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Abstract

The mathematics of tangles has been applied to model protein-DNA bind-
ing. A tangle consists of strings properly embedded in a 3-dimensional ball.
The protein complex can be thought of as a 3D ball while the DNA segments
bound by the protein complex can be thought of as strings embedded within
the ball. This simple model can be used to determine the topology of protein-
bound DNA. We review some tangle models and related software for modeling
recombinase and topoisomerase action.
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1. Introduction

A tangle consists of strings properly embedded within a 3-dimensional (3D) ball.
Tangles were first used to model protein-DNA complexes by Ernst and Sumners [1].
Since then many others have also used tangles to model protein-DNA complexes (for
example, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. We illustrate with an example [5, 6]. In this
example our protein complex will be Mu transposase (Mu), but any protein which
binds DNA can be used. Two different models of Mu bound to DNA are shown in
Fig. 1. The grey ball represents Mu. The Mu protein complex binds to three DNA
sequences. These segments of DNA are referred to as E, L, and R in Fig. 1. The grey
ball combined with these three segments is a tangle. The older model shown in Fig.
1A was a common way to represent one stage in the Mu transposition reaction. Before
[5], there was little information on how to draw the DNA within this protein-DNA
complex, so normally very simple figures were drawn. Tangle analysis was used in [5]
to show that a more complicated DNA configuration is more accurate. In reality the
three DNA segments within the protein complex should be drawn containing about
five crossings as shown in Fig. 1B.

The model in Fig. 1B was determined by solving tangle equations. Fig. 2A shows
an example of one of these tangle equations. The light blue ball in Fig. 2A represents
the unknown shape of DNA bound by Mu. We will call this tangle unknown M. The
black loops coming out of this light blue ball represent the double stranded DNA not
bound within the Mu-DNA complex. If we remove the protein complex, then we can
see that the DNA is a four crossing link. Hence we have the tangle equation: DNA
configuration not bound by protein plus the unknown DNA configuration bound by
protein equals a four crossing link. Solving the tangle equation in Fig. 2A for the
tangle unknown M is equivalent to determining possible topological conformations of
the DNA bound by Mu. Observe that the five crossing tangle in Fig. 2B is a solution
to the tangle equation in Fig. 2A as shown in Fig. 2C. The three crossing tangle
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Figure 1: Two models of Mu bound to DNA. A) A model before tangle analysis was
applied (from Fig. 1 in [5]). B.) A model resulting from tangle analysis [5]. Figure
courtesy of Rasika Harshey and Makkuni Jayaram (grey circle added).

in Fig. 2D is not a solution as shown in Fig. 2E. In fact, the equation in Fig. 2A
implies that any solution must have at least four crossings. We leave it to the reader
to find other solutions to this tangle equation with one tangle unknown.
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Figure 2: A.) An example of a tangle equation. B.) A five crossing tangle solution to
this tangle equation. C.) We plug this five crossing tangle into the tangle equation.
Since the equality holds, this five crossing tangle is a solution. D.) A three crossing
tangle which is not a solution to this equation. E.) When we plug this three crossing
tangle into the tangle equation, we see that the equality does not hold. Hence this
three crossing tangle is not a solution.

The equations in this paper are all topological. Two objects are topologically
equivalent if one can be smoothly deformed into the other (breaking and/or punctur-
ing the objects is not allowed). For example, in Fig. 2C, the conformation on the
left-side of the equality has five crossings. However, if we remove the protein complex,
one of these crossings can be removed. The other four crossings cannot be eliminated
without breaking the DNA. Hence the five crossing conformation on the left-side of
the equality in Fig. 2C is topologically equivalent to the four crossing link on the
right-side. Similarly our solutions are topological. We do not distinguish between
two conformations that are geometrically different as long as they are topologically
equivalent. Hence we will consider the two tangles in Fig. 3A and B to be the same.
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When determining tangle equivalence, the endpoints of the strings must remain in
their fixed locations on the boundary of the ball. Hence the tangle in Fig. 3C is
topologically different than the tangle in Fig. 3A, B.

