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Abstract: For applications in bolus-chasing CT angiography and electron-beam micro-CT, 

the backprojection-filtration (BPF) formula developed by Zou and Pan was recently 

generalized by Ye et al. to reconstruct images from cone-beam data collected along a rather 

flexible scanning locus, including a nonstandard spiral. A major implication of the 

generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the 

nonstandard spiral scanning case.  In this paper, we design an n-PI-window-based BPF 

algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and 

Defrise Disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data 

differentiation, weighted backprojection, and inverse Hilbert filtration. Our simulated results 

demonstrate the feasibility and merits of the proposed algorithm. 

Keywords : Cone-beam CT, nonstandard spiral scanning, PI-line, n-PI-window, 

backprojection-filtration (BPF). 

 

I. Introduction 

Spiral fan-beam/cone-beam computed tomography (CT) is the most important 

technology to reconstruct a long object. In parallel to the fast evolution of area detectors [1], 

spiral cone-beam reconstruction algorithms [2-22] have been under rapid development. 

Generally speaking, the cone-beam reconstruction algorithms may be categorized into three 

types: exact, approximate and iterative algorithms [2].  Ideally, the exact spiral cone-beam 

reconstruction algorithms are most desirable [5-20]. These exact algorithms typically utilize 
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the concepts of PI-lines and PI-windows, and take forms of filtered backprojection (FBP) 

[9-15] and backprojection-filtration (BPF) [13-20], respectively. 

The original PI-line and PI-window were defined by Tam and Danielsson et al. [5,6] 

Then, these concepts and related algorithms were extended to the n-PI-window case [8,9,11]. 

Spiral cone-beam reconstruction based on the n-PI-window is important because it efficiently 

utilizes radiation dose and redundant data, and effectively reduces image noise. Proksa et al. 

proposed the first n-PI method [8] in the Grangeat framework with Radon plane triangulation.  

Then, they proposed a quasi-exact FBP reconstruction algorithm [9] using three sets of filter 

directions based on Katsevich’s original formula, which is a 1-PI method [10].  Katsevich 

himself also formulated two FBP-type 3-PI algorithms [11]. However, all these n-PI 

algorithms only work with a standard helical scanning locus. 

For applications in bolus-chasing CT angiography and electron-beam micro-CT, the BPF 

formula by Zou and Pan [16-19] was recently generalized by Ye et al.[15,20] for image 

reconstruction from cone-beam data collected along a rather flexible scanning locus, 

including a nonstandard spiral [14-15,20-22].  A major implication of the generalized BPF 

formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard 

spiral scanning case, covering nonstandard spirals of variable pitch and/or variable radius. 

The result has validated Zou and Pan’s claim in [16] that the BPF method can be applied to 

other situations such as n-PI and variable pitch helical scans [19]. In this paper, we will 

design an n-PI-window-based BPF algorithm.  The next section defines systems and 

notations. The third section formulates the concepts of the n-PI-line and n-PI-window in the 

case of nonstandard spirals. The fourth section presents the n-PI-window-based reconstruction 

formula, and describes the reconstruction algorithm.  The fifth section reports numerical 

simulation results obtained with the 3D Shepp-Logan head phantom and the Defrise disk 

phantom.  The last section discusses a few related issues and concludes the paper. 

II. Systems and Notations 
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Consider an object function ( )f x whose support is a cylindrical region U . For any 

unit vector β , let us define a cone-beam projection of ( )f x from a source position ( )sy

on a nonstandard 3D spiral locus C [20] containing U as 

 ( )( ) ( )( )
0

, :fD s f s t dt
∞

= +∫y β y β (1) 

 { }3
1 2 3: ( ) : ( )cos( ), ( )sin( ), ( ),s y R s s y R s s y h s s= ∈ = = = ∈C y � � (2) 

Note that the integral in Eq. (1) is actually taken over a finite interval, because the function 

