Chapter 14
Applications of Integration

This chapter explores deeper applications of integration, especially integral computation of geomet-
ric quantities.

The most important parts of integration are setting the integrals up and understanding the
basic techniques of Chapter 13. Proficiency at basic techniques will allow you to use the computer
to correctly perform complicated symbolic integration, but the computer cannot tell if the integral
formula is a correct approximation. Chapter 12 began with this “slicing” approximation and this
chapter returns to it in more detail. The problems at the end of the chapter ask you to derive some
integral formulas yourself. The problems are hard because of the analytical geometry, but solving
them will give you important insight.

14.1 The Length of a Curve

We begin by showing that some care must be taken in the more delicate geometric approximation
problems in order to be sure that a sum of many small errors does not build up. The secret in all
the integral approximations is to measure the error on a scale of the increment of the independent
variable, Az. (See Theorem 14.1.) It is not sufficient to have the error of each slice tend to zero.

The way you “slice” sometimes matters. The approximation to the length of a curve by sloping
line segments that connect (x, f[z]) and (z + Az, f[z + Ax]) is given in Example 14.1. This is a
“good” approximation that converges to the actual length. “Slices” that just run horizontally out
from the slice points do not approximate the length even though the smaller and smaller segments
do get closer and closer to the curve.

Figure 14.1:1: An incorrect “approximation” to the length

Horizontal slices are a good approximation to the area, but not the length. (See Figure 12.3.15.)
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Example 14.1 Length ~ b;éﬂaA V(A2 + (flx + Az] — flz])?)
step Ax

The Pythagorean Theorem shows that the length of a line segment from the point (x, Sin[z])
to the point (z + Az, Sin[z + Az]) is

V(x + Az — x)2? + (Sin[z + Az] — Sin[z])2 = v/Az2 + (Sin[z + Az] — Sin[z])2

The sum of the lengths of the segments in Figure 14.1:2 is

T—Ax
> [V/Az? + (Sinfz + Az] — Sin[a])?)

T=—T

step Ax
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Figure 14.1:2: Approximate Length of the Sine Curve

More generally, if the curve is y = f[z], the sum of the lengths of connecting segments is

b—Azx

> WA+ (fle + Az] - flz])?]

r=a
step Az

This is a correct approximation but it is not in the form of an integral approximation

b—Ax

> [Flz]A]
stg;p:Zx

However, when we replace Az by a tiny increment dz, we can use the differential approximation of
Definition 5.2 to write this sum in the form of a definite integral. First,

flz + dz] — flz] = f']x] - bz + ¢ ox
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with € ~ 0 for each z in [a, b]. This means

b—dz b—dx
Y W2+ (fle+oa] = fa)? = Y [V(62)2 + (f'la] +€)?(62)?]
stﬁg%m stﬁg%m
b—dzx
= > W1+ (] +¢)? oa]
stﬁg%x

where € ~ 0. In Problem 1, you can use properties of summation to show that

b—dzx b—dx
Y. Wi+ (el +e)? oa]~ Y [V1+(f'fa])? d2]
st:g;%m stxe;%m

We return to the arclength formula below in Example 14.4.

Exercise Set 14.1

1. Pythagoras meets Descartes
Given two points (a,b) and (u,v) in the (x,y)-plane, show that the Pythagorean Theorem
gives

the length of the line segment connecting the points = v/(u — a)2 + (v — b)?2

HINT: Make the segment the hypotenuse of a right triangle with horizontal and vertical legs.
What are the lengths of these legs?

Now apply your formula to a function graph.

2. Pythagoras and the Increment
This exercise asks you to find a certain formula on a general function graph y = flz]. If
you wish, you can begin with a specific nonlinear function like f[x] = x2, but the goal is an
expression in terms of a general f[z].

(a) Sketch a figure showing a graph y = flz| in the (z,y)-plane.

(b) Put a dot on the graph of your function at one point (x,y) = (x, f[z]).

(¢) Put a second dot on your graph of y = f[x] at a nearby point (x + Az, ?7).

(d) Ezpress the y-value of the point on your graph above x + Ax in terms of f[].

(e) Draw the straight line segment connecting the two dots on your graph. We want a formula

for the length of this segment.

(f) Apply the formula from Ezercise 1 to show that the length of the segment connecting
your two points s

V(Az)? + (flz + Az] - fla])?
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The next exercise has you show what can go wrong when an “approximation” is not accurate.