The main focus of this paper will be a review on using 2-string tangles to model
proteins which can change circular DNA topology, but we will give a brief introduction
near the end on how tangles are now being used to model more general protein-
DNA complexes such as in Figs 1, 2. For some protein-DNA complexes, there are
an infinite number of mathematically possible tangle models, the vast majority of
which are not biologically plausible. We review software for finding, visualizing, and
manipulating these models. We will start with an introduction to 2-string tangles
(section 2). Topoisomerases and recombinases are two classes of proteins that will
knot and catenate circular DNA. In section 3 we will model topoisomerase action,
while in section 4 we will discuss recombination. In sections 3 and 4, we will also
review applicable software.

A.) B.) C.)

Figure 3: Equivalent and non-equivalent tangles. The tangles in (A) and (B) are
geometrically different, but since one can be deformed into the other without breaking
the strings or moving the endpoints of the strings, they are topologically equivalent.
We will not distinguish between topologically equivalent tangles. The tangle in (C)
is topologically different from the tangles in (A) and (B) since we are not allowed to
cut and rejoin the strings or move the string endpoints.

2. Introduction to 2-string tangles

In this section, we define mathematical notation used in many 2-string tangle
equations. However in the following sections, we will normally provide figures corre-
sponding to any tangle notation used. Hence the reader is welcome to skim (or skip)
this section and refer back as needed. For a more detailed introduction to tangles see
[12, 13, 14, 15, 16]

Some examples of 2-string tangles are shown in Fig. 4. Since a string has two
endpoints, a 2-string tangle has four endpoints. We will refer to these four endpoints
as NW, NE, SW, and SE as indicated in Fig. 4. The zero tangle is the tangle
containing no crossings where NW is connected to NE. The infinity tangle is the
tangle containing no crossings where NW is connected to SW.

Many of the tangles involved in tangle equations modeling biological reactions
belong to the class of tangles called rational. A tangle is rational if it can be obtained
from the zero tangle by twisting the strings while allowing the endpoints of the string
to move on the boundary of the 3-ball as shown in Fig 5. We can encode the shape
of such a tangle by recording these twists. For example to form the rational tangle
(2, 3, 4), we first add two horizontal half-twists to form the (2) tangle. We then add
three vertical half twists to form the (2, 3, 0) tangle. This notation requires that
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Figure 4: Some 2-string tangles.

we always end with number of horizontal twists. Since this tangle ends with zero
horizontal twists (we just added three vertical twists), we have formed the (2, 3, 0)
tangle. We can then add four horizontal half twists to form the (2, 3, 4) tangle. For
a general tangle, (c1, ..., cn), we will take n to be odd. The ith term represents ci

half twists which if i is odd, are horizontal and righthanded if ci > 0 or lefthanded
if ci < 0; while if i is even, the ci half twists are vertical and lefthanded if ci > 0 or
righthanded if ci < 0.

SW               SE                      SE

                     NE

SW               SE

NW              NE

                    SE

                    NE

(0)                                    (2)                           (2, 3, 0)                      (2, 3, 4)
0−tangle                          2−tangle                    2/7−tangle                 30/7−tangle

Figure 5: Any rational tangle can be obtained from the zero tangle by applying an
alternating sequence of horizontal and vertical twists.

A rational tangle, (c1, ..., cn), is uniquely identified by its continued fraction,
cn + 1

cn−1+... 1

c2+ 1
c1

[12]. For example the two tangles drawn in Fig. 6 are equivalent

since

(2, 3, 4) → 4 +
1

3 + 1
2

=
30

7
= 3 +

1

1 + 1
−4+ 1

−1+ 1−1

← (−1,−1,−4, 1, 3)

(−1, −1, −4, 1, 3)                                 (2, 3, 4)

Figure 6: These two tangles are equivalent since their corresponding continued frac-
tions are the same.

Knots and links can be formed from tangles by connecting the endpoints of the
tangles. For example, given a tangle A, its numerator closure, N(A), is formed by
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connecting the NW endpoint to the NE endpoints and connecting the SW endpoint
to the SE endpoints as shown in Figs. 7, 8. Given a rational tangle, a

b
, its numerator

closure, N( a
b
), is called a rational knot or link (also called 4-plat or 2-bridge).

N(A)

A

Figure 7: Numerator closure of a tangle, N(A), where A is an arbitrary tangle.

