
Chapter 10
Velocity, Acceleration, and Calculus

The first derivative of position is velocity, and the second derivative is acceleration. These deriv-
atives can be viewed in four ways: physically, numerically, symbolically, and graphically.

The ideas of velocity and acceleration are familiar in everyday experience, but now we want you
to connect them with calculus. We have discussed several cases of this idea already. For example,
recall the following (restated) Exercise car from Chapter 9.

Example 10.1 Over the River and Through the Woods

We want you to sketch a graph of the distance traveled as a function of elapsed time on your
next trip to visit Grandmother.

Make a qualitative rough sketch of a graph of the distance traveled, s, as a function of time, t,
on the following hypothetical trip. You travel a total of 100 miles in 2 hours. Most of the trip is on
rural interstate highway at the 65 mph speed limit. You start from your house at rest and gradually
increase your speed to 25 mph, slow down and stop at a stop sign. You speed up again to 25 mph,
travel for a while and enter the interstate. At the end of the trip you exit and slow to 25 mph, stop
at a stop sign, and proceed to your final destination.

The correct “qualitative” shape of the graph means things like not crashing into Grandmother’s
garage at 50 mph. If the end of your graph looks like the one on the left in Figure 10.1:1, you have
serious damage. Notice that Leftie’s graph is a straight line, the rate of change is constant. He
travels 100 miles in 2 hours, so that rate is 50 mph. Imagine Grandmother’s surprise as he arrives!
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Figure 10.1:1: Leftie and Rightie go to Grandmother’s

The graph on the right slows to a stop at Grandmother’s, but Rightie went though all the stop
signs. How could the police convict her using just the graph?

She passed the stop sign 3 minutes before the end of her trip, 2 hours less 3 minutes = 2 - 3/60
= 1.95 hrs. Graphs of her distance for short time intervals around t = 1.95 look like Figure 10.1:2
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Figure 10.1:2: Two views of Righties moving violation

Wow, the smallest scale graph looks linear? Why is that? Oh, yeah, microscopes. What speed
will the cop say Rightie was going when she passed through the intersection?

99.85− 99.78
1.955− 1.945 = 7 mph

He could even keep up with her on foot to give her the ticket at Grandmothers. At least Rightie
will not have to go to jail like Leftie did.

You should understand the function version of this calculation:

99.85− 99.78
1.955− 1.945 =

s[1.955]− s[1.945]

1.955− 1.945 =
s[1.945 + 0.01]− s[1.945]

(1.945 + 0.01)− 1.945
=

s[t+∆t]− s[t]

∆t
=
0.07

0.01

Exercise Set 10.1

1. Look up your solution to Exercise 9.2.1 or resolve it. Be sure to include the features of
stopping at stop signs and at Grandmother’s house in your graph. How do the speeds of 65 mph
and 25 mph appear on your solution? Be especially careful with the slope and shape of your graph.
We want to connect slope and speed and bend and acceleration later in the chapter and will ask you
to refer to your solution.

2. A very small-scale plot of distance traveled vs. time will appear straight because this is a
magnified graph of a smooth function. What feature of this straight line represents the speed? In
particular, how fast is the person going at t = 0.5 for the graph in Figure 10.1:3? What feature of
the large-scale graph does this represent?
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Figure 10.1:3: A microscopic view of distance

Velocity and the First Derivative

Physicists make an important distinction between speed and velocity. A speeding train whose
speed is 75 mph is one thing, and a speeding train whose velocity is 75 mph on a vector aimed
directly at you is the other. Velocity is speed plus direction, while speed is only the instantaneous
time rate of change of distance traveled. When an object moves along a line, there are only two
directions, so velocity can simply be represented by speed with a sign, + or −.

3. An object moves along a straight line such as a straight level railroad track. Suppose the time
is denoted t, with t = 0 when the train leaves the station. Let s represent the distance the train has
traveled. The variable s is a function of t, s = s[t]. We need to set units and a direction. Why?
Explain in your own words why the derivative ds

dt represents the instantaneous velocity of the object.
What does a negative value of ds

dt mean? Could this happen? How does the train get back?

4. Krazy Kousin Keith drove to Grandmother’s, and the reading on his odometer is graphed in
Figure 10.1:4. What was he doing at time t = 0.7? (HINT: The only way to make my odometer
read less is to back up. He must have forgotten something.)
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Figure 10.1:4: Keith’s regression

5. Portions of a trip to Grandmother’s look like the next two graphs.
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Figure 10.1:5: Positive and negative acceleration

Which one is “gas,” and which one is “brakes”? Sketch two tangent lines on each of these
graphs and estimate the speeds at these points of tangency. That is, which one shows slowing down
and which speeding up?

10.2 Acceleration

Acceleration is the physical term for “speeding up your speed... ” Your car accelerates when you
increase your speed.

