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ABSTRACT
The system of oriented tangle equations N (U + g—i) = K and N(U + %) =Ky is

completely solved for the tangles U and L2 45 a function of L1 where K; and Ko are
92 91

4-plats, and g—i and £2 rational tangles such that |fi1g2 — g1f2| > 1. As an application,
it is completely determined when one 4-plat can be obtained from another 4-plat via a
signed crossing change.

1. Introduction

In [5], the system of unoriented tangle equations N (U + 5—1) = K; and N(U +

g—z) = K, was completely solved for the tangles U and 5—2 as a function of 5—1 where

K, and K, are 4-plats, 5—1 and f—i rational tangles, and U is ambient isotopic to a

sum of rational tangles. In many biological applications, determining orientation is
also very important [3, 1, 11].

In section 2 a brief introduction to oriented tangles is given. Biological motiva-
tion and examples are given in section 3. The system of oriented tangle equations
N({U+ P) = K; and N(U + R) = K> is solved in section 4 where P is the zero tan-
gle, R is rational, and K; and K> are 4-plats and U is ambient isotopic to a sum of
rational tangles. These findings are then extended to solve the oriented equations,
N(@U + P) = K; and N(U + R) = K>, in section 5 where P and R are arbitrary
rational tangles. An application to signed crossing changes is given in section 6.

The main theorems are broken into several cases and are thus rather long. How-
ever, since it is necessary to implement these theorems for biological applications,
a program which performs these calculations is available at the following URL:

http://www.math.uiowa.edu/~idarcy /PROG/comput.html

This subroutine will also be included in Rob Scharein’s KnotPlot which is avail-
able at www.KnotPlot.com.

2. Oriented Tangles
A 2-string tangle is a pair (B®,t) where B? is a 3-dimensional ball, {z € R3 :
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|z] < 1}, and ¢ is a pair of arcs and a finite number of circles properly embedded
in B3. Tangles can be added (Fig. 1). A knot or link is formed by taking the
numerator closure of a tangle (Fig. 2). The circle product of A and C = (¢4, ...,¢p),
is shown in Fig. 3 when n is even and in Fig. 4 when n is odd. A tangle is rational
if it is ambient isotopic to the zero tangle where the boundary of B* need not be
fixed. A generalized Montesinos tangle or generalized M-tangle is a tangle which is
ambient isotopic to a sum of rational tangles where the boundary of B® need not be
fixed. Two tangles are equivalent if they are ambient isotopic keeping the boundary

(@) xed.
f B? fixed
@):/@ @
A+C N(A) N(A+C)
Fig. 1. Adding tangles Fig. 2. Numerator closure
Fig. 3. Ao(c1,...,¢n), n even Fig. 4. Ao (c1y...,¢cn), n odd

The four endpoints of the arcs will be fixed at NW = (e57/*,0), NE = (ei™/*,0),
SW = (e 57/*0),SE = (e~"/* 0). If one of the arcs has endpoints NW and
NE, then the tangle is said to have parity zero. A parity one tangle has an arc
with endpoints NW and SE, whereas a parity oo tangle has an arc with endpoints
NW and SW. Tangles can be oriented by orienting each arc and circle. An arrow
pointing from ¢;(0) to ¢;(1) for each arc ¢; : [0,1] — B? will be used to indicate the
orientation (Fig. 5). The orientation of circles will be similarly depicted. A parity
zero or a parity one tangle will be called similarly oriented if ¢7*(NW) =t (SW).
Otherwise a parity zero or one tangle will be called oppositely oriented. A parity co
tangle will be called similarly oriented if 7 (NE) = t; '(NW). Otherwise a parity
oo tangle will be called oppositely oriented. Although four different orientations
can be defined, since the knots and links discussed in this paper will be restricted
to 4-plats and 4-plats are reversible (equivalent to itself with orientation reversed),
these orientations will be grouped into two classes, similarly and oppositely oriented
as shown in Fig. 5.

A 4-plat (or 2-bridge or rational knot/link) is a knot or link which can be
written as the numerator closure of a rational tangle. Recall two unoriented 4-plats
N(ay/b1) and N(az/b2), a; > 0, are the same if and only if a; = ay and b1b§IEl ~1
(mod ay) [2]. Since 4-plats are reversible, two oriented 4-plat knots are equivalent if
and only if they are equivalent as unoriented knots. N(a/b) is a link if and only if a
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N“@E NW®E NV®E N\®E NW®E NV®E N@E
SW SE SW SE SW SE SW SE SW SE SW SE SW SE
A. Similarly oriented
N“®E NV@E N“®E NV®E N“®E NV®E N@E
SW SE SW SE SW SE SW SE SW SE SW SE SW SE
B. Oppositely oriented

Fig. 5. Orienting tangles A.) Similarly oriented. B.) Oppositely oriented

is even in which case the rational tangle, { has parity zero. The oriented 4-plat link,
N(a/b), will be oriented so that the tangle a/b is similarly oriented. Equivalence
between oriented 4-plat links is determined as follows:

Lemma 1 ([2]). Two oriented 4-plat links N(a1/b1) and N(a2/bs2), a; > 0, are
equivalent if and only if a; = as and b1b2il =1 (mod 2ay).

Note that this means that the numerator closure of the tangle a/b where a/b is
oppositely oriented is the oriented 4-plat N(3%-) (where the tangle ;£ is similarly
oriented by definition).

Since knots/links are now oriented, from now on, two knots/links will be said to
be equivalent if and only if they are equivalent as oriented knots/links. In particular,
N(A+C) = K if and only if A and C are oriented so that N(A+C) = K as oriented
knots/links.

If there exists a solution for U such that N(U + P) = K; and N(U + R) = K»,
then K> is said to have been obtained from K by a (P, R) move. Oriented moves will
be divided into two types. A (P, R) move will be said to be orientation preserving
if the knots/links, N(U + P) = K; and N(U + R) = K are oriented and U has the
same orientation in both equations. A (P, R) move will be said to be orientation
ignoring if it is not possible to orient K; and K> so that U has the same orientation
in both equations (see for example Fig. 6). In both cases, if the tangle U contains
any circles, these circles must have the same orientation in N(U + P) = K; and
N({U + R) = K>.

Definition 1. The system of oriented equations N(U+P) = N(}) and N(U+R) =
N (%) has a solution if and only if there exists tangles U, P, and R such that

1.) N(U + P) = N(3}) as oriented 4-plats and N(U + R) = N(Z) as oriented
4-plats.