We can easily determine when two rational knots/links N( a
b
) and N( c

d
) are the

same. Take a, c ≥ 0. Then N( a
b
) = N( c

d
) if and only if a = c and bd±1 = 1 mod a

[17, 18]. For example, N((2, 3, 0)) = N(0 + 1
3+ 1

2

) = N(2
7
) and N((2)) = N(2

1
). Thus,

N((2, 3, 0)) = N(2
7
) = N(2

1
) = N((2)) since 7 = 1 + 2(3) = 1 mod 2 (see also Fig. 8).

Figure 8: N((2, 3, 0)) = N((2))

We can add two tangles, A and B by connecting the NE and SE endpoints of A
to the NW and SW endpoints of B, respectively to form the tangle A + B as shown
in Fig. 9.
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Figure 9: Adding tangles A.) Adding two tangles can result in the creation of a
circular component B.) Observe that the zero tangle acts like an additive identity,
2 + 0 = 2. C.) 2 + -2 = 0. If we add the 2 tangle and the -2 tangle, we obtain the
zero tangle (most tangles, however, do not have additive inverses).
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3. Modeling topoisomerase action

Type II topoisomerases are proteins which cut one double-stranded DNA segment,
allowing a second DNA segment to pass through before resealing the break [19]. This
results in a crossing change as shown in Fig. 10. Topoisomerase is represented
by the dotted green circle. On the left, topoisomerase is shown binding a three
crossing knot, the trefoil knot. Topoisomerase performs a crossing change on this
knot resulting in the unknot shown on the right (the unknot is the knot which can
be drawn without any crossings – although here it is drawn with three removable
crossings). Type II topoisomerases can knot and catenate double-stranded DNA [20].
Type I topoisomerases only break one strand of DNA. Type I topoisomerases change
how the two DNA strands in double-stranded DNA are linked. They can also knot
and catenate single-stranded DNA or nicked double-stranded DNA [21, 22].

Figure 10: A model of a topoisomerase changing a DNA crossing. The green dotted
circle represents topoisomerase.

In cells, topoisomerases are responsible for keeping DNA unknotted, unlinked,
and properly supercoiled. They are required for DNA replication and transcription
[23, 24]. Cancer cells replicate more rapidly than healthy cells. Thus topoisomerases
are the targets of many anti-cancer drugs [25].

Topoisomerase action can be modeled using tangles. For mathematical conve-
nience, we draw a dotted circle around the DNA not bound by topoisomerase (Fig.
11A). We redraw Fig. 11A as formal system of tangle equations in Fig. 11B. The top
equation in Fig. 11B corresponds to the knotted substrate configuration before topoi-
somerase has acted. The bottom equation in Fig. 11B corresponds to the unknotted
product configuration after topoisomerase has acted.

To model topoisomerase action, we solve the tangle equations N(Uf + 1) = sub-
strate topology, N(Uf + (−1)) = product topology (Fig. 12). Substrate topology
refers to the knot/link type of the starting configuration of the circular DNA which
will be acted upon by topoisomerase. Product topology refers to the knot/link type
of the circular DNA after it has been acted upon by topoisomerase. The tangle Uf

refers to the DNA configuration outside of the topoisomerase action. In this case,
we know what the protein does: topoisomerase changes DNA crossings. Hence our
tangle unknown corresponds to the DNA not bound by protein. Determining the
configuration of unbound DNA could be important for solving some topoisomerase
mysteries. For example, some topoisomerases will unknot DNA well below ther-
modynamic equilibrium [26]. There is also some evidence that for some knotted
substrates, topoisomerase can differentiate between which crossing changes will most
efficiently change a knot into an unknot [27]. Although some models have been pro-
posed [26, 28, 29, 30, 31, 32, 33], it is unclear how topoisomerase action can have such
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A.)
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=
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Figure 11: A.) A model of a topoisomerase changing a DNA crossing. In addition
to the green circle modeling the topoisomerase protein, we have also drawn a dotted
green circle around the DNA not bound by protein. B.) System of tangle equations
corresponding to (A).

an effect on global topology when it only has local information as it performs DNA
crossing changes.

U

U
   

topology= product

topology
substrate=

f

f

Figure 12: To model topoisomerase action, we solve the system of tangle equations,
N(Uf + 1) = substrate topology, N(Uf + (−1)) = product topology for the tangle
unknown Uf , which represents the DNA conformation not bound by topoisomerase.

