
Math 150 Final Exam
December 13, 2006

Choose 7 from the following 10 problems. Circle your choices: 1 2 3 4 5 6 7 8 9 10
You may do more than 7 problems in which case your unchosen problems can replace your
lowest one or two problems at 2/3 the value as discussed in class.

1.) Show that every sequence a1, a2, ..., an2+1 contains either an increasing or decreasing
subsequence of length n + 1.

See application 9 in section 3.2 (p. 76) for full proof.

2.) The Ramsey number r(3, 3) = 6 . Prove your answer.

See proof in book on p. 78.

Note you need to prove that if the edges of K6 are colored red or blue, then there exists
either a red triangle or a blue triangle.

You also need to prove that r(3, 3) > 5. You can do this by giving an example of a coloring
of K5 which contains neither a red triangle nor a blue triangle. See Fig 3.2.

3.) Is the intersection R ∩ S of two equivalence relations R and S on a set X always an
equivalence relation on X? Is the union R ∪ S of two equivalence relations R and S on a
set X always an equivalence relation on X? Prove your answer.

See HW problem ch4: 49

4.) Find the number of integral solutions to the equation x1 +x2 +x3 +x4 = 60 such that
0 ≤ x1 ≤ 10, 1 ≤ x2 ≤ 5, x3 ≥ −2, and x4 ≥ 4.

Let y1 = x1. Let y2 = x2 − 1. Let y3 = x3 + 2. Let y4 = x4 − 4.

x1 + x2 − 1 + x3 + 2 + x4 − 4 = 60 − 1 + 2 − 4

The number of integral solutions to the equation x1 + x2 + x3 + x4 = 60 such that
0 ≤ x1 ≤ 10, 1 ≤ x2 ≤ 5, x3 ≥ −2, and x4 ≥ 4 is the same as

the number of integral solutions to the equation y1 + y2 + y3 + y4 = 57 such that
0 ≤ y1 ≤ 10, 0 ≤ y2 ≤ 4, y3 ≥ 0, and y4 ≥ 0.

Method 1: generating function (note we did not need to change lower bounds to use
generating functions, but since we are not use to generating functions with a couple of
negative exponents, I changed the lower bound. A generating function would have worked
just as well without changing the lower bounds.
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We need y1 + y2 + y3 + y4 = 57, thus we need the coefficient of x57.
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x57

= (45)(44)(43)− (49)(47)(46)− (56)(55)(54) + (60)(59)(58)

Method 2: Inclusion-Exclusion

Let S = solutions to y1 + y2 + y3 + y4 = 57 such that
0 ≤ y1, 0 ≤ y2, y3 ≥ 0, and y4 ≥ 0.

|S| =

(

57 + 4 − 1
57

)

=

(

60
57

)

Let A1 = solutions to y1 + y2 + y3 + y4 = 57 such that
11 ≤ y1, 0 ≤ y2, y3 ≥ 0, and y4 ≥ 0.

|A1| = the number of solutions to y1 + y2 + y3 + y4 = 46 such that
0 ≤ y1, 0 ≤ y2, y3 ≥ 0, and y4 ≥ 0

Thus |A1| =

(

46 + 4 − 1
46

)

=

(

49
46

)

Let A2 = solutions to y1 + y2 + y3 + y4 = 57 such that
0 ≤ y1 , 5 ≤ y2, y3 ≥ 0, and y4 ≥ 0.

|A2| = the number of solutions to y1 + y2 + y3 + y4 = 52 such that
0 ≤ y1, 0 ≤ y2, y3 ≥ 0, and y4 ≥ 0

Thus |A2| =

(

52 + 4 − 1
52

)

=

(

55
52

)

|A1 ∩ A2| = the number of solutions to y1 + y2 + y3 + y4 = 41 such that
0 ≤ y1, 0 ≤ y2, y3 ≥ 0, and y4 ≥ 0

Thus |A2| =
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=
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)
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5.) Let Dn be the number of derangements of {1, 2, ..., n}. Determine a formula for Dn.
Prove your answer.

See Thm 6.3.1



6.) Solve the recurrence relation hn = 2hn−1 + 3n with initial value h0 = 4

A.) Solve homogeneous recurrence relation: hn = 2hn−1.

Guess hn = qn. Then hn = 2hn−1 implies qn = 2qn−1. Hence q = 2.

Thus the general solution to the homogeneous recurrence relation is c(qn) = c(2n).

B.) Guess a solution to the non-homogeneous recurrence relation hn = 2hn−1 + 3n. Note
we only need one solution for the non-homogeneous recurrence relation.

Try a multiple of 3n. Suppose hn = a(3n).