2.) If the tangle U contains any circles, these circles must have the same orien-
tation in N(U + P) = Ky and N(U + R) = K,

3.) One of the following holds:

a.) the (P, R) move is orientation ignoring or
b.) the (P, R) move is orientation preserving (i.e., U has the same orientation
in both equations).
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L, R,

e v
orientation n preserving orientation preserving
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orientation preserving orientation 1gnoring
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orientation ignoring orientation preserving

Fig. 6. Orientation ignoring versus orientation preserving

Lemma 2. If N(U + ) = N(%) and N(U + L) = N(Z) as oriented 4-plats and

if the tangle % is similarly oriented and the tangle % has parity oo, then the (1, w)

move is orientation ignoring. If the tangle % is oppositely oriented and the tangle

t has parity one, then the (1, w) move is orientation ignoring. Fxcept for these
0 ¢

two cases, a (T> E) 1S orientation preserving.

Proof. See Fig. 6 0.
Lemma 3. If U has parity oo, then the tangle % in N(U+ %) s oppositely oriented.
If U has parity one, then the tangle % in N(U + %) is similarly oriented. If U has
parity zero, then the tangle % could be given either orientation.

Proof. See Fig. 70.

N

Fig. 7. Parity of U may determine the orientation of the tangle 2 in N(U —I—

In order to determine the parity of U, the Euler bracket function will be used.
Let E[z1,...,z,] be the Euler bracket function which equals the sum of products of
the z;’s where zero or more disjoint pairs of consecutive z;’s are omitted [12]. If
n =0 then E[zy,...,z,] = E[] = 1. If n < 0 define E[z1,...,z,] = 0. Let [z, ..., 1]
denote the continued fraction z,, + @, the fraction corresponding to the
tangle (z1,...,z,). The following useful facts for n > 1 can be found in [12]:

1.) Elzy,....xp] = w1 E[2a, ..., x,] + Elz3, ..., y).

2) [zn, ..y x1] = Elz1, .oy xn]/E[z1, oy Tpe1].

3.) Let a = E[z1,...,z,),0 = E[x1, ..., tn_1]. fy = (—1)" " E[z2, ..., 2y 1]
and x = (=1)"T1E[x,, ..., x,], then bx —ay = 1.

The following well-known result can be proved using the Euler bracket function.
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Lemma 4. If a is even, then the tangle § has parity 0. If a is odd, then if b is odd,
the tangle § has parity 1 and if b is even, the tangle § has parity oo.

Proof. Induction on n noting that if § = [z, ..., 1], then a = E[x,, ..., z,] and
b= E[l‘l, ...,1'n71] .

An oriented link is said to be strongly reversible if changing the orientation of
any of the components of the link does not change the oriented link type. Since
4-plat knots are reversible, they are strongly reversible. A 4-plat link, N(%), is
strongly reversible if and only if N(§) = N(3};). Hence the link N(7) is strongly
reversible if and only if b2 = 1 + a mod 2a.

In the unoriented case, N(fo +4)= N(éﬁi’;i) [7]. This result also holds in the

jwtpty i ity = p(iwtpt
Turar) is strongly reversible. Thus, N (4 + ) = N(57+) no
Jwtpt

matter how the tangle % is oriented when N ( ) is strongly reversible. However,

oriented case if N(

dw+qt
if N(Il; + 1) is a link (ie. jw + pt is even) which is not strongly reversible, then
orientation adds new considerations as illustrated in lemma 9 and the example
following lemma 9. The following four lemmas are useful for calculations and are
also used to prove lemma 9.

Lemma 5. N(A + (¢1,...,¢)) = N(Ao (ep,...,c1)), for n odd.

Proof. Induction on n noting that a rational tangle is invariant under a rotation
of 180° about the y-axis [8] O.
Lemma 6. (c1,....,¢p) 0 (d1,....dm) = (¢1,....cn + di, ..., dw), when m is odd.

Note that even if (dy, ..., d,,) = (e1, ..., €x), it is possible that $o(dy, ..., d,,) #

(61w ex). For example, (1) = (0, 1,1), but (3) = (2)o(1) £ (2)0(0, 1,1) = (2,1,

_ Eldi,...,dwn]E[c1,...cn 1]+ E[d1,...,dm _1]E[c1,...Cn]
Lemma 7. [dy,...,dpy + ¢p,y...c1] = il Bl e Bl ]

Proof. Induction on m. See Roberts [12] O.

5°
1).

Lemma 8. Let {nw,ne, sw,se} denote the endpoints of arcs of the tangle A. Let
{NW,NE,SW,SE} denote the endpoints of arcs of the tangle A o (dm,...,d1),
m odd, and let j = Eldy,....,dn), p = El[d1,...,dn_1], d = El[ds,...,dn], and
q = E[ds,...,dn_1]. Then there exists arcs connecting the following points:

(a) if j even, p odd, q even: ne to NE, se to SE.

(b) if j even, p odd, q odd: ne to NE, se to SW.

(c) if j odd, p odd, q even: ne to SE, se to NE.

(d) if j odd, p odd, q odd: ne to SW, se to NE.

(e) if p even, d even: ne to SW, se to SE.

(f) if p even, d odd: ne to SE, se to SW.

Proof. Induction on m .

Fig. 8 illustrates lemma 8. Note that the terms listed within parenthesis in Fig.
8 do not need to be listed as they are determined by the other terms and the fact
that pd — g7 = 1. For example if j is even, then since pd — ¢j is odd, p and d must
be odd.
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NW I NE NW I NE NW, I NE NW I NE NW NE NW NE
’ (
SW SE sWw<___SE sw SE sWw<_USE SWS—SE sw SE
jeven, (p odd) jeven, (p odd) jodd, (p odd) jodd, p odd (j odd), p even (j odd), p even
q even, (d odd) q odd, (d odd) qeven, (d odd) q odd, (d even) (q odd), d even (q odd), d odd

Fig. 8. Determining the parity of Ao (dm,...,d1).

Lemma 9. Suppose N(% + LY is a link (i.e. jw+pt is even) which is not strongly

w

reversible. Let q and d be any integers such that pd — qj = 1. Then N(% + %) =

N(Zl%iﬁi) as oriented links (where g%i’;i is similarly oriented by definition) if and

only if the tangles % and i are oppositely oriented if pq is odd or if p even, d odd
and similarly oriented otherwise.