Since speed is the first derivative of position and the derivative of speed tells how it “speeds
up.” In other words, the second derivative of position measures how speed speeds up... We want
to understand this more clearly. The first exercise at the end of this section asks you to compare
the symbolic first and second derivatives with your graphical trip to Grandmother’s. A numerical
approach to acceleration is explained in the following examples. You should understand velocity
and acceleration numerically, graphically, and symbolically.
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Example 10.2 The Fallen Tourist Revisited

Recall the tourist of Problem 4.2. He threw his camera and glasses off the Leaning Tower of
Pisa in order to confirm Galileo’s Law of Gravity. The Italian police videotaped his crime and
recorded the following information:

t = time (seconds) s = distance fallen (meters)

0 0

1 4.90

2 19.6

3 44.1

We want to compute the average speed of the falling object during each second, from 0 to 1,
from 1 to 2, and from 2 to 3? For example, at t = 1, the distance fallen is s = 4.8 and at t = 2,
the distance is s = 18.5, so the change in distance is 18.5− 4.8 = 13.7 while the change in time is
1. Therefore, the average speed from 1 to 2 is 13.7 m/sec,

Average speed =
change in distance
change in time

Time interval Average speed =
∆s

∆t

[0, 1] v1 =
4.90− 0
1− 0 = 4.90

[1, 2] v2 =
19.6− 4.90
2− 1 = 14.7

[2, 3] v3 =
44.1− 19.6
3− 2 = 24.5

Example 10.3 The Speed Speeds Up
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These average speeds increase with increasing time. How much does the speed speed up during
these intervals? (This is not very clear language, is it? How should we say, “the speed speeds up”?)

Interval to interval Rate of change in speed

[0, 1] to [1, 2] a1 =
14.7− 4.90

?
=
9.8

?

[1, 2] to [2, 3] a2 =
24.5− 14.7

?
=
9.8

?

The second speed speeds up 9.8 m/sec during the time difference between the measurement
of the first and second average speeds, but how should we measure that time difference since the
speeds are averages and not at a specific time?

The tourist’s camera falls “continuously.” The data above only represent a few specific points
on a graph of distance vs. time. Figure 10.2:6 shows continuous graphs of time vs. height and time
vs. s = distance fallen.
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Figure 10.2:6: Continuous fall of the camera

The computation of the Example 10.2 finds s[1] − s[0], s[2] − s[1], and s[3] − s[2]. Which
continuous velocities do these best approximate? The answer is v[12 ], v[

3
2 ], and v[52 ] - the times at

the midpoint of the time intervals. Sketch the tangent at time 1.5 on the graph of s vs. t and
compare that to the segment connecting the points on the curve at time 1 and time 2. In general,
the symmetric difference

f [x+ δx
2 ]− f [x− δx

2 ]

δx
≈ f 0(x)

gives the best numerical approximation to the derivative of

y = f [x]

when we only have data for f . The difference quotient is best as an approximation at the midpoint.
The project on Taylor’s Formula shows algebraically and graphically what is happening. Graphi-
cally, if the curve bends up, a secant to the right is too steep and a secant to the left is not steep
enough. The average of one slope below and one above is a better approximation of the slope of
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Figure 10.2:7: [f (x+ δx)− f (x)] /δx vs. [f (x+ δx)− f (x− δx)] /δx

the tangent. The average slope given by the symmetric secant, even though that secant does not
pass through (x, f [x]). The general figure looks like Figure 10.2:7.

The best times to associate to our average speeds in comparison to the continuous real fall are
the midpoint times:

Time Speed =
∆s

∆t
0.50 v1 = v[0.50] = 4.90

1.50 v2 = v[1.50] = 14.7

2.50 v3 = v[2.50] = 24.5

This interpretation gives us a clear time difference to use in computing the rates of increase in the
acceleration:

Time Rate of change in speed

Ave[0.50&1.50] = 1 a[1] =
14.7− 4.90
1.50− 0.50 = 9.8

Ave[1.50&2.50] = 2 a[2] =
24.5− 14.7
2.50− 1.50 = 9.8

We summarize the whole calculation by writing the difference quotients in a table opposite the
various midpoint times as follows:



Chapter 10 - VELOCITY, ACCELERATION and CALCULUS 225

First and Second Differences of Position Data

Time Position Velocity Acceleration
0.00 0.00
0.50 4.90
1.00 4.90 9.8
1.50 14.7
2.00 19.6 9.8
2.50 24.5
3.00 44.1

Table 10.1: One-second position, velocity, and acceleration data

Exercise Set 10.2

The first exercise seeks your everyday interpretation of the positive and negative signs of ds
dt

and d2s
dt2

on the hypothetical trip from Example 10.1. We need to understand the mechanical inter-
pretation of these derivatives as well as their graphical interpretation.