( )f x is compactly supported. When β points away from the support of ( )f x , the integral 

vanishes. Without loss of generality, we assume that ( )h s is a monotonous increasing 

function depending on the X-ray source rotational angle s . For a given s , we define a 

local coordinate system with the three orthogonal unit directional 

vectors: 1 : ( sin( ),cos( ),0)s s= −d , 2 : (0,0,1)=d and 3 : ( cos( ), sin( ),0)s s= − −d . As shown in Fig. 1, 

equispatial cone-beam data are measured on a planar detector array parallel to 1d and 2d at 

a distance ( )D s from ( )sy with ( ) ( ) cD s R s D= + , where cD is a constant here but it can 

be readily generalized as a function of s . A detector position in the array is indexed by 

( , )u v , which are signed distances along 1d and 2d respectively.  Let ( , ) (0,0)u v =

correspond to the orthogonal projection of ( )sy onto the detector array.  If s and ( )D s

are given, ( , )u v are determined by β . For a fixed ( )sy , ( )D s is constant, and cone-beam 

projection data can be expressed as ( , , ) ( ( ), )fp s u v D s≡ y β with 

 1

3

( )D su =
β d

β d
i

i
(3-a) 

 

2

3

( )D sv =
β d

β d
i
i

(3-b) 

III. Generalized N-PI-Windows and -Lines 

As shown in Fig. 2, the generalized 1-PI-window [21,22] at 0s is defined as the region 

in the detector plane bounded by the cone-beam projections of the upper and lower turns of 
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the 3D nonstandard spiral starting from the X-ray source at 0( )sy in the local coordinate 

system defined in Section II.  The top and bottom boundaries of the minimum detector area 

topΓ and botΓ are the cone-beam projections of the upper and lower spiral turns 0( , )u s λy

and 0( , )l s λy respectively given by 

 0 0( , ) ( )u s sλ π λ= + +y y  for π λ π− < < , (4-a) 

 0 0( , ) ( )l s sλ π λ= − +y y  for π λ π− < < . (4-b) 

Similar to what Ye et al. [21,22] and Proksa et al.[8,9] did, next we formulate a generalized 

n-PI-window at 0s . The basic idea is to extend the detector boundaries upwards and 

downwards simultaneously by one or more turns of the 3D nonstandard scanning spiral.  The 

detector area is then enlarged to receive more signals from an odd number of scanning turns. 

In other word, we can define 3-PI-, 5-PI-windows, and so on.  The upper and lower 

boundaries of the detector area, _top nΓ and _bot nΓ , are respectively the cone-beam 

projections of the upper and lower turns _ 0( , )u n s λy and _ 0( , )l n s λy for n being odd, which 

are given by 

 _ 0 0( , ) ( )u n s s nλ π λ= + +y y  for π λ π− < < , (5-a) 

 _ 0 0( , ) ( )l n s s nλ π λ= − +y y  for π λ π− < < . (5-b) 

The boundary equation of _top nΓ on the detector plane can be represented by 

 0 0

0 0

( ) ( ) sin( )
( ) ( ) cos( )
D s R s n

u
R s R s n

π λ λ
π λ λ

− + +
=

+ + +
 for π λ π− < < , (6-a) 

 [ ]0 0 0

0 0

( ) ( ) ( )
( ) ( )cos( )

D s h s n h s
v

R s R s n
π λ
π λ λ

+ + −
=

+ + +
 for π λ π− < < . (6-b) 

Correspondingly, the boundary equation of _bot nΓ can be represented by 

 0 0

0 0

( ) ( )sin( )
( ) ( ) cos( )
D s R s n

u
R s R s n

π λ λ
π λ λ

− − +
=

+ − +
for π λ π− < < , (7-a) 

 [ ]0 0 0

0 0

( ) ( ) ( )
( ) ( ) cos( )

D s h s n h s
v

R s R s n
π λ
π λ λ

− + −
=

+ − +
for π λ π− < < . (7-b) 

Fig. 3 illustrates a generalized 3-PI-window associated with a nonstandard spiral locus. 
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In the generalized n-PI-window setting, a generalized n-PI-line is defined as any line 

with two points ( )bsy and ( )tsy on the spiral satisfying ( 1) ( 1)t bn s s nπ π− < − < + . A

n-PI-segment is the segment of a n-PI-line inside the spiral.  The definition of the 

generalized n-PI-line still makes sense because any point on the generalized n-PI-segment can 

be viewed from at least 180 degrees from an appropriate viewing direction, permitting 

accurate and reliable reconstruction [15,20]. 