Proof. Take a continued fraction expansion of g = [dpm, ..., d2] where m is odd
and d = E[ds, ...,dp], ¢ = E[ds, ..., dpm—1]. Since pd — qj = 1, there exists a d; such
that j = Eldy,...,dp], p= E[d1, ...,ds,—1]. Hence £ = (dy,...,d,,), m odd.

. . p
N(% + %) = N(% + %) = N(% + (di,.ydi)) = N(% o (dpm,...,d1)) by lemma
5. If 5 = (¢1, ..., Cn), then 5 o (dpm,--ydi) = (c1,--0s6p) © (dimy -y di) = (c1, ey Cn +
dpm,--,d1) by lemma 6. By lemma 7, |[di,...dn + cn,...,c1] =
Eldi,....dm]E[c1,...cn—1]+E[d1,...,dm _1]E[c1,...cn] _ jw+pt
E[ds,....dm]E[c1,...cn—1]+E[d2,...,dm—1]E[c1,...cn] ~ dw+qt"
Jwtpt

If jw+pt iS, even, the tangle - ot has parity ze1o anq by definition is similarly
oriented in N(Zﬁi‘;i). Thus, in order for N(L + 1) = N(ézi’;) when thesg 4-plats
are oriented, the tangle % must be oriented so that % o (dpm,...,dr) = %

similarly oriented. If % has parity zero, then t is even, and thus j is even. Hence

p is odd since pd — ¢j is odd. Thus if ¢ is even, part (a) of lemma 8 holds. Hence

% is similarly oriented if and only if % o (dm,...,d1) is similarly oriented (see also

Fig. 8). If ¢ is odd, part (b) of lemma 8 holds. Hence % is oppositely oriented if
and only if % o (dpm, ..., dy) is similarly oriented. If % has parity one, then ¢ and w
are odd, and thus p and j are odd. Thus if ¢ is even, part (c) of lemma 8 holds.
5 is similarly oriented if and only if % o (dpm, ..., dy) is similarly oriented. If
q is odd, part (d) of lemma 8 holds. Hence i is oppositely oriented if and only if
% o (dm,...,dy) is similarly oriented. If i has parity oo, then w is even, and thus p
is even. Thus if d is even, part (e) of lemma 8 holds. Hence % is similarly oriented
if and only if % o (dm,...,d1) is similarly oriented. If d is odd, part (f) of lemma
8 holds. Hence % is oppositely oriented if and only if % o (dm,...,d1) is similarly
oriented. Since jw + pt is even, % has the same parity and orientation as % O.

is

Hence

Example: Suppose p is odd. Then by lemma 9 N(Il; +9) = N(4) where ¢ is
oppositely oriented if ¢ is odd and similarly oriented if ¢ is even. Hence N((2)+2) =
N(%) where % is similarly oriented since j = E[2] = 2,p = E[] = 1,¢ = 0,d =

E[] = 1. Note (2) = (0,~1,2) since 2+ —-r = 2. But if we use (0, -1,2), then
0
j=E[0,-1,2] = 2,p = E[0,~1] = 1,g = E[-1] = —1,d = E[-1,2] = —1. Hence

by lemma 9, N((0,-1,2) + 2) = N(-%) where  is oppositely oriented.
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3. Biological Motivation and Example

Protein-bound DNA can be modeled by a tangle where the 3-dimensional ball
represents the protein (or protein complex — usually several proteins are involved
in any reaction) and the strings represent the segments of DNA bound by protein.
Some proteins such as recombinases, will break the DNA, change the DNA configu-
ration bound by protein, and rejoin the ends of the cut DNA. Hence these proteins
can produce knotted and linked DNA when acting on circular DNA. This action
can be represented by tangle replacement. Different recombinases perform differ-
ent moves. For example, XER recombinase is believed to perform (—%, —%) moves
whereas Flp recombinase has been modeled as performing (0, 1)-moves.

The DNA sequence can be used to orient a DNA knot or link. For example,
suppose that the sequence ACGAT occurs exactly once on only one of the strands
of a circular DNA molecule Then this sequence can be used to orient the circular
DNA molecule as shown in Fig. 9. Usually circular DNA used in an experiment is
about 2000 - 5000 base pairs, but for simplicity, the circular DNA shown in Fig. 9

is only 30 base pairs which is not a biologically plausible length for circular DNA.

Fig. 9. Oriented DNA

Some recombinases bind to specific sequences. These sequences can also be
given an orientation by using a portion of the sequence which occurs exactly once
on only one of the strands. If two of these sequences appear in inverted orientation,
then recombinases will normally cut both these sequences and interchange the ends,
inverting a portion of the DNA sequence (Figs. 10, 12). If two of these sequences
appear in direct orientation, then recombinases will normally cut these sequences
and interchange the ends, resulting in a change in the number of components (Fig.
11).

Observe that when an orientation ignoring move is performed on a knot, the
knot can be written as the union of two segments where an orientation ignoring
move inverts the orientation of one segment with respect to the other segment (Fig.
12). Thus inverted repeats usually result in an orientation ignoring move. If a
(P, R) move is orientation preserving and if P and R do not have the same parity,
then this orientation preserving move changes the number of components. Hence
direct repeats usually result in an orientation preserving move.

The orientation of protein binding sequences within protein-bound DNA is also
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@./

Fig. 10. Recombination: inverted repeats

B
=S

@@
)

Fig. 11. Recombination: direct repeats

(-

< <

-

Fig. 12. Orientation ignoring

Parallel Anti—parallel

Fig. 13. Parallel versus anti-parallel protein binding sequences

of interest. Suppose that in the tangle equation N(U + ) = N(%), the tangle 2
represents protein bound to two DNA segments. Two protein binding sequences are
said to be parallel if they are oriented as shown in Fig. 13 whereas they are said to
by anti-parallel if they are oriented as shown in Fig. 13. Note that if the sequences
occur in direct orientation, then parallel is equivalent to similarly oriented and anti-
parallel is equivalent to oppositely oriented. But if the sequences occur in inverted
orientation, then parallel is equivalent to oppositely oriented and anti-parallel is
equivalent to similarly oriented.

In the following example, we will solve an oriented system of tangle equations
in order to illustrate the aspects of interest.

Example: Solve N(U +2) = N(%), N(U + §) = N(=;) where U is a generalized
Montesinos tangle.
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0.) Determine U: If a solution exists, then by theorem 3 in [5], N(£;) =

N(;M). Hence, p=2,q=—1and h = =2¢tl = 1. Take d =0, j = 1, then

(—p—4q31$1 . o
U= (4 + 800 o (h,0) = (4 + 1) 0 (1,0) = (2= 4 i) o (1,0).