3. Horizontal Slices Do Not Approximate Length

This exercise has you find a sum expression for the attempt at approximating the length of a
curve by horizontal slices. Then it has you explain why it is a bad approximation.

(a) Sketch your general curve y = f[z] for a < x <b.
(b) Draw a dot on your curve at a particular point (x, flz]).

(¢) Draw a small horizontal segment of length Ax beginning at (x, f[x]). This should look
similar to one of the ones shown on Figure 14.1:3 below. Your segment begins at the
point (z, f[z]) and ends at a point a distance Ax to the right and at the same y-height,
s0 its coordinates are (x + Az, f[z]).

(d) Sketch a sequence of these horizontal segments beginning at (a, f[a]), each having length
Ax and continuing until one segment goes beyond x =b. (The specific curve y = Sin|x]
for —m < x < m is shown in Figure 14.1:3.)

14

-1+

Figure 14.1:3: An incorrect “approximation” to the length

(e) The length of one segment is Ax because that was the instruction. The sum of the lengths
of the segments is Ax times the number of segments, or, to be fancy,

b—éx b—déx

Y A= Y (@ An) - (@)

T=a
step Az step Az

b—dx

= > [Flz + Az] — Fla]]

z=a
step Az

with Fx] = x. Show that the sum of the lengths of the horizontal segments is approxi-
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mately b — a.
b—ox

Z Az ~b—a
Tr=a
step Az
(The answer b — a is exact if Ax divides the interval [a,b] exactly. Think about how
many terms there are or use Theorem 12.2.)

(f) According to your correct result from the last part of this exercise, the sum of the lengths
of the horizontal segments does not depend on the particular function f[z]. In particular,
show that the sum is 2w, for Figure 14.1:3, the function flx] =0 for —m <z <, and
the function flz] =z for —m <z <.

Why can’t the sum of the horizontal slices be used to find the length of a graph?

Problem 14.1
Let f[z] be a smooth function on an interval [a,b]. Show that

b—6x b—dx
Y W2+ (fle+oa] = faD2 ~ Y [V1+(f[])2]se
staé;%x staé;%x

so that length is given by the integral

b
/ VIt (PR do

Use the following hints.
First, use Definition 5.2 to show that

V(02)2 + (flz + 2] = fla])? = V1 + (f'a] + )20z
with € = 0 when dx =~ 0. Next, show that

VI+(ffla] +6)° = V1+(fla])? +2

with © =~ 0. Because

VIH (Tl +e) - VT+ (PR]P =
(VIF R +eP = VI+(FRD?) (VI+ (PRl 27 + I+ (FR)P)

VI+(f'lx] + )2 4+ 1+ (f'[z])?
_ e2f'fa] +¢)
V1I+ (el +€)? + 1+ (fz])?
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Finally, show that a sum with ¢ =~ 0, for all x, satisfies

b—dx

E [t-0x] =~ 0

T=a
step dx

(See Theorem 12.12.)

14.2 Duhamel’s Principle

Duhamel’s Principle gives us an accuracy test for integral formulas.

In order to give a general result, we need to formulate the problem in terms of an “additive”
quantity. Additivity expresses a simple property that many geometric functions such as accumu-
lated area, length, volume, and surface area, have. This means that we can apply Duhamel’s
Principle to finding integral formulas of many geometric quantities. For example, the accumu-
lated area used in the second half of the Fundamental Theorem of Integral Calculus is additive.
Figure 14.2:4 shows the area accumulated from a to z:

a X

Figure 14.2:4: A|a, z], the area from a to x

Additivity of Ala,b] means that the area from a to b plus the area from b to ¢ equals the whole
area from a to ¢ (where a < b < ¢) as shown in Figure 14.2:5:
Additivity is an important property of the integral. If we define a function of two variables,
f flz] dz (for f[z] continuous on [a,b]), then we have the additivity property

/f dx+/ fle dx—/ fle I, o] + 1 [o,w] = I [u, ]
b

for any u < v < w in [a, b]
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a b o

Figure 14.2:5: Ala,c] = Ala,b] + A[b, ]

Theorem 14.1 Keisler’s Infinite Sum Theorem or Duhamel’s Principle
Let Q [u,v] be an additive quantity of a real variable, that is, satisfy