IV. Reconstruction Algorithm 

Let us define the unit vector β as the one pointing to 3∈x � from ( )sy on the 

nonstandard 3D spiral: 

 ( )( , ) :
| ( ) |

ss
s

−=
−

x yβ x
x y

. (8) 

For a point ∈x U , let us assume there exist at least one generalized n-PI-line through that 

point and denote the two end-points of the n-PI-segment by ( )( )bsy x and ( )( )tsy x

respectively, where ( )b bs s= x and ( )t ts s= x are the rotation angles corresponding to these 

two points.  Note that the uniqueness of the generalized n-PI-line is not required here. We 

also need a unit vector along the n-PI-line as: 

 ( ) ( ) ( )
( ) ( )

( ) ( )
:

( ) ( )
t b

t b

s s
s sπ

−
=

−

y x y x
e x

y x y x
(9) 

Then, let us define an integral transform kernel according to the previous results [16-20]: 

 ( )
3

2 ( ')1( , ') : sgn ( )
2

iK e d
i

π
ππ

−= ∫ v x xx x v e x vi

�

i (10) 

If the 5th partial derivatives of ( )f x in the compact support U are absolutely integrable in 

3� , it was already proved by Ye et al. that [20]: 
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( ) ( , ') ( ') 'f K g d= ∫x x x x x
�

, (11) 

where  
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( ) ( )( )
( )

( )

( ') : ( ), ( ', ) ( ), ( ', )
' ( )

t

b

s

f f
s q s

dsg D q s D q s
q s=

∂= − −
∂ −∫

x

x

x y β x y β x
x y

. (12) 

We emphasize that the BPF method as formulated by (10)-(12) can be tailored into a 

cone-beam algorithm for n-PI-window-based image reconstruction, which will be described 

as follows. 

As shown in Fig. 4, for a given generalized n-PI-segment specified by bs and ts , a local 

Cartesian coordinate system can be defined based on the n-PI-line. The 1xπ -axis is made 

along the n-PI-line with its origin at the middle point of the n-PI-segment, while 2xπ - and 

3xπ -axes are assigned perpendicular to the n-PI-line.  In practice, only the component 1xπ is 

used for the reconstruction according to the key relationship Eq. (13) but the 2xπ - and 3xπ

components are used for the derivation of Eq. (13). Therefore, the selection of the 2xπ - and 

3xπ -axes is arbitrary. After appropriate translation and rotation transforms, any x in the 

global coordinate system can be transformed into the n-PI-line-based local coordinate system, 

that is, ( )1 2 3, ,x x xπ π π π=x . Following Zou and Pan’s derivation steps [16], we can prove that 

for any fixed πx on the n-PI-line (
2

0xπ = and 3 0xπ = ), Eq. (10) can be simplified as: 

 2 32
1 1

1( , ' ) ( ' ) ( ' )
2 ( ' )

K x x
x xπ π π π
π π

δ δ
π

= −
−

x x . (13) 

Eq. (13) shows that ( , ' )K π πx x equals zero if 'πx is not on the n-PI-line. In other word, 

( , ' )K π πx x is a Hilbert filtering operator along the n-PI-line for a fixed point πx on the 

n-PI-line. 