Fig. 14. N((5 +3) 0 (1,00 = N(Z), N((5 + 3) o (1,0) + 5) = N(F5)

1.) Is the tangle % similarly oriented or oppositely oriented in the equation
N(U + %) = N(%)? Since we know U, we can see from Fig. 14 that the tangle 2

is similarly oriented in the equation N (U + ) = N(=%).

2.) Is the move orientation preserving or ignoring? Since % is similarly oriented
and % has parity infinity, the move is orientation ignoring.
3.) Can/how are the components oriented? Note that if a is odd in the equation

N(U + %) = N(4), it does not matter how U is oriented. But in this case, a = 4

is even and hence we must determine how the components are oriented so that
N((3 +3)0o(1,0) + 2) = N(Z) as oriented 4-plats. If the tangle 2 involved
both components, it would be sufficient to determine if the tangle ¥ is similarly

1

oriented or oppositely oriented. But in this example the tangle Y only involves

; . 1
one component. When N (%) is a link, the tangles £ and Zg:qu will have the same

parity and orientation. Thus, determining the orientation of the strings in the
tangle % = % determines the orientation. If the tangle % is oppositely oriented,

then N(U + 2) = N(<;) as oriented 4-plats.
If z is odd in the equation N(U + L) = N(2), it does not matter how U is
oriented. But since z = 8 is even, orientation must be considered. If the move

is orientation preserving, then the orientation of U is obtained from the equation
N(U 4+ 2) = N(%), and thus one only needs to check if this orientation also gives
N(U+ L) = N(2) as oriented 4-plats. If it does, then U is a solution to this system
of equations. If not, then U is not a solution. If the move is orientation ignoring,
then the orientation of U can be chosen so that N(U + 1) = N(Z) as oriented
4-plats. In this case the tangles % and ﬁ will have both have parity infinity
(see proof of theorem 4) and hence the same orientation. Thus, determining the
orientation of the tangle % is sufficient. Since N(=25) = N(§) as oriented 4-plats
(i.e., N(=%) is strongly reversible), the tangle % = 1 can be either similarly or
oppositely oriented so that N(U + 2) = N(=%) as oriented 4-plats.

Note, however, that this method only finds solutions for U when U is a gener-
alized Montesinos tangle and in this case, there is no theorem that states that U

must be a generalized Montesinos tangle, so there may be other solutions for U.
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4. Solving the Oriented Equations N(U + 9) = N(¢), N(U + 1) = N(2)

v
The unoriented system of equations N(U + 2) = N (%), N(U + 1) = N(2) was
solved in [5], theorem 3. For convenience, theorem 3 of [5] is restated below in
theorem 1 when U is rational and in theorem 3 when U is a generalized Montesinos
tangle. The orientation of these solutions is determined in theorem 2 when U is
rational and in theorem 4 when U is a generalized Montesinos tangle.

Theorem 1. Suppose w ¥ +1 mod t or U is rational. Then N(U + 2) = N(%)
and N(U + L) = N(2) where N(%) and N(Z2) are unoriented 4-plats if and only if

there exists an integer b’ such that b'b*" = 1 mod a, and for any integers  and y
such that b'x —ay =1,
z th' + wa
N(Z) = v ()
v ty + wz

In this case, U = 3 for all b satisfying the above.
Theorem 2. Let z = tb' + wa and v' = ty + wz where bz —ay =1. N(% +9) =

N(%) and N(& + L) = N(Z) as oriented 4-plats if and only if one of the following

holds:
(i) If a is even and b'b* = 1 mod 2a or if a and b' are odd and b'b*' = 1 mod
a, then v'vE! = 14+ yz mod Lz, L =1 if z odd, L = 2 if z even.

In this case, U = 4; and % are similarly oriented in the equation N (U + %) =

N(%). The (%, %) move is orientation ignoring if and only if w is even.

(ii) If a is even and b'b*' = 1+a mod 2a or if a is odd, V' is even, and b'b*' = 1
mod a, then v'vt' =2 14 (x +y)z mod Lz, L =1 if z odd, L = 2 if z even.

In this case, U = 4; and % are oppositely oriented in the equation N (U + %) =

N(3). The (%, %) move is orientation ignoring if and only if tw is odd.

Recall that we know U is rational when w 2 +1 mod t and thus the above theorem
determines all solutions in this case [4, 6]. Other cases in which U must be rational

are given in [9, 10].

Proof. Suppose a is odd. Then if b'b*! = 1 mod a, N(& +2) = N(&) = N(%)
as oriented 4-plats. By lemmas 4 and 3, if b’ is odd, % is similarly oriented and if b’
is even, ¥ is oppositely oriented.

Suppose a is even. If b'b*! = 1 mod 2a, then N (%) = N(&) = N(&# + 2) as
oriented 4-plats if §; and thus % is similarly oriented by lemma 1. If b'b*! = 1 4+ a
mod 2a, N(3) = N(5) = N(i + 9) if £ and thus ¥ is oppositely oriented by
lemma 1.

Orientation ignoring versus preserving follows from lemmas 2 and 4.

If 2 is odd, N( + %) = N($522) = N(2) if v'v*' = 1 mod z. Suppose z
is even. If the tangle % is similarly oriented in N(4; + %), then the tangle ;7
similarly oriented and cannot have parity infinity. Thus b’ and w are odd and the

move is orientation preserving. Since & is similarly oriented, N(5+ L) = N(

is

—= )
v'+yz
by lemma 9. If the tangle % is oppositely oriented, then the tangle 7, is oppositely
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% cannot have parity one and the move
is orientation preserving. Since b’z — ay is odd, either a is even and b'and z are
odd OR ¥’ is even and a and y are odd. In this case N (& + L) = N( by
lemma 9 .

oriented and cannot have parity one. Hence

v’+(;+y)z)

Theorem 3. Suppose w =2 +1 mod t and U is a generalized M-tangle. Then
N(U+2) =N(%) and N({U + L) = N(2) where N(%) and N(Z2) are unoriented
4-plats if and only if there exists relatively prime integers, p and q, where p may be

chosen to be positive, such that

N(i) . N(tp(pb—qa) ia)

v/ “tq(pb—qa) £ b (42)

In this case, the solutions for U are (% + zgjﬁ) o(h,0) and (i?jgg + %) o (h,0),
for all p, q satisfying the above, d and j are any integers such that pd—qj = 1, and

h = %ﬂ where the £ sign agrees with that in (4.2) (note, the choice of j and d
such that pd — qj = 1 has no effect on U ).

