MS/PhD Qualifying exam: Numerical Analysis August 22, 2014

Closed book/closed notes.
All questions are equally weighted.
Show all working.

Part 1 (MATH:5800/22M:170)

1. Floating point arithmetic. The standard formula for computing the roots of a quadratic $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

is known to have problems computing the smaller root numerically if b^2 is *much* larger than |ac|. Explain the cause of the cause of this problem; propose a method for avoiding this problem.

- 2. Solution of nonlinear equations. Carry out two steps of the secant method for solving $x \cos x = 0$ starting with $x_0 = 0$ and $x_1 = 1$. What rate of convergence is expected, and under what conditions is this rate of convergence obtained?
- 3. *Interpolation and approximation*. Using equally spaced interpolation points is known to result in Runge's phenomenon for the function $f(x) = 1/(1+x^2)$ interpolated over [-5, +5]. What is this phenomenon? Can the use of a different set of interpolation points prevent this phenomenon? If so, explain how?
- 4. Numerical integration. Use Simpson's method with five function evaluations to obtain an estimate of $\int_0^1 e^x/(1+x) dx$. What is the asymptotic order of the error of composite Simpson's method with 2n+1 function evaluations? Give an example of a method that has an asymptotically faster rate of convergence than Simpson's method as the number of function evaluations goes to infinity.

Part 2 (MATH:5810/22M:171)

1. Multistep methods. Consider the general multistep method

$$\mathbf{y}_{n+1} = \sum_{j=0}^{p} a_j \mathbf{y}_{n-j} + h \sum_{j=-1}^{p} b_j \mathbf{f}(t_{n-j}, \mathbf{y}_{n-j}).$$

In order to prove convergence of a particular order for this method we need two basic conditions: a stability condition, and a consistency condition. Give these conditions. Use them to determine if, and with what order, the leap-frog method converges:

$$y_{n+1} = y_{n-1} + 2h f(t_n, y_n).$$

2. Runge-Kutta methods. Show that Heun's method

$$\mathbf{z}_{n+1} = \mathbf{y}_n + h \mathbf{f}(t_n, \mathbf{y}_n),$$

 $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}h \left[\mathbf{f}(t_n, \mathbf{y}_n) + \mathbf{f}(t_{n+1}, \mathbf{z}_{n+1}) \right]$

has a local truncation error of $\mathcal{O}(h^3)$. What is its asymptotic global truncation error in the form $\mathcal{O}(h^m)$?

3. LU factorization and linear systems. The perturbation theorem for linear systems states that if Ax = b, $(A + E)\hat{x} = b + d$, and $||A^{-1}|| ||E|| < 1$, then

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \frac{\kappa(A)}{1 - \kappa(A)(\|E\| / \|A\|)} \left[\frac{\|E\|}{\|A\|} + \frac{\|d\|}{\|b\|} \right]$$

where $\kappa(A) = \|A^{-1}\| \, \|A\|$ is the condition number. Using this, how many digits of accuracy are expected in the computed solution \widehat{x} given that the matrix A and right-hand side b are known to 5 digits, but $\kappa(A) \approx 10^3$? The backward error theory for LU factorization by Wilkinson shows that the computed solution \widehat{x} of a system Ax = b exactly satisfies $(A+E)\widehat{x} = b$ where $\|E\|_{\infty} \leq 3\mathbf{u} \left(\|A\|_{\infty} + \|\widehat{L}\|_{\infty} \|\widehat{U}\|_{\infty}\right)$ where \widehat{L} and \widehat{U} are the computed L and U factors in the LU factorization. If $\|\widehat{L}\|_{\infty} \|\widehat{U}\|_{\infty} / \|A\|_{\infty}$ is modest (say ≈ 10), give an estimate for the relative error $\|\widehat{x} - x\|_{\infty} / \|x\|_{\infty}$ in terms of $\kappa(A)$ in the ∞ -norm.

4. Least squares and QR factorization. What is a QR factorization of a matrix? Describe two different ways of computing the QR factorization of an $m \times n$ matrix. Explain how to use a QR factorization of a matrix to solve a least squares problem $\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2$.