Denote the object function and the weighted backprojection at 1xπ on the n-PI-line 

specified by bs and ts as 1( , , )b tf x s sπ π  and 1( , , )b tg x s sπ π , respectively. Substitute (13) into 

(11), we have [16] 

 { }1
1 1 12

1 1

'1 1( , , ) ( ' , , ) ( , , )
' 22b t b t b t

dx
f x s s g x s s H g x s s

x x
π

π π π π π π
π π ππ

= − = −
−∫

�

, (14) 

where { }H i represents the Hilbert transform operator. Because { }{ }H H g g= − and 

1( , , )b tf x s sπ π  has a finite support on the n-PI-segment, we have 
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1
1 1

1 1

'
( , , ) 2 ( ' , , )

'

t

b

x

b t b t
x

dxg x s s f x s s
x x

π
π π π π

π π

=
−∫ , (15) 

where bx and tx are the minimal and maximal values of the finite support interval, 

respectively. Using the matrix method [14] or the method proposed by Noo et al. [23], we can 

recover 1( , , )b tf x s sπ π  from the data 1( , , )b tg x s sπ π  within the interval [ ],b tx x .

Based on the above analysis, we have the following generalized n-PI method for image 

reconstruction from cone-beam data collected along a nonstandard spiral locus: 

Step 1.  Cone-Beam Data Differentiation: 

Based on our early work [15,24], we have the following (for detail, please see the Appendix):     

 
( )

2 2

( , , ) ( ), ( , , ) |

'( ) ( ) '( )( ) ( , , ).
( ) ( )

f fixed
fixed

dG s u v D s p s u v
s ds

R s u u D s R s v uv p s u v
s D s u D s v

∂
≡ =
∂

∂ + + ∂ + ∂= + +
∂ ∂ ∂

β
β

y β
(16) 

Note that this formula was also reported in [14].  

Step 2.  Weighted Backprojection: 

We can calculate the weighted 3D backprojection 1( , , )b tg x s sπ π  of the derivatives of 

cone-beam data onto the n-PI-segment specified by bs and ts using Eqs. (12) and (3). Note 

that there may be a number of n-PI-lines through a given point inside the object. Hence, we 

may have multiple reconstructions at that point. When there are m n-PI-lines passing 

through the point x , one can select any of the n-PI-line and the corresponding arc to 

reconstruct ( )f x . This will lead to the exact reconstruction in the case of noise-free 

cone-beam data. In the case of noisy data, the reconstruction can be performed m times to 

utilize the data redundancy for noise reduction.  

Step 3.  Inverse Hilbert Filtering: 

Finally, the object function 1( , , )b tf x s sπ π  is reconstructed by solving the integral equation 

(15) using the matrix method [14] or the method proposed by Noo et al. [23]. 

The flowchart for this generalized BPF algorithm is drawn in Fig. 5. Since the 

reconstructed object function is in the n-PI-line-based local coordinate system, we need a 
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rebinning procedure to map the results into the global Cartesian coordinate system.  The key 

problem is to find an n-PI-segment for a given point in the global Cartesian coordinate 

system, which can be done similar to what we did for the 1-PI-window-based BPF cone-beam 

reconstruction [13]. 

V. Numerical Simulation 

In our numerical simulation, an elliptic spiral, whose radius and pitch have the form 

2 2 2 2
( )

cos ( ) sin ( )
a b

b a

R R
R s

R s R s
=

+
and 0( )

2
h sh s
π

= , was used for evaluation and verification of the 

proposed generalized BPF algorithm, where 75aR = cm, 100bR = cm and 0 10h = cm. Both 

the Shepp-Logan head phantom and the Defrise Disk phantom were used after being 

restricted in a spherical region of 10cm radius centralized on the origin of the global Cartesian 

coordinate system. The distance from the detector to the z-axis ( cD ) is 75cm and each 

detector element cover a rectangular area whose size is 0.781 0.781× 2mm . When the X-ray 

source was moved along a spiral turn, 1200 cone-beam projections were uniformly acquired. 

Totally, 3600 projections were acquired for [ 3 ,3 ]s π π∈ − for both 1-PI method and 3-PI 

method. The final reconstruction was done on a 256 256 256× × grid. 