Note that in theorem 4, all + signs except those involving exponents are in
agreement.

Theorem 4. Suppose w = —ht £ 1 for some integer h. Let z = tp(pb — qa) £+ a,

v/ =tq(pb—qa)£b. Let L =1 if z is odd and let L = 2 if z is even. N((%+ZZ:32)O

(h,0)+9) = N((53=02 + 5o (h,0) +2) = N(§) and N((£+ 5=02) 0 (h,0) + ) =
N((% + 1]—0) o (h,0)4+ L) = N(Z) as oriented 4-plats with the tangle orientations
given below if and only if the following hold:

i.) v'vE! 214 (b+ 1)z mod Lz if the (2, L) move is orientation preserving or
i.) v'vE! 2 1 mod z if the move is orientation ignoring.

The (%, %) move is orientation ignoring if and only if t{q + p(b + 1)] is odd.

The tangles have the following orientation:

a.) Orientation of ¥ in the equation N(U + 9) = N($): If h+q +p(b+1) is
even, the tangle % is similarly oriented. If h + q + p(b + 1) is odd, the tangle % 18
oppositely oriented.

b.) Orientation of U = (4 + ZZ:;Z) o (h,0) or U = (%—_;2 + L) o (h,0) in the
equation N (U + %) = N(%) when a is even: if p is odd, q is even or p is even, d is
chosen to be even, then 1]—0 is similarly oriented OR if pq is odd or if p is even and

d is chosen to be odd, then Z—; s oppositely oriented.

c.) Orientation of U = (% + %) o (h,0) or U = (H + £) o (h,0) in the
equation N (U + %) = N(Z) when z is even and the move is orientation ignoring:

the move involves only component and if v'v*" = 1+dz mod 2z, then % is similarly
oriented OR if v'v™! 21+ (d + 1)z mod 2z, then % is oppositely oriented.

Recall that theorem 3 and hence theorem 4 includes the U rational case when
w = +1 mod ¢t. Hence if |¢| > 1, then the above list of solutions to the system of
equations, N(U + ) = N(%) and N(U + 1) = N(Z), is complete [4, 6].
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Proof. Let Uy = L, Up = L=ib. N((Uz + U1) o (h,0) + 9) = N(Uz + U) =
N(Ui +Us) = N((Uy + Us) o (h,0) + 2) where the orientation of the U;’s and 2
are not affected. Note that similarly versus oppositely oriented is invariant under
a 180° rotation about the x-axis. Hence if h = ’wtil, N((Uz + Uy) o (h,0)+ L) =
NU;+ Ui £t) = N(Uy £t +Uy) = N(Uy + Uy £ t) = N((Uy 4+ Uz) o (h,0) + L)
where the orientation of the U;’s and % are not affected.

Ifp/q=1[di,...,dm—1] wheremisodd and p = E[ds, ..., di—1],q = E[da, ..., dm—1],
let j =[dy,...,dw],d = [da, ...,dy,] for any integer d,,,. Since d,, is arbitrary, any j
and d such that pd — ¢j =1 can be chosen. N(({ + %) o (h,0)+ %) = N(%) if
a is odd.

Suppose a is even. If N(§) is not strongly reversible, by lemma 9, N((% +

dailyo (h,0) +9) = N(L + dazily = N(JE40p00Th) — N(%) if and only if
U, is similarly oriented and p odd, ¢ even or p even, d even OR if U; is oppositely
oriented and pg odd or p even, d odd. If N(§) is strongly reversible then U; can be
given any orientation. However, we can assume the orientation in part b of theorem
4 as the other orientation is redundant (using different values for p and ¢). In

particular, if p, ¢ are solutions to the unoriented equation N(%) = N(%)

and if b> = 1+ ka where k is odd, then P = pb—qa, Q = pk —¢b is also a solution to

the unoriented equation N (2) = N(i’q’gg ZZ;EI) Let J = da— jb and D =db—jk.
1

Then PD —QJ =1ifand only if pd —qj = 1. £ = g,f_és and i; 32 = Since a

is even, f—; and H have the same parity. Thus U= J + ZZ gs = }Qb“ é’Z + P as
oriented tangles if f—; and % have the same orientations (1.e., both similarly or both
oppositely oriented). P is odd and @ is even if and only if pq is odd. P is even and
D is even if and only if p is even and d is odd. Hence if U = (B& Q]Z Z) o (h,0)
has the orientation given in part b of theorem 4, then U can also be written as
U= (1]—0 + ig:gs) where the U’s have the same orientation if % is oppositely oriented
if p odd, q even OR p even, d even or % is similarly oriented if pg odd or if p even,
d odd. Thus we can assume the orientation in part b of theorem 4 as the other
orientation is obtained using the orientation in 4b, but with different values for p

and q.

If p is even then U; has parity co and ¢ is odd. Thus the tangle % is oppositely
oriented if h is even and therefore h+ ¢+ p(b+ 1) is odd and similarly oriented if h
is odd and therefore h + ¢+ p(b+1) is even. If p is odd, j can be taken to be even.
If a is even, then b is odd and U; + U, has parity zero and is similarly oriented if
q even and oppositely oriented if ¢ odd. Thus the tangle % is oppositely oriented if
h + ¢ is odd and therefore h + ¢ + p(b + 1) is odd and similarly oriented if h + ¢ is
even and therefore h+ g+ p(b+1) is even. If p and a are odd, U; + U» has parity co
if b and ¢ are both even or both odd and parity one otherwise. Thus the tangle % is
oppositely oriented if h+¢q+p(b+1) is odd and similarly oriented if h+q+p(b+1)
is even.

By lemmas 2 and 4, the (%, %) move is orientation ignoring if and only if ¢ is
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odd and either w is even and the tangle % is similarly oriented or w is odd and
the tangle % is oppositely oriented. Since ht + w = %1, this is equivalent to ¢ odd
and if h is odd (i.e. w even), h + g+ p(b+ 1) is even or if h is even (i.e. w odd),
then h + ¢ + p(b + 1) is odd. Thus a move is orientation ignoring if and only if
t(g + p(b+ 1)) is odd.

