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ABSTRACT
The system of unoriented tangle equations N (U + 5—1) = K and N(U + 5—2) =Ky

is completely solved for the tangles U and 5—2 as a function of 5—1 where K1 and K> are

4-plats, and ;% and % rational tangles such that |fi1g2 — g1 f2| > 1.

1. Introduction

Given two knots/links, K, K, it is of much biological interest to solve tangle
equations of the form N(U + P) = Ky and N(U + R) = K, [8, 17,9, 2, 4]. In
many biological applications the knots/links involved are 4-plats, and in many of
these cases, it is possible to prove that U is ambient isotopic to a sum of rational
tangles and P and R are rational tangles [11, 8, 7, 9, 4, 12, 15]. In this situation it
is possible to list all solutions for U and R as a function of P.

In section 2 a brief introduction to tangles is given. The system of unoriented
tangle equations N (U + P) = K; and N(U + R) = K> is solved in section 3 where P
is the zero tangle, R is rational, U is a generalized Montesinos tangle, and K; and
K, are 4-plats. Equivalent moves are discussed in sections 4 and 5. The results of
section 3 are extended in section 5 to solve the system of equations, N(U + P) = K;
and N(U + R) = K>, where P and R are arbitrary rational tangles. These results
are summarized in theorem 6.

These theorems are a consequence of the cyclic surgery theorem [3], a theorem of
Ernst’s [8], and much tangle manipulation. Since it is necessary to implement these
theorems for biological applications, a program which performs these calculations
is available at the following URL:

http://www.math.uiowa.edu/~idarcy /PROG/comput.html

This subroutine will also be included in Rob Scharein’s KnotPlot which is avail-
able at www.KnotPlot.com.
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2. Tangle Notation

A 2-string tangle is a pair (B®,t) where B? is a 3-dimensional ball, {z € R3 :
|z] < 1}, and ¢ is a pair of arcs and a finite number of circles properly embedded
in B2. Some examples of tangles are shown in Fig. 1. The four endpoints of
the arcs will be fixed at NW = (e57/%,0), NE = (e!™/*,0), SW = (e~%"/* 0),
SE = (e~"/* 0). Two tangles are equivalent if they are ambient isotopic keeping
the boundary of B? fixed. A tangle is rational if it is ambient isotopic to the zero
tangle where the boundary of B> need not be fixed.

LSO I ROSO =)

0,0) 1) 2,3,9 a non-rational
0- tangle infinity tangle +1 tangle 30/7-tangle tangle

Fig. 1. Tangle examples

A rational tangle can be constructed from the zero tangle by alternating between
rotating the NE and SE endpoints and the SW and SE endpoints as shown in Fig.
2. The tangle obtained can be represented by the sequence of numbers denoting
the number of half twists where the numbers alternate between representing vertical
twists versus horizontal twists with the last number always representing horizon-
tal twists. A tangle (z1,...,2,) is uniquely identified by its continued fraction,

Tp + Ilﬁ Thus, two tangles are equivalent if and only if their continued
o1t
fractions are the same. For example the tangles (2, 3 4) and (-2, -4, 1, 3) shown in
Fig. 3 are equivalent =3+
T =
W, NE NE NE
— — —
SW SE SE SW SE SE
) @) (2,3,0) (2,3,4)
O-tangle 2-tangle 2/7-tangle 30/7-tangle

Fig. 2. Drawing the (2,3,4) tangle

Tangles can be added (Fig. 4). The circle product of A and C = (¢q,...,¢p),
is shown in Fig. 5 when n is even and in Fig. 6 when n is odd. A generalized
Montesinos tangle or generalized M-tangle is a tangle of the form (4; +...+ A4,)oC
where A;,1 < i < n, and C are rational tangles. Note that a generalized M-
tangle is a rational tangle if all but at most one of the A;’ s are integral. In
particular, the sum of two rational tangles is a rational tangle if and only if one of
the tangles is integral. In this case the tangle 7 + i equals the tangle %’” Also
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-1,-4,1,3) (2,3, 4) A+C
Fig. 3. The ——tangle Fig. 4. Adding tangles