Then hn = 2hn−1 + 3n implies a(3n) = 2a(3n−1) + 3n

Thus 3(a − 1)(3n−1) = 2a(3n−1)

Hence 3a − 3 = 2a.

a = 3. Thus a solution to the non-homogeneous recurrence relation is hn = 3(3n) = 3n+1

HENCE, the general solution to the non-homogeneous recurrence relation is
hn = c(2n) + 3n+1

C.) Use initial conditions to find c:

h0 = 4 implies 4 = c(20) + 31. Hence c = 1.

Thus hn = 2n + 3n+1

Check: h0 = 20 + 31 = 4.

hn − 2hn−1 − 3n = 2n + 3n+1 − 2[2n−1 + 3n] − 3n = 2n + 3n+1 − 2n − 2(3n) − 3n =
3n+1 − 3(3n) = 0.

7a.) Determine the generating function for the number hn of n-combinations of fruit
consisting of apples, oranges, bananas, pears, and kiwis in which there are an odd number
of apples, the number of oranges is a multiple of 4, the number of bananas is at most 3,
the number of pears is 0 or 1, and there are at least 2 kiwis.
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Thus coefficient of xn is

(

n − 1
n − 3

)

. Thus hn =

(

n − 1
n − 3

)

is the number of n-combinations.



7b.) Find a formula for hn.

hn =

(

n − 1
n − 3

)

8a.) Find the number of partitions of 6 distinguishable objects into 3 nonempty distin-
guishable boxes.

Use Inclusion-Exclusion.

Let S = the set of partitions of 6 distinguishable objects into 3 distinguishable.

Let Ai = the set of partitions of 6 distinguishable objects into 3 distinguishable boxes
where box i is empty.

Note that for each object, there are 3 choices for which box to place the object. Thus
|S| = 36

To determine |A1|, not that there are 2 choices for which box to place the object as we
can only place objects in boxes 2 and 3 as box 1 must remain empty. Thus |A1| = 26

Similary |Ai| = 26 for i = 1, 2, 3

|A1 ∩ A2| = 1 as all objects must be placed in box 3.

Similary |Ai ∩ Aj | = 1 for i, j = 1, 2, 3, i 6= j

|A1 ∩ A2 ∩ A3| = 0 as we can’t place 6 objects in boxes and have all boxes empty.

By Inclusion-Exclusion, the number of partitions of 6 distinguishable objects into 3 nonempty
distinguishable boxes is

|S| − Σ|Ai| + Σ|Ai ∩ Aj | − |A1 ∩ A2 ∩ A3|

= 36 − Σ26 + Σ1 − 0

= 36 − 3(26) +

(

3
2

)

− 0

= 36 − 3(26) + 3

8b.) Find the difference table for hn = n2 +1: From Chapter 8, not covered this semester.

8c.) Σn
k=0hk = : From Chapter 8, not covered this semester.

9a.) Find the number of subsets of {1, 2, 3, ..., 10}.

2n

9b.) Find the number of subsets of {1, 2, 3, ..., 10} which have exactly 8 elements .



(

10
8

)

= 10!
8!2!

9c.) Find the number of permutations of {1, 2, 3, ..., 10} which have exactly 8 elements.

P (10, 8) = 10!
2!

9d.) Find the number of permutations of {3 · a, 4 · b, 1 · c} which have exactly 8 elements.

8!
3!4!1!

Note that 3+4+1 = 8. If we had fewer than 8 elements, the number of 8-permutations is
0. If we had more than 8 elements, this would be a harder problem which could be solved
by (1) breaking into cases or (2) exponential generating function.

9e.) Find the number of partitions of 25 indistinguishable objects into 10 distinguishable
boxes.

I.e, how many solutions are there to x1 + x2 + ... + x10 = 25 where xi = the number of
objects placed in box i.

I.e, the number of permutations of {25 · 1, 9 · +}

Thus answer is

(

25 + 9
25

)

=

(

34
25

)

10a.) Expand (x − 2y)6 using the binomial theorem.
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= x6 − 6x5(2y) + 15x4(2y)2 − 20x3(2y)3 + 15x2(2y)4 − 6x(2y)5 + (2y)6

10b.) What is the coefficient of x4y3z2 in the expansion of (x − y + 3z)9 : −(81)(140)

(

9
4 3 2

)

x4(−y)3(3z)2 = − (9)(8)(7)(6)(5)
3!2! (9x4y3z2) = −(81)(4)(7)(5)(x4y3z2) = −(81)(140)(x4y3z2)

10c.) What is the coefficient of x3y3z2 in the expansion of (x − y + 3z)9 : 0

Note 3 + 3 + 2 6= 9. Thus coefficient is 0.

10d.) The inversion sequence for the permutation 615423 is 133210

10e.) The permutation corresponding to the inversion sequence 5, 1, 3, 2, 1, 0 is 625431