3.1. ����������� �	
 ����
��� ��� ��
���	� ������������� �����	

We can completely solve the system of topoisomerase tangle equations in Fig.
12 if the knots/links involved in these equations belong to the rational family [34].
The mathematical results in [34] rely on [35, 36]. These results are implemented
in TopoICE-X (Topological Interactive Construction Engine-X) [37]. TopoICE-X
is a software tool within KnotPlot specifically designed for modeling topoisomerase
action using tangles. KnotPlot is free software for visualizing and manipulating
knots in 3D [38]. Thus one can use TopoICE-X to solve tangle equations and
visualize and manipulate these solutions in 3D. KnotPlot can be downloaded at
www.knotplot.com/download. Instructions for TopoICE-X can also be found at this
website.
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We can define a distance between two knots/links based upon topoisomerase ac-
tion. Let the distance between K1 and K2, d(K1, K2), be the minimum number of
crossing changes needed to convert K1 into K2. This gives a mathematical lower
bound for the minimum number of times topoisomerase needs to act to convert K1

into K2. Tables giving these distances are available in [39] for rational knots and in
[40] for rational knots/links. In particular d(K1, K2) > 1 if and only if the system of
topoisomerase equations, N(Uf + 1) = K1, N(Uf + (−1)) = K2 (Fig. 12), has no
solution. TopoICE-X can be used to find all rational knots of distance one from a
given rational knot. TopoICE-X will also output reaction pathways involving ratio-
nal knots. The distance, d(K1, K2), is a generalization of the unknotting number of a
knot ( = the minimum number of crossing changes needed to change a knot into the
unknot). Hence any mathematics developed for calculating unknotting number can
be useful for determining the minimum number of times topoisomerase acts. A quick
search on MathSciNet indicates there are over 100 publications related to unknotting
number.

4. Modeling recombination

Recombinases are proteins which cut two segments of DNA and interchange the
ends resulting in the inversion or the deletion/insertion of a DNA segment. See Fig.
13. The two arrows represent binding sites for the recombinase. The recombinase
protein complex binds to both these DNA segments, cuts both of them, and changes
their connectivity by interchanging the cut ends before resealing the breaks. If the
two DNA sequences are directly repeated on a circular DNA molecule as shown in Fig.
13A, then the result is a 2-component link. This is referred to as a deletion: part of
the DNA sequence has been removed from the original circular DNA. If the two DNA
recombinase binding sites start on two separate pieces of DNA, then recombination
results in a joining of these two components. This is called an insertion: one piece
of DNA has been inserted into another piece of DNA (read Fig. 13A from right to
left). If the two DNA sequences are inversely repeated on a circular DNA molecule
as shown in Fig. 13B, then the number of components doesn’t change. Instead, the
DNA sequence changes. Part of the DNA sequence is inverted with respect to the
other part. Hence this is called an inversion. Recombinases are involved in gene
rearrangement, viral integration, gene regulation, gene therapy, and in many more
processes.

==

B.) Inverted RepeatsA.) Direct Repeats

Figure 13: A.) directly repeated recombination binding sites resulting in a 2 compo-
nent link B.) inversely repeated recombination binding sites resulting in a knot

There are a variety of recombinases, and they use a variety of mechanisms. Cre
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recombination has been modeled as in Fig. 13 [41] while other recombinases are be-
lieved to bind several DNA crossings [1, 42, 2, 10]. the recombinase. We generally do
not know the topology of the DNA bound within the protein complex either before
or after recombination changes the DNA topology. Let the tangle B represent the
DNA conformation bound within the recombinase protein complex before recombi-
nation (for example in Fig. 13, B = 0). Note that in Fig. 13, recombination changes
the topology of the protein-bound DNA. Let the tangle E represent the new protein-
bound DNA conformation after recombination (E = infinity tangle in Fig. 13). Hence
recombination is modeled by replacing the tangle B with the tangle E. As before,
we draw a circle around the DNA not bound by protein and represent the unbound
DNA configuration with the tangle unknown Uf . In general, we are solving the tangle
equations N(Uf + B) = substrate topology, N(Uf + E) = product topology (Fig.
14). Hence we have a system of two equations with three unknowns, Uf , B, and E.
If we place no restrictions on these unknowns, this system of equations will always
have an infinite number of solutions. Hence analyzing these solutions can be quite
challenging. We illustrate with an example: Xer recombination.