Fig. 5. Ao (c1,...,cn), m even Fig. 6. Ao (c1,...,cn), n odd

sincg 7t g': e “;bi + %di, the tangle § 4 7 is the same as the tangle

a—bi + c+di
b d

A knot or link is formed by taking the numerator closure of a tangle as shown

in Fig. 7. A 4-plat (or 2-bridge or rational knot/link) is a knot or link which can

be written as the numerator closure of a rational tangle. Two unoriented 4-plats

N(ay/b1) and N(az/b2), a; > 0, are the same if and only if a; = ay and b1b2jEl ~1

(mod ay) [1].
o

N(A) N(A+C)

Fig. 7. Numerator closure

If N(U + P) = K; and N(U 4+ R) = K>, then K> is said to have been obtained
from K; by a (P, R) move. In section 5 it will be shown that N(U + gLi) =K
and N(U + 5—2) = K, for some tangle U if and only if N(U' + ¢) = K; and
NU'" + 5) = K, for some tangle U’ where t = %, e1, i1 are integers such
that g1e1 — f1i1 = 1 (theorem 5). Thus an (f1 fz) move will be said to be equivalent
to a (2, f2—9201) move.

17 e1g2—i1f2

3. Solving the Unoriented Equations N(U + ) = N(4), N(U + L) = N(2)

In theorem 3 the unoriented system of equations N(U+2) = N(%), N(U+1) =
N (%) will be solved assuming that U is a generalized M-tangle. Fortunately, the
following two theorems show that in most cases U must be a generalized M-tangle.

Theorem 1. (Ernst, [7]) If N(U+2) = N(%) and N(U+L) = N(2) and if |t| > 1,

v

then U is a generalized M-tangle or equivalently, U = Ao C where A is a finite sum
of rational tangles and C' is a rational tangle.
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Proof. By the cyclic surgery theorem [3], the double branch cover of U is Seifert
fibered. Since this fibration can be extended to a generalized Seifert fibration of
L(a,b), the orbit surface of a Seifert fibration of U can be taken to be a disc. By
Ernst [7] (see also [4]), U is a generalized M-tangle 0.

Theorem 2. (Hirasawa and Shimokawa, [12]) If N(U+9$) = N(}) and N(U++) =
N(2k), then U is rational.

The following lemmas are useful in calculations.
Lemma 1. N(A + C) = N(C + A) where A and C are arbitrary tangles.
Lemma 2. N(Ao(cy,...,cn) + B) = N(A+ Bo (cp,...,c1)) if A or B is rational,
n odd.
Lemma 3. [§] N(% +1)= N(%) where d and q are any integers such that
pd - qj = 1.
Lemma 4. If N(Il; + g) = N(%), then 5 = f)g,:{]b; for some integers d, q, and b’
such that pd — ¢j = 1, b'b*' =1 mod a.

Proof. N(Il; + 1)y = N(detely = N (%) where d and g are any integers such that

g dg+qf
pd —qj = 1. Since £ = =L and N(£ + =L) = N(ZHLh) = N4, jg + pf
will be taken to have the same sign as a. Thus jg+ pf = a and dg + qf = b’ where
b'b*! = 1 mod a. Multiplying the first equation by d, the second equation by j, and
solving for f results in f = (pd — ¢qj)f = da — jb'. Multiplying the first equation by
g, the second equation by p, and solving for g results in g = (pd — qj)g = pb' — qa
0.

Theorem 3. N(U+2) = N(%) and N(U+ L) = N(2) where N(%) and N(Z) are
unoriented 4-plats and U is a generalized M-tangle if and only if the following hold:

(a) If w2 £1 mod t, then there exists an integer, b’ such that b'b*" = 1 mod a,
and for any integers v and y such that b'z —ay =1,

z th' + wa
N(E) = n( e 6.
v ty + wx
In this case, U = {; for all b" satisfying the above.
(b) If w = £1 mod t, then there exists relatively prime integers, p and q, where

p may be chosen to be positive, such that

z tp(pb — qa) £ a
N(-)=N(———-"—"— 2
(v) (tq(pb—qa)ib) (3-2)
In this case, the solutions for U are (Zs:gs + 1]—0) o(h,0) and (1]—0 + %) o (h,0),

for all p, q satisfying the above, d and j are any integers such that pd—qj =1, and
h = %ﬂ where the £ sign agrees with that in (3.2) (note, the choice of j and d
such that pd — qj = 1 has no effect on U ).