Q [u,v] + Q [v,w] = Q [u, w]

foru < v <w in |a,b]. Suppose f[x] is a continuous real function on [a,b], such that for any tiny
subinterval [z, x + éx] C [a,b], with éx ~ 0,

Qx,x +z] = flz] dx+e-dx

for a small error € = 0. In other words, suppose f[x] dx approximates a small “slice” of Q on a
scale of dx. Then,

b
Q[a,m:/ f o) da

First, notice that Q[a,z] + Qlz, z + dz] = Qla, x + x| by additivity, so
Qla,x + dz] — Qla, z] = Q[z, x + dx]
Duhamel’s approximation formula in the theorem above becomes
Qla,z + éz] — Qla, z] = f[z] - dx + ¢ -z

So, if we let Flzx] = Qla,z], Duhamel’s approximation is the differential approximation 5.2 for
F[z]. This shows that when we find an integral formula, we are “writing a differential equation for
Q[a, z]” in terms of the slicing variable x.
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PROOF:
By repeated use of additivity

Q[a,b] = Qla,a+ 0z] + Qla + 6z, a + 20z] + ...+ Q[b — 6z, b]

b—dz
= > [Qlz,x + oz]]
stﬁ?%x
b—dz b—dx
= > Vol + Y [ oa]
st?e;%x stﬁg%x
b b—ox
z/ flde+ S [e-ba]
¢ staé;%x
and
b—déx
Z [e-dz] =0
stﬁ;%x

by the triangle inequality estimate in Theorem 12.12. We have shown that the two fixed quantities
satisfy @ [a, b] ~ ff f [z] dz, forcing them to be equal and proving the theorem.

Our first two examples of the use of Duhamel’s Principle are simple and could be done directly
by sandwiching the approximating sums between upper and lower estimates instead of using the
general principle. These estimates do give an error of the form ¢ - dx, too, however.

Example 14.2 Distance Is an Integral

We return to the distance example of Section 12.2 above. Suppose that R][t] is any continuous
rate (speed) function. By the Extreme Value Theorem 11.2, R[t] has a max and a min over the
interval [t,t + 0t]. We denote these

R, < R[s] < Ry for t<s<t+dt
The distance traveled during this time interval must lie between the extremes
R, - 6t < actual distance traveled < Ry - 0t
However, since R]t] is continuous,

so that
actual distance traveled from time ¢ to time ¢t + 0t = R[t] - 6t + & - 6t
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with € =~ 0.
Finally, let D[t1,t2] denote the distance traveled between the times ¢; and ¢e. This is additive
because if t1 < ta < t3, Dlt1,t3] = Dl[t1,t2] + D[t2,t3]. Duhamel’s Principle shows that

b
total distance traveled = / RJt] dt

Example 14.3 The General Disk Method

When the graph of a positive continuous function, y = f[z] for a < z < b, is revolved about the
x-axis, the volume of the resulting solid is

b
Ver [ (f)? ds

The general formula is explained in the Mathematical Background by an upper and lower
estimate similar to the previous example.
Definite integrals must be written in the form Zb}ixa [F[x]dz] for some function Fx]; so

although ter o
b—ox
> V(62?2 + (flx + 6a] — fla])?]
mﬁ;%m

is a valid approximation for length, this approximation cannot be computed as an integral. The
derivative formula or “microscope equation” allows us to express approximate length in the integral
form using the “integrand” F[z] = y/1 + (f’[z])?. This means that the arclength can be expressed
by

b—ox
Z [V1+ (f'[x])? 0x] ~ /b V14 (f'[z])? dz = length of the curve y = f[z]
Mﬁg%z ¢

Example 14.4 Length Formula L = ff V14 (f|z])? da

Example 14.1, Exercise 2 and Problem 14.1 symbolically derive the arclength formula for a
general explicit curve y = f[z]. A simpler way to summarize that work is to imagine measuring
the length of a segment of the curve viewed inside a powerful microscope. We will show now that
what we see in the microscope gives the same answer as the symbolic approach.