U B

U E

= topology
substrate

   

topology= product

f

f

Figure 14: To model recombination, we solve the system of tangle equations, N(Uf +
B) = substrate topology, N(Uf + E) = product topology. The tangle Uf represents
the DNA conformation not bound by protein. The tangles B and E represent the
DNA conformation bound by protein before and after recombination, respectively.

When acting on unknotted circular DNA, Xer recombination produces the four
crossing link, N(4

1
) [42]. Thus we have the system of equations in Fig. 15 where

the tangles B and E represent the protein-bound DNA conformation before and
after recombination, respectively, and the tangle Uf represents the unbound DNA
topology. We would like to solve the system of equations in Fig. 15 for the three
tangle unknowns, B, E, Uf . There is much that we do not know about solutions for
this system of tangle equations except that there are an infinite number of solutions as
demonstrated below. In fact B can any rational tangle. For simplicity, let us assume
that B = 0

1
and E is rational. Under these assumptions, E = 3−4i

1+4i−k(3−4i)
, 1

k
, 3

1+3k
,

or 5
1+5k

. where k and i can be any integers by [34]. In subsection 4.2, Software for
modeling recombination, we will discuss software for finding and exploring these
solutions.

Let us explore the case when B = 0
1

and E = 9
5

(i = 3, k = −2 in 3−4i
1+4i−k(3−4i)

). If

we solve, N(Uf + 0) = unknot, N(Uf + 9
5
) = N(4

1
), we find Uf = −1 (Fig. 16A). It

is highly doubtful that Xer is capable of transforming a zero crossing tangle into the
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= Unknot =fU B

fU =E

Figure 15: A system of tangle equations modeling Xer recombination: N(Uf + B) =
unknot, N(Uf + E) = N(4

1
),

9
5

tangle. However this equation can be transformed into an equation that is a very
likely model for Xer recombination. By pushing crossings into (or out of) B, we can
convert B into any rational tangle. The model in Fig. 16B is topologically equivalent
to the model in Fig. 16A. In both Figs. 16A and 16B, we have the tangle equations,
N(−1 + 0) = unknot, N(−1 + 9

5
) = N(4

1
). The only difference between Figs. 16A

and 16B is that B = 0 and E = 9
5

are both drawn with more crossings than necessary
in Fig. 16B. For example, the tangle B = the zero tangle is drawn with six crossings
in Fig. 16B. We can push some of these extraneous crossings from B and E into Uf

(Fig. 16C). After simplifying the drawings in Fig. 16C, we obtain the tangle model
in Fig. 16D. This model has been proposed for Xer recombination [42].

Given any recombinase tangle equation where B is some given rational tangle,
we can move crossings between tangles and change B into any other rational tangle.
Hence the system of tangle equations in Fig. 14 will always have an infinite number
of solutions. Since B can be any rational tangle, we generally solve the system of
equations in Fig. 14 for the tangles Uf and E in terms of B (and the substrate
and product topologies). Since the complexity of the protein-bound DNA topology
is limited, we will only consider solutions where B and E are rational as discussed
below.

Recall that these models are topological. For example, the model in Fig 17 [43] is
topologically equivalent to the model in Fig. 16D. In fact, both the model in Fig. 16D
and Fig 17 could be different projections of the same 3D conformation [3]. Our tangle
solutions are generally given as 2-dimensional projections of the 3-dimensional confor-
mation. See http://bio.math.berkeley.edu/xeranim/ [3] for a possible 3-dimensional
model of Xer recombination.

4.1. ���������	� �	 ��� ��	��� ��
��

This tangle model makes two assumptions:

• The protein binds two segments of DNA (modeled by the 2-string tangle B).

• The protein changes the topology within the tangle B leaving the topology of
the unbound DNA (modeled by the tangle Uf ) unchanged.