Proof. Suppose U is rational. Solving N(U + ) = N (%) gives U = f+, where

b0+ =1 mod a and N( + &) = N(12£22) by lemma 3.
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Suppose U is not rational. Since U is a generalized M-tangle which is not rational
and N(a/b) is a 4-plat and not a Montesinos knot or link, U = (Uy + Us) o (h,0)
where U; are rational but non-integral. If U; = % where p can be chosen to be
positive and d and ¢ are any pair of integers such that pd — qj = 1, then solving

((1+U2) o(h,0)+%) = (1+U2) = N(%) gives Uy = d“ 7; where b’bil =1 mod

a by lemma 4. Note £ I+ dajb — Itpi w J+m 4 [d+ada=(+pi)b .\ g
pb—qa p pb—qa pb—ga
p(d+ qi) —q(j +pz) = 1if and only if pd — qj = 1. Hence 1fp and ¢ are specified,
then the choice of j and d such that pd — ¢j = 1 has no effect on U.
If ¥b=' = 1 mod a, then o' = b + ak for some integer k. The tangle U

= (} + Jihaan) © (m0) = ( + =gl o (0,0) = ( + 30 o (h,0)

where Q = ¢ — pk, D :d—jk andpD Qj = p(d— jk) — (¢ — pk)j =
1. Thus, the case b¥'b=' = 1 mod a is redundant. Suppose b'db = 1 mod a.
Then there exists y such that b'b — ay = 1. Let P = pb' — qa,J = da — jb',
Q = py — qb, D—db—]y. ThenPD—QJ—l Da — Jb=j,and Pb—Qa =p

Hence U = (£ + ;lg, iy ~) o (h,0) = (B Q]Z LYo (h, 0) Therefore, we need only

consider U = (p + do b +) o (h,0) and U = (da iy ) (h,0).

pb—qa pb—gqa
N((Ur +U2)o (h,0)+ 1) = N((Ur +U2) + () (h,O)) = N((U1+U2) + 57)-
Since U; are non-integral must be integral since N(Z) is a 4-plat. Hence,

) W
ht + w = £1 and N(U1+U2+ ht+w) = N(U1+U2it) (UQit+U1) =
N(Uz + Uy + +t). Thus N((£ + B=2) o (h,0)+ L) = N(4=2 + 2) o (h,0) + £).
N(( +5=2) o (h,0) + L) = N(L + B=L2 + ) = N(L + =)t Jpbmgalt) —

N(J’(pb—qa)+p[da—jbi(pb—qa)t]) — N(tp(pb—qa)ia)
d(pb—qa)+g[da—jbL(pb—qa)i] tq(pb—qa)£b /-

Note that if w 2 £1 mod ¢, then U must be rational since N(§) and N(%) are
4-plats. Thus (a) holds. For w = +1 mod ¢, suppose p = 1,q = k,j = 0,d = 1.
Then U = (L + B=84) 0 (h,0) = (§ + 5257) o (h,0) = sroGimy- Hp =V,
j=a,q=1y,d=>bwhere b'b —ay = 1, then U = (l-{—zgqus) (0,h,0) = (4 +
bb,‘;:‘;l;) o (h,0) = (& + %) o (h,0) = Thus, the formulas given in (b) include

the U rational case .

b’+ah

Corollary 1. If [t| > 1 or if N(£) = N(}), N(2) = N(2), then theorem 3 gives
all solutions to the system of tangle equations: N(U +2) = N(%) and N(U+ L) =

N(2) where N(§) and N(2) are unoriented 4-plats.

