-permutations of the multiset $\left\{\infty \cdot x_{1}, \infty \cdot x_{2}, \ldots, \infty \cdot x_{n}\right\}$.
27. Determine the number of ways to color the squares of a 1-by-n chessboard using the colors, red, white, and blue, if an even number of squares are colored red and there is at least one blue square.