In actuality, the changes brought about by the protein could have an effect on
the unbound DNA. During formation of the protein-DNA complex, DNA twists or
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Figure 16: A.) N(−1 + 0) = unknot, N(−1 + 9
5
) = N(4

1
). B.) N(−1 + 0) = unknot,

N(−1 + 9
5
) = N(4

1
). In this case both the zero tangle and the 9

5
tangle are drawn

with more crossings than necessary. C.) We push some of the extraneous crossings in
the equations in (B) from B and E into Uf . Hence we now have the tangle equations,
N(0 + −1

3
) = unknot N(0 + −4

3
) = N(4

1
). D.) The tangle equations, N(0 + −1

3
) =

unknot N(0 + −4
3

) = N(4
1
), in simplified form.

Figure 17: N(0 + −1
3

) = unknot N(0 + −4
3

) = N(4
1
).
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crossings could be introduced into the unbound DNA as the DNA sites come together;
or changes to the DNA topology caused by the protein action may be transferred to
outside the protein complex. The tangle model is a model. But by finding solutions
for tangle equations modeling protein action, one can later decide how to manipulate
the solutions to better model the real action.

If additional tangle equations are available, one generally tries to prove that the
tangles B and E are rational. But with the system of only two equations with three
unknowns in Fig. 14, this is not possible. In order to reduce the number of solutions
and to make the problem mathematically tractable, we will assume

• B and E are rational tangles.

In most cases, the length of DNA bound within a protein-DNA complex is fairly
short. Hence complicated tangles are unlikely to model protein-DNA complexes.
The smallest non-rational tangle with two strings and no circular components has
five crossings. Rational tangles also have the property that they can be formed via a
sequence of twists from the zero tangle. Also, one can push the strings of a rational
tangle to lie on the boundary of the 3-ball in which they are embedded so that the
strings do not cross each other. Neither of these properties holds for non-rational
tangles. Hence rational tangles are more likely models for protein-DNA complexes
when considering the manner in which DNA sites may be brought together or how
DNA may wrap around a protein complex.

Additional assumptions are needed to further reduce the number of solutions.
In the original tangle model of Ernst and Sumners [1], the protein-bound DNA is
partitioned into the sum of two tangles. It is assumed that the tangle B = Ub + P
and the tangle E = Ub + R (Fig. 18). The tangle Ub represents the portion of the
protein-bound DNA which is not changed by the protein action. The local action
within the protein complex is modeled by replacing the tangle P by the tangle R.

EB

PbfU U Rf bU U

Figure 18: Ernst and Sumners tangle model from [1]:

Sometimes one looses potentially relevant solutions by adding additional assump-
tions. For example, to find a conformation like that in Fig. 19, one needs a more
general tangle model like the one in Fig. 20 [8]. The model in Fig. 18 assumes that
the tangles P and R modeling the local action can be separated from the remaining
protein-bound DNA (represented by Ub) via a tangle sum. This is not the case in
Fig. 19. In order to reduce the number of solutions to a manageable size, assump-
tions often must be made. But the solutions found under these assumptions can then
be manipulated to find other solutions which are not restricted by the additional
assumptions.
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Figure 19: A solution using the model in Fig. 20. The local action is modeled by
replacing the -1 tangle with the infinity tangle.

U

B

U U bU bf RfP

E

Figure 20: More general model

One can also reduce the number of solutions with additional experimental data.
For example, AFM has been used to experimentally determine Uf [4]. Additional tan-
gle equations obtained by using a different substrate [43] or as a result of processive or
distributive recombination can eliminate some solutions. If a protein remains bound
as it acts multiple times, then the protein acts processively. Processive recombination
has been modeled by the system of equations [1]:

N(Uf + Ub + P) = substrate

N(Uf + Ub + R) = product 1

N(Uf + Ub + R + R) = product 2

N(Uf + Ub + R + ... + R) = product n

Observe that the unbound DNA represented by Uf , does not change between protein
action since the protein complex remains bound to the DNA. A system of processive
tangle equations will sometimes result in a unique solution [1, 36, 44, 45, 10]. Another
model for processive recombination is given in [46].

We call the action distributive if the protein releases the DNA between actions.
Since the DNA is released between protein action, the unbound DNA conformation
can change. Distributive recombination is modeled by tangle equations such as

N(Uf + B) = substrate

N(Uf + E) = product 1

N(Uf (2) + B) = product 1

N(Uf (2) + E) = product 2

13



If the action is distributive or if multiple substrates are used, we can still push cross-
ings into and out of B and E as in Fig. 16, so there will still be an infinite number
of solutions.