Proof. Theorem 3 gives all solutions to these equations when U is a generalized
M-tangle. By theorems 1, 2, U is a generalized M-tangle when [t| > 1 or N(§) =
N(5), N(3) = N(¥)

0 v 1

Example 1: Theorem 3 tells us that if N(Z) can be obtained from N(3), the
unknot, via a (0,4-2) move, then N(£) = N(z’;‘fl) where (p, ¢) = 1. Since +2 moves
are equivalent to crossing changes (see sections 5, 6), theorem 3 is a generalization
of [13, 14, 5, 18], and a similar unpublished theorem of J. Berge. Theorem 3 is also
an extension of [6].
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Corollary 2. Suppose bx —ay =1, N(U + $) = N(%) and N{U + £) = N(2)
where N (%) and N(Z) are unoriented 4-plats. If w 2 £1 or if U is rational, then
% = % and U = b+ka OR Lt = % and U = xfka where v' is any
integer such that v'vE! =1 mod z. Ifw = +1 mod t, then t divides z F a.

Example 2: A program to solve the system of equations in theorem 3 is avail-
able at http://www.math.uiowa.edu/~idarcy/PROG/comput.html. To illustrate
the computations needed, the following system of equations will be solved:

0 2

N(U+ I) = N(I), N(U+

t

E)ZN(—

In this case, a = 2,b =1,z = 11, and v = 7. Any z and y can be chosen such

that bx —ay = 1. Let z = 1 and y = 0. If U is rational, then % = #ﬁfu or

where v’ is any integer such that v'v*' = 1 mod z. Hence, v' = 7 + 11i

(3.3)

bz—av’
v —yz—kt

or 8 + 11 for some integer i. Therefore, if w # £1 mod ¢, £ = % or
% and U = 1+2k for some integers ¢ and k.

For w = #+1 mod ¢, first solve the equation, |tp(pb — qa) + a| = |z|, i.e.,
tp(p — 2q) £ 2 = 2" where 2/ = 11 or —11. Note that both ¢ and p must divide
z Fa = 11 F 2, and p can be chosen to be positive. Since i = __—fu, t can also be
chosen to be positive. Therefore we only need to check t =1, 3, 9, 13. For t =1,
(p,q) = (1,-4),(1,-6),(1,5),(1,7),(3,0),(3,3),(9,4), (9,5), (13,6), or (13,7). For
t=3,(p,q) = (1,-1),(1,2),(3,1), or (3,2). For t =9, (p,q) = (1,0) or (1,1). For
t=13,(p,q) = (1,0) or (1,1).

For t = 1,(p,q) = (3,0),(3,3) are not possible solutions since p and ¢ must be
relatively prime. Let v’ = (2'/2z)[tq(pb — qa) £b] = (2'/2)[tq(p — 2q) £ 1] (note: the
+ signs must agree for 2z’ and v'). Checking the other solutions into the equation
v'vF! = 1 mod z, leaves t = 3, (p, q) = (1, 2) or (3, 2) as possible solutions to the
equation N(%) = N(%). The tangle £ = —2— and U, = LU= d;ji]Z
where we can choose any j and d such that pd—qj = 1. For (p, q) =(1,2),let j =0,
andd = 1. Thus, U = (3+2)o(h,0) = (Z+2)o(h,0) = 2h - For (p, ) (3,2),
let j =1, and d=1. Thus, U = (3 + %) o (h,0) = (£ + £) 0 (h,0) = 72

Therefore, if R = L, and [¢t| > 1, then by theorems 1 and 3, the following are
all solutions for U and R to the system of equations in (3.3):

—2(7 i

N(iZ +2) = N(3), N(55 + “7+21(%f_1klt ))) =N(4), i,keZ
11—2(8+111%

N(HL%"F%):N(%)’ N(1+22k + 8+11i—kt ):N(7)7 kel

where i = 0,k = h — 2 in the first equation corresponds to the case when w = £1
mod %.