N((%—l—M)O(h,O)%-%) = N(&) if z odd. Suppose z = tp(pb — ga) £ a is

pb—qa o
1 i da—jbx(pb—qa
even. N((£+ %=y o (h,0) + L) = N((£ + §=ib +1) = N(£ + fe-dilhaolt) —

j(pb—qa a—jbx(pb—qa z .
N(fi((zz_za))iz%ia_;Zigz_ga;g) = N(Z%) if U, is similarly oriented and p odd, ¢ even

or if p even and d even OR if U; is oppositely oriented and pg odd or if p even and
d odd. If t is even, then a is even and the move is orientation preserving. Thus, Uy
is similarly oriented if p odd, ¢ even or if p even and d even OR U; is oppositely
oriented if pg odd or if p even and d odd. Hence N((% + %) o (h,0)+ L) =
N(Z) = N(m) since a even implies b+ 1 is even. If ¢ and p are odd, then z
even implies pb — qa and a are odd. Since p, a, and pb — gqa are odd, b is odd if and
only if ¢ is even. Hence, g+ p(b+ 1) is even and the move is orientation preserving.
If h is even, the tangle ¢ in N((U; + Us) o (h,0) + 2) is similarly oriented. If h
is odd, the tangle & in N((U; + Us) o (h,0) + 2) is oppositely oriented. Since p is
odd, U; has parity one or zero. Thus, in both cases, U; is similarly oriented and
N((j+zg_£) (h,0)+1L) = N(757:) = N(z5771:)- It is odd and p s even, then
q is odd and the (2, L) move is orientation ignoring in which case, Uy can be given
either orientation. Also, since p is even, U; has parity co and the move involves only

one component. If U; is 51mllarly oriented, N ((4 + ZZ gs) (h,0)+ L) = N(ytz):
If Uy is oppositely oriented, N((J + Zg gZ) (h,O) L)y= N(m) 0.

Example: Use theorems 3 and 4 to solve N(U + ) = N(4), N({U + §) = N(%;)
where U is a generalized Montesinos tangle.

. . . )+ .
Solving the unoriented equation N(i) ( ﬁ ig);) results in (p,q) =
(2,—1). Thus z = tp(pb — qa) + a = 8 and h = 0— = 1. Takingd =0, j =1,

U= (3+3)o(1,0) is the solution to the unorlented system of equations. t[q +
p(b+1)] = 1[-1+2(=1+1)] is odd, so the move is orientation ignoring. Hence the
tangles can be oriented so that U is a solution to the oriented system of equations.

a) h+q+pb+1) =1+ —-14+2(-1+1)is even. Hence the tangle ¢ in
N(U + 2) = N(-%) is similarly oriented.

b.) Orientation of U = (4 + 1) o (1,0) in the equation N(U + ) = N (%) when
a is even: Since p and d are even, % is similarly oriented.

c.) Orientation of U = (3 + 3) o (1,0) in the equation N(U + ) = N(Z) when
z is even and the move is orientation ignoring: v' = ¢(—p—4¢) F1= -3 =v +0z.
Hence § can be similarly oriented. v'v = (=3)(=3) =9 =1+8 =1+ (0+1)8 mod
16. Hence % can also be oppositely oriented.
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Example: Use theorems 3 and 4 to solve N(U +2) = N(&), N(U + 2) = N(£).

By [4, 6] U is a generalized Montesinos tangle. Thus we can find all solutions
for U.
. . . 2p(—3p—8q)£8 .
Solving the unoriented equation N (53) = N(%) results in (p,q) =
(2,1),(14,-5). In both cases for this example, z = tp(pb — qa) — a = —64 (and

hence v = —25) and h = =L=1 = —1.

Case 1: (p,q) = (2,1). Takingd =1,j=1,U = (3 + H;)o(-1,0) and U =
(4 + %) o (=1,0) are both solutions to the unoriented system of equations. t[q +
p(b+ 1)] = 2[¢ + p(b + 1)] is even, so the move is orientation preserving. Hence,
we need v'vFt 2 1+ (b+ 1)z = 1 + (=3 + 1)(—64) = 1 mod 2(—64). This holds
since v = —25 and v’ = tq(pb—qa) —b = 2(1)[2(-3) — (1)8] — (—3) = —25. Thus U
can be given the orientation in theorem 4b so that it is a solution to the oriented
system of equations.

a) h+gq+pb+1) = -14+1+2(—3+1) is even. Hence the tangle ¢ in
N(U + 9) = N(=£) is similarly oriented.

b.) Orientation of U in the equation N(U+Y) = N(%) when a is even: Since p is

even and d is odd, 3 and 2L, are oppositely oriented. Hence U = (34 2L)o(—1,0)
and U = (2L + 1) o (—1,0) where 1 and L. are oppositely oriented are both
solutions to the oriented system of equations.
Case 2: (p,q) = (14,-5). Takingd =4, j = —11, U = (5% + 3) o (-1,0) and
U = (3 + 53) o (=1,0) are both solutions to the unoriented system of equations.
tlg+p(b+1)] = 2[g+p(b+1)] is even, so the move is orientation preserving. Hence,
we need v'vF! 2 14 (b+1)z = 14+ (—=3+1)(—64) = 1 mod 22. In this case, v = —25
and v’ = tq(pb — qa) £ b = 2(=5)[14(=3) — (—5)8] — (=3) = 23. Since v'v*!t 2 1
mod 2z, U with the orientation given in theorem 4b (where % and 71—114 are similarly
oriented) is NOT a solution to the oriented system of equations.

N (_13) is strongly reversible. Hence by the proof of theorem 4, we expected two

solutions for (p, q) would both result in the same U, but with different orientations.
Since N(£1) is not reversible and the move is orientation preserving, only one of
these solutions would satisfy the oriented system of equations.