4.2. ����
��� ��� ��
���	� �������	����	�

There are two programs one can use to solve the tangle equations in Fig. 14:
TangleSolve [47] and TopoICE-R [48]. Both programs assume the substrate and
product are rational knots/links. They also assume B and E are rational tangles.
Let B = f1

g1
, E = f2

g2
. Suppose also that the substrate and product are rational

knots/links, N( a
b
), N( z

v
), respectively. Thus the equations in Fig. 14 become N(Uf +

f1
g1

) = N( a
b
), N(Uf + f2

g2
) = N( z

v
). In the rest of this subsection, we will focus on this

special case.
TopoICE-R is freely available by downloading KnotPlot (www.knotplot.com/download).

TopoICE-R has some subroutines in common with TopoICE-X, but TopoICE-R is not
restricted to tangle equations involving crossing changes. TopoICE-R, like TopoICE-
X, is embedded within KnotPlot and hence has many tools for visualizing and ma-
nipulating solutions in 3D. The user can enter the rational knot/link type of the sub-
strate/product by either entering a rational number corresponding to the knot/link
or by clicking on a diagram of the knot/link. Similarly the user can enter the tangle
B = f1

g1
by entering its fraction or clicking on a diagram of the tangle. At this point

the user can either ask TopoICE-R to find all solutions for Uf and E given this B, or
the user can restrict the value of E to a particular rational tangle. The later method
can sometimes be used to rule out potential models.

Recall we are assuming B = f1
g1

, E = f2
g2

. If |f1g2−g1f2| > 1, then TopoICE-R finds
all solutions. However, if f1g2−g1f2 = ±1, then TopoICE-R can miss some solutions.
For example, TopoICE-R does not find any solution to the system of equations in
Fig. 21A, but there is a solution as shown in Fig. 21B. In this figure, B = 0 = 0

1
and

E = 1 = 1
1
. Hence |f1g2 − g1f2| = |0(1) − (1)(1)| = 1, so there was no expectation

that TopoICE-R would find all solutions to this system of equations.

A.)

U =

=U
B.)

=

=

Figure 21: A.) N(U + 0
1
) =, N(U + 1

1
) = N(2

1
). Since |f1g2 − g1f2| = 1, TopoICE-R

may not find all solutions to this system of equations. B.) A solution to the system
of equations in (A). TopoICE-R does not find this solution (or any other solution).

TopoICE-R finds all solutions for which B, E are rational and Uf is isotopic to a
sum of rational tangles [34]. Frequently, solutions must be of this form [35, 36, 49, 50],
but not always as illustrated in Fig. 21.
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Although it can be difficult to analyze an infinite number of solutions to a system
of tangle equations, these solutions can be used to rule out potential models. For
example, the system of tangle equations in Fig. 22 has no solution. In this figure,
B = −1

3
and E = 2

3
. Hence |f1g2−g1f2| = |(−1)(3)−(3)(2)| = −9 > 1, so TopoICE-R

is guaranteed to find all solutions to this system of equations, if there had been any.
Since there are no solutions, this action cannot transform the unknot into N(4

1
), and

thus B = −1
3

, E = 2
3

is not a possible model for Xer recombination.

= 

= 

Uf

Uf

Figure 22: This system of equations has no solution. Hence Xer does not use this
mechanism.

On the other hand, if one enters N( a
b
) = N(1

0
) = unknot, N( z

v
) = N(4

1
), B = 0

1

and E = 9
5

into TopoICE-R, one finds that Uf = −1 (Fig. 16A). One can similarly
use TopoICE-R to find the solution in Fig. 16D. Hence B = 0

1
, E = 9

5
is a math-

ematically possible model for Xer recombination, while B = −1
3

, E = −4
3

is both a
mathematically possible as well as a biologically plausible model for Xer recombina-
tion.

For a fixed rational B, TopoICE-R can be used to find almost all rational solutions
for E. When B = f1

g1
, TopoICE-R will sometimes miss solutions for E = f2

g2
for which

|f1g2 − g1f2| = 1 as the example in Fig. 21 shows. However, TopoICE-R can find
all solutions for the Xer equations in Fig 15 (assuming B and E are rational). When
B = 0

1
and E is rational, E = 3−4i

1+4i−k(3−4i)
, 1

k
, 3

1+3k
, or 5

1+5k
. In general when

solving the system of equations in Fig. 14, even when B is fixed, there will be
an infinite number of solutions for the tangle E [34]. One can visualize hundreds of
these solutions in minutes via TopoICE-R by toggling through the different families of
solutions as well as changing the values for i and k (although analyzing these solutions
will take longer). But finding biologically relevant solutions can be a challenge.