Although = —. is not a possible solution to the system of equations in (3.3) if
Uisa generahzed M tangle, there is no theorem that restricts U to be a generalized
M-tangle when [¢| < 1. Consequently, theorem 3 gives no information as to whether
or not it is possible to change N(2/1) into N (11/7) via a (2, l.) move. In fact such
a conversion is possible [4].
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Example 3: Techniques similar to those used in example 2 can also be used to
solve for U when % is known. For example, solving for the tangle U in the system of
equations, N(U +2) = N(2;), N(U+ 2) = N(=%) results in exactly two solutions
for U: U= (3 +3)o(—1,0) and U = (3 + 3) o (—1,0).

4. Some equivalent (0, 1) moves

Note that if there is a solution for the unknowns U and R given the system of
equations N(U + 2) = Ky and N(U + R) = K>, that solution will not be unique.
For example as shown in Fig. 8, if N(U + 2) = K; and N(U + 1) = K>, then

N([U o (h,0)] + %) = Ky and N([U o (h,0)] + —1-) = K.

Recall that if there exists a solution for U such that N(U + P) = K; and
N(U + R) = K>, then K> is said to have been obtained from K; by a (P, R) move.
Also, a (P, R) move is said to be equivalent to a (P, R') move if there exists a
solution for U such the N(U + P) = K; and N(U + R) = K> if and only if there
exists a solution for U’ such the N(U' + P') = K; and N(U' + R') = K, for all
knots/links K7y, K.

Since K> can be obtained from K; via a (0, %) move if and only if K> can be
obtained from K via a (0, L) move, a (0, £) move is equivalent to a (0, —4-)
move. Moreover, these are the only moves that are equivalent when P = 0.

Theorem 4. A (0, 1) move is equivalent to a (0,5) move if and only if 5 = —*

P
for some h.

Proof. By Fig. 8, A (0, 5) move is equivalent to a (0, §) move if § = ﬁ for
some h. Theorem 4 clearly holds if ¢ or ¢ are equal to zero. Since § = =5, ¢ and

similarly ¢ will be taken to be positive. N(2 +2) = N(¥) and N(2 + L) = N(L).

Suppose there exists a U such that N(U + 2) = N(2) and N(U + &) = N(L1). If
d=+lmodcandc# 1, N(L) = N(cch?il ). Thus ¢ divides ¢. Similarly ¢ divides c.

Hence c = t. If ¢ =t = 1, there exists an h such that d = w — ht. Else, w’ =2 cgp+1
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mod t where w'w*! =1 mod t. Therefore, w = +1 = d mod t. Thus, there exists
an h such that d = w — ht.
If d 2 +£1 mod ¢, then § = ﬁ where w'w*! = 1 mod t by corollary 2.

—k
Hence ¢ = t. Choose n > 1 such that (n,2t) = 1. N(2 + 2) = N(%) and
N(% + L) = N(22tl) Suppose there exists a U’ such that N(U' + ) = N(%)
and N(U’ €) = N(22tt), Hence £ = £ = % where w;w*!' = 1 mod

(nw + t) by corollary 2. Suppose nw +t —nw; = —t. Then n(w —w;) = —2¢. But
this contradicts n > 1, (n,2t) = 1. Thus, nw + ¢t — nw; =t and w = w;. Hence
d=w; — ht=w — ht 0.

In the next section which (P, R) moves are equivalent to (0, L) moves will be

discussed, where P and R are rational tangles.

5. Solving N(U + L) = N(§), N(U + £) = N(2)

Theorem 5 relates (5 L 5 2) moves to (¥, £) moves. Theorem 6 summarizes solv-
ing the system of unoriented tangle equations N (U + !J;—i) = N(%) and N(U + 5—2) =
N(%). The following three lemmas will be useful for these calculations.

Lemma 5. N(A+ (¢1,...,¢n)) = N(A o (¢cp,...,c1)), for n odd.

Proof. Induction on n noting that a rational tangle is invariant under a rotation

of 180° about the z and y-axes [10] O

Lemma 6. (dy,...,dp) o (c1,....¢n) = (d1, ey dm + €1, ...y Cr), when n is odd.