Fig. 6 shows some representative images reconstructed on n-PI-lines specified by a fixed 

bs and a set of ts . The top slices were reconstructed with a set of 1-PI-line specified 

by 1.4bs π= − and [ ]0.4851 , 0.3149ts π π∈ − −  while the bottom slices were reconstructed with 

a set of 3-PI-line specified by 1.6bs π= − and [ ]1.3149 ,1.4851ts π π∈ . Evidently, the phantom 

structures were distorted due to the n-PI-line-based local coordinate system geometry. After 

rebinning by interpolation, the reconstructed images were readily mapped into the global 

Cartesian coordinate system, as shown in Figs. 7 and 8. Figs. 6 to 8 demonstrate that the 

reconstructed images from generalized 3-PI-windows have the image quality visually 

equivalent to what reconstructed from 1-PI-windows. Compared with the original phantoms, 

some artifacts are observed in Figs 6 to 8. They are caused in twofold: firstly, both the 3D 

Shepp-Logan phantom and the Defrise Disk phantom do not satisfy the condition that their 

5th partial derivatives are absolutely integrable, and this causes serious artifact near the 
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disconnected part of the phantoms; secondly, the numerical implementation introduces 

discrete error and this also results some artifacts. 

To evaluate the image noise characteristics, white Gaussian noise with different 

normalized standard deviation (NSD) was added to the raw data synthesized from both the 

Shepp-Logan phantom and Defrise Disk phantom. The final reconstructed image is obtained 

by averaging the results from 1-PI- and 3-PI-windows for noise reduction. Without regard to 

the artifacts caused by discontinuity of the phantoms and discrete error, the noise of 

reconstructed image was measured compared to the reconstructed image from noise-free data. 

All the NSDs of reconstructed image were listed in Table 1 and Table 2. From Table 1 and 

Table 2, we get two conclusions: (a) the NSD of reconstructed noise is in proportion to the 

NSD of noise added to the raw projection data; (b) Noise can be reduced by averaging the 

results from 1-PI- and 3-PI-windows. Fig. 9 and Fig. 10 illustrate some representative 

averaged reconstruction slices from noisy data. 

 Table 1. NSDs of noise in reconstructed 3D Shepp-Logan phantom  

Raw Noise(%) 1-PI-Method(%) 3-PI-Method(%) Average(%) 
0.1 0.26 0.38 0.20 
0.2 0.52 0.77 0.41 
0.3 0.77 1.15 0.62 

Table2 NSDs of noise in reconstructed Defrise Disk phantom   

Raw Noise(%) 1-PI-Method(%) 3-PI-Method(%) Average(%) 
1.0 2.58 3.83 2.06 
2.0 5.16 7.67 4.11 
3.0 7.74 11.50 6.40 

VI. Discussions and Conclusion 

We hypothesize that our n-PI-window-based algorithm may allow dynamic volumetric 

image reconstruction from a nonstandard spiral cone-beam scan.  The earlier exact 

cone-beam algorithms typically take standard helical loci and explicitly assume that the object 

to be reconstructed does not contain time-varying structures. When these requirements are 
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violated in practice, serious image artifacts will be generated.  The generalized BPF 

algorithm not only compensates for nonstandard imaging geometry but also allows a number 

of n-PI-lines to be used for dynamic reconstruction. Because different n-PI-segments 

correspond to different time windows, we have more information to recover a dynamic 

process in a permissible interval.  Possibly, this will yield significantly better temporal 

resolution and temporal consistence, which are highly desirable for contrast-enhanced CT and 

cardiac CT, such as bolus-chasing CT angiography and electron-beam micro-CT [25]. 