By Theorem 14.1, the formula for the length of the curve is

b
L:/ I+ () de
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provided that we can show that the length of a tiny segment between x and x + dx satisfies

arclength between x and x + 0x = /1 + (f'[z])? dx + ¢ dx

for « 2# 0 when 0z ~

. By = f(x)dx

dx

y=fix)

Figure 14.2:6: Microscopic view of length

We know that the line we see in a microscopic view of a smooth function has equation dy =
f'[x] dx, so the height of the triangle with vertices (z, f[z]), (z + dz, flx + dz]), and (z + dz, f|z]),
is f'[x] dz, for a base of length dxz. The Pythagorean Theorem says the square of the length is the
sum of the squares of the sides,

V(62)2 + (f'[z])2622 = /1 + )2 0x

This is the length of a segment of the curve except for errors that are tiny when viewed in the
microscope of power 1/dx. Errors that are small after magnification by 1/dx have actual magnitude
€ - dx with € ~ 0. Microscopic errors are exactly what Duhamel’s Principle 14.1 allows, so the
Theorem says that we can add the linear pieces we see in the microscopic views to obtain the full
nonlinear quantity.

Example 14.5 Parametric Length L = fab V0dz[t]]2 + [dy[t]]2

The simple shortcut for finding the length integral with the view in a microscope also works
for parametric curves. Sometimes parametric integral formulas are better behaved than explicit
formulas, and sometimes curves do not even have single explicit formulas so that we must use
parametric formulas.

What are parametric formulas for curves? Parametric curves are given by functions z = f[t]
and y = g[t] where we plot (z,y) but not ¢. This is taken up in more detail in Chapter 16, but you
should be familiar with the following example. A circle is given by the equations
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These are parametric equations for a circle. We measure a distance 6 along the unit circle starting
at (1,0), and the point has coordinates (x,y) = (Cos[f], Sin[f]). See the section on trig functions
in Chapter 28. The value of € is not plotted (althought it appears as the length measured along
the circle.) Parametric equations describing an ellipse are given in Problem 14.12.

We used this idea in Chapter 5 when we computed the increments of sine and cosine and proved
the differentiation formulas for sine and cosine. A tiny increment of the circle looks as follows under
a powerful microscope:

Ay BOH

O St

Figure 14.2:7: Increments of Sine and Cosine

The small triangle in the magnified view has

Horizontal base = — ¢ Cos[f] = —(Cos[# + 06] — Cos[6)])
Vertical side = § Sin[f] = Sin[f + 6] — Sin[6]
Hypotenuse = §6

The length of the “hypotenuse” is §6 because radian measure is defined to be the length mea-
sured along the unit circle. However, the side that looks like a hypotenuse is actually a magnified
small piece of a circle. Intuitively, the error between the length of the circular arc and the approx-
imating straight line is small compared to 66, so, by Theorem 14.1, the length of the circle is given

by the integral
2w
/ do
0
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It is still worthwhile to see how this is related to the computation with increments.
Definition 5.2 and the formulas for the derivatives of sine and cosine give us

0z = § Cos[f] = Cos[f + §0] — Cos[f] = — Sin[0] - 0 + ¢1 - 60
dy = 0 Sin[f] = Sin[f + §6] — Sin[f] = Cos[d] - 60 + 12 - 66
with ¢; ~ 0 whenever 00 ~ 0, j = 1, 2.

The Pythagorean Theorem says that the length of the true straight hypotenuse is the square
root of the sum of the squares of the lengths of the legs,

Small hypotenuse = \/m

V/(Cos[0 4 66] — Cos[])2 + (Sin[0 + 60] — Sin[6])2
= /(= Sin[0]66 + 1100)2 + (Cos[0])66 + 1256)2

V/ (= Sin[0]660 + 1) + (Cos[0]60 + 12)% 66
= /(= Sin[0])2 + (Cos[d])2 66 + 1360

since (Cos[f])? + (Sin[f])? = 1. By algebraic approximations, 13 =~ 0 whenever 66 ~ 0. This means
that we may compute the length by the integral of df by Duhamel’s Principle 14.1.
The general approximation idea for smooth functions x[t], y[t] is

Small hypotenuse = \/W
= \/(2'[6]66 + 1160)% + (v'[0]06 + 1260)2
=V (@0] +11)2 + (y[0] + 12)% 60
= V(@0])? + (v'[0])? 60 + 1500

In the integral for the length of an ellipse in Problem 14.12, the expression y/(2/)? + (y/)? is
more complicated, and we cannot do the final step of replacing 1/(— Sin[f])? + (Cos[6])2 by 1 as
above.