In some cases, lemma 10 can be a quick method to use instead of the above

theorems to determine the parity of U. By lemma 3, it is then possible to determine
0

the orientation of the tangle 7. Note that the formulas given in Theorem 1 and

. . _ tp(pb—qa)+(w+ht)a tp(pb—qa)+(w+ht)a
3 can be combllned into N (%) = N<t5(§y—2x)+(w+ht)x) or N<t§(fob—3a)+(w+ht)b> and
U= (L+5=L) o (h0)or U= (8= +1)0(h,0) as follows: If w % £1 mod
_ _ s tp(pb—qa)+(w+ht)a\ _ Ar¢t(b—ak)+ _
t,then h =0, p =1, ¢ =k in N(QElutwrige) — y(f=thtus) 4nd j =0,
p==x,qg=yin N(i(’;gg:gg;i%izg‘;) = N(gj‘_‘u’jg) If w = £1 mod ¢, then (p,q) = 1
and N (fg gz:g;;i((’:;iﬁgi) =N (%) as unoriented 4-plats. Although

in practice it is generally easier to use the formulas given in the above theorems,

for conciseness, this more compact form will be used in lemma 10.
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Lemma 10. Suppose N (U + L) = N(2) where U = (Uy + Uz) o (h,0) or (U +
Up)o(h,0),U; = %, Uy = _pbbj_‘zzd,ﬂ:z = z' = tp(pb—qa) + (w+ ht)a, and if w = £1
mod t,(p,q) =1, h= %ﬂ or ifw % +1 modt, h=0. Then

i.) U has parity oo if M and h are even OR if M, h, a are odd.

ii.) U has parity one if M is even and h is odd OR if M and a

are odd and h is even.

iii.) U has parity zero if M

Proof. Note ZI_(Q”%M)‘I = p(pb—qa) and U = (U1+Us)o(h,0) or (Us+U;)o(h,0)
where Uy = % and Uy = ﬁ. Note that Us + U; has the same parity as Uy + Us.
If p(pb — qa) is even, then p is even or pb — qa is even, and thus U; + U, has parity
infinity. If h and p(pb — qa) are both even, then U has parity infinity. If A is odd
and p(pb — qa) is even, then U has parity one.

If p(pb — qa) is odd, then p is odd and pb — ga is odd, and thus U; + Us has
parity zero if a is even or parity one if a is odd. If h is even and p(pb — ga) is odd,
then U has parity zero if a is even or parity one if a is odd. If both h and p(pb — ga)
are odd, then U has parity zero if a is even and parity oo if a is odd O.

is odd and a is even.

Example: Suppose it is known that N(U + 2) = N(}) and N(U + 1) = N(3).

0 1
Since h = =2£l = Il — 0,1 and h is an integer, h = 0. 2 = +3, and
Z-(wthtle _ £3=1 = 1 (1 is not an integer). Therefore, U has parity one. Hence,
0

t
7 is similarly oriented. Thus by lemma 10 and [4, 6], it is not possible to convert

the unknot into the knot N (2) via a (2, ) move where 2 is oppositely oriented.
Lemma 10 can be a quick method to determine if certain oriented moves are

possible. However if w and w are both integers, one of which

is even and the other odd, then lemma 10 gives no information unless one knows

whether 2z = +2' or if z = —2'.

5. Solving N(U + L) = N(§), N(U + £) = N(2)

Theorem 5 in [5], relates (5—1, g—z) moves to (2, L) moves. Theorem 5 below
relates the orientation of (X, £2) moves to (2, 1) moves. Theorems 6 and 7 sum-
g1’ 92 17w

marize solving the system of oriented tangle equations N(U + 5—1) = N(%) and
L2y — N(z

N(U + 2) = N(3).

Theorem 5. Suppose fi/g1 = (c1,...,¢n), n odd, where fi = Eleci,...,cp] and

g1 = Elcr, ..., cn—1]. Let ey = Elca,...,cp], 01 = Elca, ..., cn—1], then

o+ L) =k, NU+2) =K,
g1 92
if and only if
! 0 ! t
N(U+I):K1 N(U+E):K2
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where if g—z = (ay,...,am), then % = % = (A1, ey Gy — Cpyy —Cp—1y ery —C1)
and U' =U o (cp, ..., C1).

Or equivalently, if i = (b1, ...,br), then g—z = % = (b1, .oy bi + €1y ey )
and U =U' o (—cy, ..., —¢p).

The tangles % and 5—1 are either both similarly oriented or both oppositely oriented
if e1 odd and i1 even or both ey and g1 are even. If e1iy odd or e; even, g1 odd,
then one of the tangles % and 5—1 is similarly oriented if and only if the other is
oppositely oriented.

The (5—1, 5—2) move is orientation ignoring if and only if the (2, L) move is ori-
entation ignoring.

Proof. The orientation of g—i versus 9 follows from lemma 8 (see also Figs. 15

and 16). Since the (gﬁ, g&) move is equlvalent to the (1, L) move, the (L, g%) move

will be orientation ignoring if and only if the ( ) move is orientation ignoring (1.

&)1

Fig. 15. N(U + L) » N(U + L2).

-

Fig. 16. ) > NU' +

To solve a system of equations involving (f - 52) moves, one can first solve
N(U+ %) =N(%) and N(U + L) = N(2) using theorems 1 and 2 (when w % +1
mod t) or theorems 3 and 4 (when w = +1 mod t) and then use theorem 5 to solve
NU + g—i) = N(%) and N(U + 5—2) = N(%). However, these results are summarized
in theorems 6 and 7 and hence these next two theorems can be used to directly
solve the oriented system of equations, N(U + 5—1) = N(}) and N(U + !J;—g) =N(%)
or to double check calculations if theorems 1 - 5 are used instead.
Theorems 6 and 7 follow directly from theorems 1 - 5. Also note that in these

theorems, all + signs except those involving exponents are in agreement.
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Theorem 6. Let g—i = (c1,..,¢n),n odd, fi = Elc1,...,¢en],q1 = Eler,y .y ni],
e = E[Cz, ...,Cn],il = E[C2, ...,Cnfl], t= glfg — g2f1.

Suppose w = e1gs — i1 f2 # £1 mod t or U is rational. Then N(U + g—i) = N(%)
and N(U + 5—2) = N(2) as oriented J-plats if and only if there exists an integer b’

v
such that |z| = |2'| where z' = tb' + wa, o = 27’, and if v' = o(ty + wx) for any
choice of x, y such that b'x — ay = 1, then one of the following holds:
(i) If a is even and b'b*" = 1 mod 2a or if a and b’ are odd and b'b*' = 1 mod
a, then v'v*' =214+ yz mod Lz, L =1 if z odd, L =2 if z even.
In this case, the tangle 5—1 in the equation N(U+§—1) = N(%) is similarly oriented
if ey odd and i, even or both e; and g, are even and is oppositely oriented if e1iy

odd or e; even g, odd. The (f;—i, 5—2) move is orientation ignoring if and only if w

'

is even.

(ii) If a is even and b'b*' = 1+a mod 2a or if a is odd, V' is even, and b'b*' = 1
mod a, then v'vt' =2 14 (x +y)z mod Lz, L =1 if z odd, L = 2 if z even.

In this case, the tangle 5—1 in the equation N(U + 5—1) = N(3) is oppositely
oriented if e; odd and i, even or both ey and g, are even and is similarly oriented

if e1iy odd or ey even g1 odd. The (!J;—i, !J;—g) move is orientation ignoring if and only
if tw is odd.
In either case, U = § o (—c1, ..., —¢p) = %.