There are several further research opportunities with the n-PI-window-based 

reconstruction.  First, the Katsevich method for standard helical cone-beam CT may be 

extended into the n-PI-window and nonstandard spiral scanning geometry. This might result 

in a general FBP algorithm for exact image reconstruction from a nonstandard spiral 

cone-beam scan, which should be a counterpart of the generalized BPF algorithm presented in 

this paper.  Then, these two algorithms can be compared for relative strengths and 

weaknesses to identify optimal algorithms and protocols for specific applications.  We 

expect that the BPF algorithm would utilize the minimum amount of data, while the FBP 

algorithm would produce better image quality and be computationally more efficiently. 

In conclusion, we have developed an n-PI-window-based BPF algorithm for nonstandard 

spiral scanning loci, and reported the numerical tests with the Shepp-Logan phantom and the 

disk phantom.  Our simulation results have demonstrated that the generalized BPF method 

formulated by Ye et al. indeed produce accurate reconstructions from nonstandard spiral 

cone-beam scans with data contained in n-PI-windows. 
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Keeping β fixed and using the chain rule, the derivative of cone-beam data with respect 

to s can be written as 

 ( , , ) ( , , ) | fixed
d p p u p vG s u v p s u v
ds s u s v s

∂ ∂ ∂ ∂ ∂
≡ = + +

∂ ∂ ∂ ∂ ∂β (A1) 

with  

 
( )

' '' 2 2
1 31 1 1

2
3 3 3

( )( ) '( ) ( ) '( ) ( )
( )

D sD s D s D su D s u u D s
s D s

  +∂ + += = − = ∂  

β d β dβ d β d β d
β d β d β d

i ii i i
i i i

, (A2-a) 

 
( )

' ''
2 32 2 2

2
3 3 3

( )( ) '( ) ( ) '( )
( )

D sD s D s D sv D s v uv
s D s

  +∂ += = − = ∂  

β d β dβ d β d β d
β d β d β d

i ii i i
i i i

, (A2-b) 

where Eq. (3) and the relationships ' ' '
1 3, 3 1, 2 0= = − =d d d d d  have been used in the above 

derivation.  Since '( ) '( )D s R s= , we have 

 
2 2'( ) ( ) '( )( , , ) ( ) ( , , )

( ) ( )
R s u u D s R s v uvG s u v p s u v

s D s u D s v
∂ + + ∂ + ∂= + +
∂ ∂ ∂

. (A3) 
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Figure 6.  Reconstructed slices specified by a set of n-PI-lines. The left slices are for the Shepp-
Logan head phantom with a display window [1.0,1.05] while the right slices are for the Defrise disk 
phantom with a display window [0,1.0]. The top slices were reconstructed from 1-PI-windows while 
the bottom slices were done from 3-PI-windows.
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(d)(c)

(b)



Figure 7. Reconstructed slices of the Shepp-Logan phantom in the global Cartesian coordinate system with 
the display window [1, 1.05]. The left slices were reconstructed from 1-PI-window data while the right slices 
were from 3-PI-window data. The top and bottom slices are at X=0cm and Z=-2.5cm, respectively.  The two 
profiles along the white lines are plotted for each slice. The dotted and solid curves represent the original and 
reconstructed profiles.  
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Figure 8. Reconstructed slices at X=0cm of the Defrise phantom in the global Cartesian 
coordinate system with the display window [0, 1]. (a) was reconstructed from 1-PI-window data 
(b) was from 3-PI-window data. The two profiles along the white lines are plotted for each slice. 
The dotted and solid curves represent the original and reconstructed profiles.
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(a) (b)

Figure 9.  Reconstructed slices of the 3D Shepp-Logan phantom from 0.1% noisy data in the 
global Cartesian coordinate system with the display window [1,1.05]. (a) and (b) are slices at 
X=0cm and Z=-2.5cm, respectively. (c) and (d) are profiles along the white lines in (a) and (b), 
respectively. 
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Figure 10.  Reconstructed slice  at X=0cm of the Defrise Disk phantom from 1.0% noisy data in 
the global Cartesian coordinate system with the display window [0.9,1.1]. (a) is the image of the 
slice and (b) is the profile along the white line in (a). 
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