Example 14.6 A Simple Parametric Length

Let us consider another example, the length of the parametric curve

for 0 <t < 1. We have the increments

dx = 2'[t]ot + 110t oy = y'[t]ot + 120t
= 2t0t + 110t = 312 6t + 190t
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so that the length of the hypotenuse of the triangle we would see in an tiny microscope is

0l =/ (0x)2 + (0y)? = /(2t)% + (3t2)? 6t + 130t

and Duhamel’s Principle says,

1 13)3/2 —
L= / VT (B dt — (3)2778 ~ 1.4971
0

Example 14.7 Volume of a Half Bagel

The upper half disk of radius 1 centered at (2,0) is revolved about the y-axis. The equation of
the semicircular boundary of the half disk is
y=4/1-(z—2)

The resulting figure looks like the top half of a sliced bagel as in Figure 14.2:9.
We approximate the accumulated volume between radius x and radius x + dx by the cylindrical

“shell” with inner radius , outer radius z + dz, and height ht [z] = \/1 — (z — 2)*.

Figure 14.2:8: Half bagel shells

Outer cylinder — inner cylinder =
TR2ht — wr?ht = w((x + 6x)? — 22)ht
= 7(2x0x + d2?)ht

= 1(2z0x + 62°)\/1 — (z — 2)*
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The 622 term can be neglected in our integral formula by Duhamel’s Principle because it produces
a term of the form ¢ - dx with ¢ ~ 0.

T(2z6 + 62°)4\/1 — (z — 2)% =

o= <2mm/1 - (:1:—2)2> oz + <5xm/1— (m—2)2> bz
= <27r33\/1 — @;-2)2) 6r +¢-6x

The flat top on our cylinder produces another error between the accumulated volume from x to
x + 0x. If we are on the rising side of the circle, the left height, ht[z] = /1 — (x — 2)2 produces a

shell that lies completely inside the bagel while the right height, ht (z + 0z) = \/ 1 — ([z + 6z] — 2)%,
produces a shell that includes the cylindrical slice of the bagel (with its curved top.) This means

22820/ 1 — (2 — 2)% + €102 < V [z, 2 + 6z] < 772:55:3\/1 — ([& + 6x] — 2) + ex0z

On the falling part of the circle, the outside terms in this inequality are interchanged - the left
height is above and the right height below. In either case,

Vix,x +dz] = 7r2:1:59:\/1 — ([z + 6z] — 2)* + 36z

3
Via,b] = 277/ zy/1— (z —2)%dzx
1
Example 14.8 Computation of 2w ff’ 24/1— (x — 2)%dx

This integral can be computed with the computer or by hand with a trig substitution,

with €3 &~ 0, so we have

x — 2 = Sin 0] dzx = Cos [0] d
r=10=-7/2 z=30=1/2
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so the integral becomes

Via, b = 2r /_ ﬂ/; (Sin (0) + 2) /1 — Sin2 9] Cos[0] d6

=27 / " (Sin () + 2) Cos? (9) d6

—7/2
/2 /2
= 27r/ Sin () Cos?® (0) df + 277/ 2Cos? [0] dO
—m/2 —7/2

-1 /2 /2
=2 <?Cos3 (9)> [71*/2 + 27r/ (14 Cos (26)) do
—7/2

/2

1

= 272

Example 14.9 Trig Substitutions and Parametric Forms

The change of variables in the Example 14.8 can be viewed as parametric equations for the
surface of the bagel. A unit semicircle is given by the parametric equations

x = Sin[f]
y = Cos|d]

where = goes from —1 to +1 as 6 goes from —7/2 to +7/2. You should verify that y takes only
positive values in this range and that this pair traces out the top half circle of the unit radius
centered at zero.

Adding 2 to the value of x moves the center of the semicircle to (2,0), so it forms the outline
semicircle of our half bagel,

x = 2+ Sin[6]
y = Cos[]
The integral change of variables formula for dx can be thought of as expressing the thickness

of the shells in terms of . It is also perfectly OK to think of the change of variables as a formal
manipulation that makes the integral easier to compute.
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Example 14.10 The General Shell Method - Explicit Form

If the region below the graph of a positive continuous function, y = f[z] for 0 < a < x < b, is
revolved about the y-axis, the volume of the solid obtained is

VzQW/abxf[x] do

This general result is given in "Foundations of Infinitesimal Calculus" at
www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm.