Note that even if (c1,...,¢,) = (€1, ..., ex), it is possible that £ o (c1,...,¢,) # § 0
(e1,...,ex). For example, (1) = (0,1,1), but (3) = (2)o(1) # (2)0(0,1,1) = (2,1,1).

The Euler bracket function is needed for the next lemma. Let E[zy,...,z,] be
the Euler bracket function which equals the sum of products of the z;’s where
zero or more disjoint pairs of consecutive z;’s are omitted [16]. If n = 0 then
Elzy,...,z,] = E[] = 1. If n < 0 define E[zy,...,z,] = 0. Let [z,,...,21] denote
the continued fraction z,, + L the fraction corresponding to the tangle

1
Tnt L
STy

(z1,...,25). The following useful facts for n > 1 can be found in [16]:
1.) E[z1,....,x,) = 21 E[zo, ..., z,] + Elzs, ..., 2,].
2) [@n,y...,x1] = Elz1, ooy 0]/ E[T1, ooy Tn—1].

3.) Let a = E[z1,...,x,),0 = E[x1, ..., wpn_1]. fy = (=1)""E[z2, ..., 2y_1]
and x = (=1)"T1E[x3, ..., x,], then bx —ay = 1.

_ E[Cl,...,cn]E[dl,...dm71]+E[Cl,...,Cnfl]E[dl,...dm]
Lemma 7. [c1,...,cp + dp,...,d1] = Bl el Bld T Fles e Bld - d] -

Proof. Induction on m. See Roberts [16] O.

Theorem 5. Suppose fi/g1 = (c1,...,¢n), n odd, where fi = Elei,...,c,] and
g1 = E[Cl,...,Cnfl]. Let e = E[CQ,...,Cn],il = E[C2,...,Cn,1]. If g—z = (dl,...,dm),

let % = % = (di,...,dm — Cny—Cp—1,-..,—C1) and U" = U o (cp,...,c1) (or
equivalently, if % = (b1, ...,br), let 5—2 = % = (b1, ...,bg + c1,...,¢n), and

U=U'o(—ci,...,—cy)), then for any pair of knots K, K>,
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Nu+L) =K, NU+2) =K,
g1 g2
if and only if
! 0 ! t
N(U+I):K1 N(U+E):K2

Hence an (L) 12) move is equivalent to a (0, 2-L229201) ymope, and similarly, a

917 92 ? e1g92—i1f2
(0, L) move is equivalent to an (L, teitwiy,
> w

g1 tirtwgr
Moreover if (g—i, g—z) is equivalent to (0, L) then there exists e1 and iy such that
gier — fiii =1 and L = 75;11’;:3122 (or equivalently, g—z = i‘::j_:ﬁﬁ)

Proof. N(U+L) = N(U+(c1, .., cn)) = N(Uo(cp, ye1) +1) = N(U'+9) by
lemma 5. N(U + £2) = N(U + (di, .., dm)) = N(U + (di, ..., dn) © (=, .o, —C1) ©
(c1y.-5¢n)) = N(U o (¢, -ryc1) + (diy ey dm — Cny —Cp—t, -, —c1) = NU' + %)
by lemmas 6, 2, and 7. U' = U o (¢y,...,c1) if and only if U = U o (¢y,...,c1) ©
(=c1yey—Cp) = U o (—c1yy—cp). I 5 = (di,...,dm — Cny, —Cp—t, .o, —C1) =
(bla'“abk)7 then g_z = (dla'“adm) = (dla'--ad’m — Cn, —Cn—1,---,—C1 + Cl,...,Cn) =
(b1, .-sb + €1y eeycn) = % by lemma 7.

f1i fay ; : t f1 fay ; :

Suppose (g, 22) is equivalent to (0, ). (-, £%) is equivalent to (
for any e; and i; such that g1e; — f133 = 1. Hence (0, %
(0,L). Thus t = g1 f> — g=f1 and there exists an h such that eyg> — i1 f> = w — ht.
Thus w = e1g2—i1 fa+ht = e1ga —i1 fa+h(g1f2—g2f1) = (e1 —hf1)g2 — (i1 —hg1) f2
where g1 (61 — hfl) — (Zl — hgl)fl =1 .