1. Look up your old solution to Exercise 9.2.1 or Example 10.1 and add a graphing table like the
ones from the Chapter 9 with slope and bending. Fill in the parts of the table corresponding to
ds
dt and

d2s
dt2 using the microscopic slope and smile and frown icons including + and − signs.

Remember that d2s
dt2

is the derivative of the function ds
dt ; so, for example, when it is positive,

the function v[t] = ds
dt increases, and when it is negative, the velocity decreases. We also need

to connect the sign of d2s
dt2 with physics and the graph of s[t]. Use your solution graph of time,

t, vs. distance, s, to analyze the following questions.

(a) Where is your speed increasing? Decreasing? Zero? If speed is increasing, what geomet-
ric shape must that portion of the graph of s[t] have? (The graph of v[t] has upward
slope and positive derivative, dv

dt =
d2s
dt2

> 0, but we are asking how increase in v[t] = ds
dt

affects the graph of s[t].)

(b) Is ds
dt ever negative in your example? Could it be negative on someone’s solution? Why

does this mean that you are backing up?

(c) Summarize both the mechanics and geometrical meaning of the sign of the second deriv-
ative d2s

dt2 in a few words. When
d2s
dt2 is positive . . .. When d2s

dt2 is negative . . ..

(d) Why must d2s
dt2

be negative somewhere on everyone’s solution?

There are more accurate data for the fall of the camera in half-second time steps:
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Accurate Position Data

Time Position Velocity Acceleration
0.000 0.000
0.500 1.233
1.000 4.901
1.500 11.03
2.000 19.60
2.500 30.63
3.000 44.10

Table 10.2: Half-second position data

2. Numerical Acceleration
Compute the average speeds corresponding to the positions in Table 10.2 above and write them
next to the correct midpoint times so that they correspond to continuous velocities at those
times. Then use your velocities to compute accelerations at the proper times. Simply fill
in the places where the question marks appear in the velocity and acceleration Tables 10.3
and 10.4 following this exercise. The data are also contained in the Gravity program so you
can complete this arithmetic with the computer in Exercise 10.3.3. HINTS: We begin the
computation of the accelerations as follows. First, add midpoint times to the table and form
the difference quotients of position change over time change:

Differences of the Half-Second Position Data

Time Position Velocity Acceleration
0.000 0.000
0.250 1.223−0

0.5 = 2.446

0.500 1.233
0.750 4.901−1.223

1.0−0.5 = 7.356

1.000 4.901
1.250 ?−?

? =?

1.500 11.03
1.750 ?
2.000 19.60
2.250 ?
2.500 30.63
2.750 ?
3.000 44.10

Table 10.3: Half-second velocity differences

Next, form the difference quotients of velocity change over time change:
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Second Differences of the Half-Second Position Data

Time Position Velocity Acceleration
0.000 0.000
0.250 2.446
0.500 1.233 7.356−2.446

0.75−0.25 = 9.820

0.750 7.356
1.000 4.901 ?−?

? =?

1.250
1.500 11.03 ?
1.750
2.000 19.60 ?
2.250
2.500 30.63 ?
2.750
3.000 44.10

Table 10.4: Half-second acceleration differences

10.3 Galileo’s Law of Gravity

The acceleration due to gravity is a universal constant, d2s
dt2 = g.

Data for a lead cannon ball dropped off a tall cliff are contained the the computer program
Gravity. The program contains time-distance pairs for t = 0, t = 0.5, t = 1.0, · · · , t = 9.5, t = 10.
A graph of the data is included in Figure 10.3:8.
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Figure 10.3:8: Free fall without airfriction
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Galileo’s famous observation turns out to be even simpler than the first conjecture of a linear
speed law (which you will reject in an exercise below). He found that as long as air friction can
be neglected, the rate of increase of speed is constant. Most striking, the constant is universal - it
does not depend on the weight of the object.

Galileo’s Law of Gravity
The acceleration due to gravity is a constant, g, independent of the object.

The value of g depends on the units of time and distance, 9.8m/sec2 or 32ft/sec2.
“Fluency” in calculus means that you can express Galileo’s Law with the differential equation

d2s
dt2 = g

The first exercise for this section asks you to clearly express the law with calculus.

Exercise Set 10.3

1. Galileo’s Law and d2s
dt2

Write Galileo’s Law, “The rate of increase in the speed of a falling body is constant.” in
terms of the derivatives of the distance function s[t]. What derivative gives the speed? What
derivative gives the rate at which the speed increases?

We want you to verify Galileo’s observation for the lead ball data in the Gravity program.

2. Numerical Gravitation

(a) Use the computer to make lists and graphs of the speeds from 0 to 1
2 second, from

1
2 to

1, and so forth, using the data of the Gravity program. Are the speeds constant? Should
they be?