Example 14.11 The Icing on the Donut

Figure 14.2:9: Area of donut icing

The surface of the top half of the torus is obtained by rotating the semicircle

y= VTP

about the y axis. We will approximate the area by considering what happens to a tiny segment
of the semicircle as we rotate that segment about the y axis. The slope of the segment matters in
calculating the area of one of these ‘barrel hoops.’
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Figure 14.2:10: Hoops of different slant, but same radius and dz-thickness

The area is approximately the total length of the generating segment, &I, times the distance
through which it travels. It is rotated about the y-axis, so it goes around a circle of radius x. The
circumference of a circle is C' = 27r = 27 x, in this case. This makes the area of the hoop at x

0A =2mx dl

We need an expression for 4/ in terms of the x variable so that we can form an integral.
The length of a tiny segment of the curve is

Ol = \/0x2 + 0y? +¢1 - 0x

with an error that is small compared to dx. Since we have y = y[x] as an explicit function of x, we
can write
Sy =y [z] 6z + e - Ox

so that our length becomes 0l = /622 + (y/[z])2622 + &3 - 6z = /1 + (y'[z])? 6z + £3 - 6z and our
approximating area is
dA =21z \/1+ (V[z])? dz + ¢ bz

Finally, by Duhamel’s Principle,

3
14:27r/1 x 1+ (y]z])? dz
_ s (x —2)
27T/1 x\/l—i—mdx

3 x
:27r/1 —il—(x—Q)Q dx

This is a nasty integral, when x = 1 or x = 3. Of course, the computer might do the integration
for us, but there is a more geometric way to see how to proceed.
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Example 14.12 A Second Approach to the Area of Revolution

This time represent the generating semicircle of radius 1 centered at 2 on the x axis by parametric
equations:

x[t] = 2+ Sinlt]
y[t] = Cost] for —m/2<t<m/2

We go back to the length portion of the area of the approximating hoops. The length of a tiny
segment of the curve is approximately

0l = \/0x2 + 0y? + &1 - 0t

but, in this case, the increments satisfy

dx[t] = z[t + 6t] — z[t] = 2[t] 6t + 2 bt
= Cos[t] 6t + €2 - 0t

Sylt] = y[t + 6t] — y[t] = y'[t] ot + €3 dt
= — Sin[t] 6t €3 - 9t

so the length is 6l = \/0x2 + dy? + ¢ - 6t = \/0082[t] + Sin?[t] 0t + - 0t = 6t + ¢ - 6t. We must

express the increment of area in terms of ¢,

JA=2mz dl=2mx 6t +¢-0t
= 27(2 + Sin[t]) dt +¢- ot
= 27(2 + Sin[t]) ét +¢- 6t

and the area is given by

A= 2 / ™ (3 4 Sinlt) de

—7/2
/2 ™

= 27r/ 2dt+ 277/ Sin[t] dt
—7/2 —7/2

=4m? +0

since the integral of sine over a half period is zero.
Not only is this parametric integral for the area easy to compute, it also does not have the
mathematical singularities of the cartesian form above when x = 1 and x = 3.
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Example 14.13 General Area of Revolution Formulas

If the graph of a positive smooth function y = f[z] for a < z < b is revolved about the z-axis,
the area of the surface obtained is

b
A= 271'/ flz]/1+ (f'[z])? dx

If a smooth parametric graph, z[t] = f[t], y[t] = g[t] for a < z < b, with g[t] > 0, is revolved
about the x-axis the area of the surface so obtained is

b
A=2r / 2] @ + W dt

These results are explained in "Foundations of Infinitesimal Calculus" at
www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm.

Exercise Set 14.2

1. Define the accumulated energy function
FE [tl, tg]

to be the amount of energy a household consumes from time t1 to time to. Explain why E (s,t)
is additive. (This is just a matter of saying what the terms in the formula mean.)

2. Explicit Length
Verify the parametric computation of Example 14.6 by using the explicit equation for arclength,
L= ff 1+ [f'[z]]2 dz, on the curve y = x3/2. This is the same as the parametric curve

above, since t = \/x = z'/2, so y =t = (1/2)3 = 23/2.

14.3 A Project on Geometric Integrals

It is important for you to try “slicing” on your own. These problems are hard, but you need to do
several to understand integration.

Each problem has the following steps
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Procedure 14.1

1. Slice the figure and find an approximate formula for one slice of the form ‘a function of
the slice at 2’ times the ‘thickness,” f[z] dx.