0 91f2—g2f1)

> e1g2—i1fo
) is equivalent to

Fig. 9. N(U + {1) = K1, N(U + &) = K>.

Fig. 10. N(U' + 2) = K1, N(U' + L) = K.
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Example: In order to solve the system of tangle equations: N(U+—1) = N(¢) and

N(U + —3%) = N(2), note that —+ = (=1,-2,0). Thus, fi = E[-1,-2,0] = —1,

g1 = E[-1,-2]=3,e1 = B[-2,0]=1,i; = E[-2] = =2 and £ = —20(0,2,1) =
09

% = %. Thus, the (—%, —%) move is equivalent to a (7, ) move by theorem

5. Using theorem 3 to solve N(U' + %) = N(%) and N(U' + £) = N(2), we get

N(%) = N(%’;igg) where v'b*! = 1 mod a and = and y are integers such that
br—ay=1land U' = .
Thus, by Theorem 5 if N(U + —%) = N(%) and N(U + —3) = N(%), then

N(%) = N(2459) where b = 1 mod a and z and y are integers such that

v 9y+5z
a E[0,2,1]b'+E[0,2]a 'ta .
b'x —ay =1land U = §; 0(1,2,0) = %[271%1),1}3{2]&] = 3’;,12(1 (see also Figs. 11 -
13).
Any continued fraction expansion of —% can be used to find a (0, %) move
equivalent to a (—%, —%) move. For example, —% = (—-1,1,k,—3,0). In this case

fl = E[_]-:]-)k: _370] =-1L, ¢ = E[_lylak)_?’] =3, e = E[lyka _370] =k+ 1,
9

it = B[Lk,=3] = =3k — 2 and { = —30(-1,1,k—3,0) = Zi’;ﬁi‘i’fﬁ = 9kt5°

Thus, the (—%, —2) move is also equivalent to a (2, ﬁ) move by theorem 5 (or
by noting a ($,2) move is equivalent to a (2, ﬁ) move)

.
= N(a/b), i =N(z/v)
&“& O

Fig. 11. N(U' + ) = N(%), N(U' + £) = N(2).
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Alternatively, we can use theorem 6 which follows directly from and summarizes
theorems 3, 5, 1, and 2. Also note that in theorem 6, all + signs except those
involving exponents are in agreement.

5—1 =(c1,...,cn),n odd, fi = Elc1,...,cn],91 = Elc1, ..., Cn-1],

e = E[CQ, ---;cn]yil = E[C2, ---,Cnfl]y t = glf2_92fl; w = 6192_i1f2- N(U‘f‘g—i) =
N(%) and N(U + 5—2) = N(Z) where N(%) and N(%) are unoriented 4-plats and U

Theorem 6. Suppose

b b
is a generalized M-tangle if and only if the following hold:

(a) If w % £1 mod t, then there exists an integer, b’ such that b'b*' =1 mod a,
and for any integers x and y such that b’z —ay =1,

z th' + wa
N(-)=N(———— 5.4
(v) (ty + wz ) (54)
In this case, U = 7 o (=c1,..., —¢p) = % for all b’ satisfying the above.

(b) If w = £1 mod t, then there exists relatively prime integers, p and q, where
p may be chosen to be positive, such that
N(%) _ N(ip(pb:qa) ia)
q(pb—qa) £b
In this case, U = (U1 +Us)o(h, —c1,...,—cyn)) and U = (Uy+Uq)o(h, —c1, ..., —Cp)
where Uy = 1%’ Us = % are both solutions for U, for all p, q satisfying the above,
and d and j are any integers such that pd—qj =1, and h = = til (note, the choice
of j such that pd — qj = 1 has no effect on U ).
If | figa — fag1l > 1 or if [figa — fagi| =1, N($) = N(}) and N(2) = N(2F),
then the above list of solutions to the system of equations, N(U + 5—1) = N(%) and

NU + 5—2) = N(2), is complete.

(5.5)

v
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