(b) Also use the computer to compute the rates of change in speed. Are these constant?
What does Galileo’s Law say about them?

3. Galileo’s Law and the Graph of ds
dt

Galileo’s Law is easiest to confirm with the data of the Gravity program by looking at the
graph of ds

dt (because error measurements are magnified each time we take differences of our
data). What feature of the graph of velocity is equivalent to Galileo’s Law?

In the Problem 4.2 you formulated a model for the distance an object has fallen. You observed
that the farther an object falls, the faster it goes. The simplest such relationship says, “The speed
is proportional to the distance fallen.” This is a reasonable first guess, but it is not correct. We
want you to see why. (Compare the next problem with Problem 8.5.)
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Problem 10.1
Try to find a constant to make the conjecture of Problem 4.2 match the data in the program

Gravity, that is, make the differential equation

ds

dt
= k s

predict the position of the falling object. This will not work, but trying will show why. There are
several ways to approach this problem. You could work first from the data. Compute the speeds
between 0 and 1

2 seconds, between
1
2 and 1 second, and so forth, then divide these numbers by s and

see if the list is approximately the same constant. The differential equation ds
dt = k s says it should

be, because

v =
ds

dt
= k s ⇔ v

s
= k is constant.

There is some help in the Gravity program getting the computer to compute differences of the list.
Remember that the time differences are 1

2 seconds each. You need to add a computation to divide
the speeds by s,

s[t+ 1
2 ]− s[t]
1
2

≈ ds

dt
at t+

1

4

each divided by s[t]. Notice that there is some computation error caused by our approximation
to ds

dt actually being best at t +
1
4 but only having data for s[t]. Be careful manipulating the lists

with Mathematica because the velocity list has one more term than the acceleration list. Another
approach to rejecting Galileo’s first conjecture is to start with the differential equation. We can
solve ds

dt = k s with the initial s[0] = 0 by methods of Chapter 8, obtaining s[t] = S0 e
k t. What

is the constant S0 if s[0] = 0. How do you compute s[0.01] from this? See Bugs Bunny’s Law of
Gravity, Problem 8.5 and Exercise Set 8.2. The zero point causes a difficulty as the preceding part
of this problem shows. Let’s ignore that for the moment. If the data actually are a solution to the
differential equation, s = S0 e

k t, then

Log[s] = Log[S0 e
k t] = Log[S0] + Log[e

k t] = σ0 + k t

so the logarithms of the positions (after zero) should be linear. Compute the logs of the list of
(non-zero) positions with the computer and plot them. Are they linear?

10.4 Projects

Several Scientific Projects go beyond this basic chapter by using Newton’s far-reaching extension of
Galileo’s Law. Newton’s Law says F = m a, the total applied force equals mass times acceleration.
This allows us to find the motion of objects that are subjected to several forces.
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10.4.1 The Falling Ladder

Example 7.14 introduces a simple mathematical model for a ladder sliding down a wall. The rate
at which the tip resting against the wall slides tends to infinity as the tip approaches the floor.
Could a real ladder’s tip break the sound barrier? The speed of light? Of course not. That model
neglects the physical mechanism that makes the ladder fall - Galileo’s Law of Gravity. The project
on the ladder asks you to correct the physics of the falling ladder model.

10.4.2 Linear Air Resistance

A feather does not fall off a tall cliff as fast as a bowling ball does. The acceleration due to gravity
is the same, but air resistance plays a significant role in counteracting gravity for a large, light
object. A basic project on Air Resistance explores the path of a wooden ball thrown off the same
cliff as the lead ball we just studied in this chapter.

10.4.3 Bungee Diving and Nonlinear Air Resistance

Human bodies falling long distances are subject to air resistance, in fact, sky jumpers do not keep
accelerating but reach a “terminal velocity.” Bungee jumpers leap off tall places with a big elastic
band hooked to their legs. Gravity and air resistance act on the jumper in his initial “flight,”
but once he reaches the length of the cord, it pulls up by an amount depending on how far it is
stretched. The Bungee Jumping Project has you combine all these forces to find out if a jumper
hits the bottom of a canyon or not.

10.4.4 The Mean Value Math Police

The police find out that you drove from your house to Grandmother’s, a distance of 100 miles in
1.5 hours. How do they know you exceeded the maximum speed limit of 65 mph? The Mean Value
Theorem Project answers this question.

10.4.5 Symmetric Differences

The Taylor’s Formula (from the project of that name) shows you why the best time for the velocity
approximated by (s[t2]−s[t1])/(t2−t1) is at the midpoint, v[(t2+t1)/2]. This is a general numerical
result that you should use any time that you need to estimate a derivative from data. The project
shows you why.