2. Find the limits of integration.

3. Compute using rules or numerical integration with or without the computer.

You have some freedom in your approximation as long as the error for one slice is small compared
to the ‘thickness’ of the slice,

amount of one slice = f[z] dz +¢ - dz

GENERAL INSTRUCTIONS FOR THE PROBLEMS:

Find integral formulas for the following quantities. Use Duhamel’s Principle, Theorem 14.1,
explicitly to verify the correctness of your formulas. If possible, compute your integral symbolically;
otherwise use numerical integration. Use the computer if you wish.

Figure 14.3:11: A sliced pyramid and a round wedge

Problem 14.2 Discs
Find the volume of a right circular cone of base radius r and height h.
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Problem 14.3 SQUARE SLICES
Find the volume of a square pyramid with base area B and height h. Does it matter whether or not
it is a right pyramid or slant pyramid? Does the base have to be square?

Problem 14.4 TRIANGLES

A wedge is cut from a (cylindrical) tree trunk of radius r by cutting the tree with two planes meeting
on a diameter. One plane is perpendicular to the axis and the other makes an angle 0 with the
first. Find the volume of the wedge.

Figure 14.3:12: Area between y = 2° — 2% and y =  — 23

Problem 14.5 AREA BETWEEN CURVES

Find the area of the bounded regions between the curves y = x° — x® and z = © — 3. Notice that
the curves define two regions, one with z on top and the other with y on top. (See the program
AreaBetween.)

5
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Problem 14.6
Find the area between the curves of Problem 6.14 and 6.15.

Figure 14.3:13: A torus

Problem 14.7 SLICE BY SHELLS
Find the volume of the solid torus (donut)

(z— R 44> <r? (0<r<R)
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Figure 14.3:14: Slice by washers or slice by shells

A (cylindrical) hole of radius r is bored through the center of a sphere of radius R. Find the volume

of the remaining part of the sphere.

Chapter 14 - APPLICATIONS of INTEGRATION
Problem 14.8 SLICE BY WASHERS OR SHELLS

Figure 14.3:15: A Spherical cap and crossing cylinders
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Problem 14.9 PART OF A SPHERE
Find the volume of the portion of a sphere that lies above a plane a distance ¢ above the center of
the sphere for 0 < ¢ < r, where r is the radius of the sphere.

Problem 14.10 INTERSECTING CYLINDERS

Two circular cylinders of equal radii r intersect through their centers at right angles. Find the
volume of the common part. (HINT: The intersection can actually be sliced into square cross
sections.)

Figure 14.3:16: A parabolic antenna

Problem 14.11 SURFACE AREA
Find the surface area of the surface obtained by revolving y = %332 about the y-azxis. (See the program
AntennaArea.)
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Problem 14.12 ARCLENGTH OF AN ELLIPSE
An ellipse is given parametrically by the pair of equations

x = 3Cos [0]
y = 2Sin [0]

with —m < 0 < w. Find an integral formula for the length of the curve by “looking in a powerful
microscope,” as we did in the computation of the length of a parametric curve above. In a microscope
we will see a right triangle with the change in x on the horizontal leg, the change in y on the vertical
leg and the length along the hypotenuse. The Pythagorean Theorem says that the corresponding

increment of length is given by
0l = /622 + 0y?

This time, the length will NOT be equal to the change in the angle, 60, because an ellipse is a circle
that has been stretched different amounts in the x and y directions. The changes in the coordinates
are function changes:

dz[0] = x(6 + 60) — z[0]
Syl0] = y(0 + 06) — y[b]

Use the increment approximation for these changes to express them approximately in terms of 60.
Substitute the approximations into the Pythagorean expression above.

N
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Figure 14.3:17: Equal 8 partition of the ellipse

Test your formula on the circle (where you know the answer) as well as the “parametric”
equations

z =20

0 2
=2/1— (=
=21 (3)

(which can be compared to the explicit arclength formula L = |, ; V14 [f[z]))? dx.)
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Figure 14.3:18: Equal x partition of the ellipse

The (correct) arclength formula for the ellipse cannot be computed by antidifferentiation so you
must use numerical integration such as the computer Nlntegrate[.]. Why is the parametric integral
for the ellipse better behaved than the explicit formula?

14.4 Improper Integrals

“Improper” integrals, such as fol % dx, whose integrand tends to infinity and is discontinuous at

z=0or floo x% dx, which is integrated over an infinite interval, are studied in the book of projects
and used in Chapter 18 on infinite series.