Recall that we know U is rational when w = e;gs — i1 fo 2 +1 mod ¢ and thus
the above theorem determines all solutions in this case. Other cases in which U
must be rational are given in [9, 10].

Theorem 7. Let g—i = (c1, .y Cn),n odd, fi = Elci,...,cn),g1 = Ele1,...yen-1],
€1 = E[CQ, ...,Cn],’il = E[CQ, ---7cn—1]7 t= glf2 — ggfl.

Suppose w = ey gs —i1fo = +1 mod t, L = 1 if z is odd and L = 2 if z is
even. N(U + 5—1) = N(§) and N(U + g—z) = N(Z) as oriented {-plats where U is
a generalized M-tangle with the tangle orientations given below if and only if there
exists relatively prime integers, p and q, where p may be chosen to be positive, such
that |z| = |2'| where z' = tp(pb — qa) £ a and if 0 = z/2', v' = o(tq(pb — qa) £ b)
and

i.) v'vFt 2 14 (b+ 1)z mod Lz if the (5—1, 5—2) move is orientation preserving or

i.) v'vE! 2 1 mod z if the move is orientation ignoring.

The (g—i, g—z) move is orientation ignoring if and only if t{q + p(b+ 1)] is odd.

In this case, U = (Uy+Us)o(h, —c1,...,—¢p)) and U = (Us+U;)o(h, —cy, ..., —Cy)
where Uy = %, U, = % are both solutions for U, for all p,q satisfying the above,
and d and j are any integers such that pd—qj =1, and h = %ﬂ (note, the choice
of d and j such that pd — qj =1 has no effect on U ).

The tangles have the following orientation:

a.) Orientation of 5—1 in the equation N (U + 5—1) = N(%):

The tangle 5—1 is similarly oriented if h+ q+ p(b+ 1) is even and e; odd and iy
even or both er and g1 are even OR h+ q+p(b+ 1) is odd and e1i1 odd or e; even
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g1 odd.

The tangle 5—1 is oppositely oriented if h+ q + p(b + 1) is even and eyiy odd or
er even and g1 odd OR h+ q+ p(b+ 1) is odd and ey odd and iy even or both e;
and g, are even.

b.) Orientation of U in the equation N (U + g—i) = N(%) when a is even: if p is

odd, q even or p is even, d is chosen to be even, then Uy = 1]—0 1s similarly oriented

OR if pq odd or if p is even and d is chosen to be odd, then U; = 1% oppositely
oriented.

c.) Orientation of U in the equation N(U + 5—2) = N(%) when z is even and
the move is orientation ignoring: the move involves only one component, and if
v'ot! 21 4+ dz mod 2z, then U; = % similarly oriented OR if v'vF! = 1+ (d+ 1)z
mod 2z, then U; = Il; oppositely oriented.

Recall that if | f1 g2 — f2g1] > 1, then the above list of solutions to the system of
equations, N (U + !J;—i) = N(3) and N(U + !J;—g) = N(%), is complete.

6. Signed Crossing Changes

The signed crossing change distance between two knots/links, d_1 (K, K3), is
the minimum number of negative crossings that need to be changed to a positive
crossing to change K; into K, without changing any positive crossing to a negative
crossing. If K> cannot be obtained from K; by only changing negative crossings,
then the distance between these two knots is said to be co. Changing a negative
crossing to a positive crossing is equivalent to an (5—1, 5—2) = (—1,+1) move where
both tangles are similarly oriented. Corollary 1 classifies when it is possible to
convert one 4-plat into another 4-plat by changing exactly one negative crossing
into a positive crossing. Again note that in the following corollary, all + signs are
in agreement.

Corollary 1. N(U+—1) = N(%) and N(U +1) = N(Z) as oriented 4-plats where

the tangle -1 is similarly oriented if and only if there exists relatively prime integers,
p and q, where p may be chosen to be positive, such that N (%) = N(%)
and h+ q+ p(b+ 1) is even where h = %ﬂ

In this case, U = (Uy + Us) o (h,1) and U = (Us + Uy) o (h,1) where Uy = Il;,
Us = ig:gs, are both solutions for U, for all p, q satisfying the above, and d and j are
any integers such that pd —qj = 1, (note, the choice of j and d such that pd—qj = 1
has no effect on U). If a is even, Uy = % in the equation N (U + 5—1) = N(%) is
similarly oriented if p is odd, q even or p is even, d is chosen to be even OR U;
oppositely oriented if pq odd or if p is even and d is chosen to be odd.

Proof. Apply theorem 7: Since g—i =(-1), i = E[-1] = -1, ¢1 = E[] =
1, ey = E[] = 1, i3 = 0. Thus this move is equivalent to a (%, % move where % =
% = +2 and the tangle ? is similarly oriented since g—i = (—1) is similarly
oriented, e; is odd, and i; is even. The move is orientation preserving since ¢ is

even.
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Since [t| > 1, U is a generalized M-tangle. Thus, N(U + —1) = N(%) and
N(U + 1) = N(Z) as oriented 4-plats if and only if there exists relatively prime
integers, p and ¢ where p may be chosen to be positive, such that |z| = |2’| where
2/ = 2p(pb—qa)+aandif o = z/2', v' = 0(2q(pb—qa) £ b) and v'v*F' = 1+ (b+1)z
mod Lz, L = 1if z odd, L = 2 if z even, since the (5—1, 5—2) move is orientation
preserving. If z is even, then a is even and hence b + 1 is even. Thus, N(Z) =
N (%). The form of U where h = =2l follows from theorem 7. Since

tangle !J;—i is similarly oriented, e; odd, and i; even, h+ g+ p(b+ 1) must be even [O.
Example 1: d;_(N(3§),N(2)) = 1 if and only if N(2) = N (224FL) where p and ¢

v 2q2
are relatively prime integers, p > 0, and h + ¢ + p is even where h = %ﬂ

Example 2: d;_(N(2),N(2)) = 1if and only if N(2) = N(%) where p and ¢

are relatively prime integers, p > 0, and h + ¢ is even where h = _1;1.

Example 3: Solving N(U + -1) = N(5/-1), N(U + 1) = N(7/-3) where the tangle
-1 is similarly oriented results in exactly two solutions for U: U = (3 4+ £) o (=1,1)
and U = (5 + 3) o (—1,1).

SOH -5
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