Yuki Saka and Mariel Vazquez’s TangleSolve [47] solves the system of tangle equa-
tions N(Uf + Ub + P) = N( a

b
), N(Uf + Ub + R) = N( z

v
) (Fig. 18). It is freely

available at http://bio.math.berkeley.edu/TangleSolve. It assumes Uf and Ub are
rational tangles, and R is an integral tangle (a rational tangle whose fraction corre-
sponds to an integer such as n

1
and hence consists of only horizontal twists). It also

assumes P is the zero tangle (but there is an option for displaying some solutions
with P = infinity tangle). Note these are the most biologically relevant solutions.
Other relevant solutions may also exist, but when handling an infinite number of
possibilities, this is one of the best places to start. Recall that the local action of
a recombinase involves breaking two DNA segments. Generally, this involves only a
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few DNA base pairs in each of these two segments. Thus one would expect there
would exist a projection of the 3D conformation in which these few base pairs would
project to the zero tangle. In most cases, the local action of recombination has been
modeled by adding at most one crossing or in the case of processive recombination,
an integral number of crossings. Thus it is likely R can be modeled by an integral
tangle. If P is the zero tangle, then B = Ub + P = Ub + 0 = Ub. Hence if B is
rational, then Ub is rational. So far, no relevant nonrational solutions for Uf to the
Fig. 18 tangle equations have been found when modeling recombination.

TangleSolve has a graphical interface for entering data. One can also enter multiple
substrates and products as TangleSolve can find both the intersection and union of
tangle solutions from multiple systems of equations. This is particularly nice when
only the crossing number of a product is known. There are also subroutines specific
for modeling processive and distributive recombination.

Relevant solutions found using TangleSolve can be entered into TopoICE-R to
determine if there are additional solutions (although TopoICE-R may not find all
solutions, such as Fig. 21B) and/or to manipulate these solutions in 3D. Although
when we discussed TopoICE-R, we assumed that f1

g1
, f2

g2
represent B, E, respectively,

we can instead let f1
g1

, f2
g2

represent the local action, P, R, respectively. Thus to find

models for Xer recombination, one can toggle through solutions when f1
g1

= 0, when

focusing on the local action, while one can toggle through solutions when f1
g1

= −1
3

,
for example, when focusing on the global conformation of the protein-bound DNA.
KnotPlot’s tangle calculator or sketch tools can also be used to draw a particular
conformation.

KnotPlot has a number of features for manipulating tangle models in 3D. A variety
of energies can be placed on the knots and tangles in KnotPlot [38]. Conformations
can be simplified by minimizing these energies. The conformations in KnotPlot can
be displayed using either smooth tubes or beads and sticks. By using the Edit panel
in KnotPlot, one can move these beads and sticks to explore different geometries.
One can output postscript pictures as well as 3D coordinates of conformations for use
in other software. Help pages discussing these and other features are available within
KnotPlot.

5. Additional applications of tangles to protein-DNA complexes

Topoisomerases and recombinases can be used to investigate other proteins which
bind DNA such as Mu transposase (Fig. 1). The tangle models discussed in sections
3 and 4 specifically applied to proteins that create knotted/linked DNA molecules.
However, tangle analysis can also be applied to proteins that do not change DNA
topology. In order to obtain tangle equations, an experimental technique called dif-
ference topology has been used. [51, 52, 5, 53, 54, 55]. For example, the tangle model
for Mu transposase obtained by [5] (shown in Fig. 1) was obtained by first incu-
bating circular DNA with the proteins required to form the Mu-DNA complex. Cre
recombinase was then added to create DNA knots/links. The conformation of the
DNA within the Mu-DNA complex affects the types of knots/links which results from
Cre recombination. This technique opens up tangle analysis to a much larger class
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of proteins including proteins that bind more than two segments of DNA. For more
information on this technique, see [5, 55, 56, 57].
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