
Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Wednesday, August 16, 2006
Professors Frauke Bleher and Fred Goodman

Instructions: Do exactly two problems from each section for a total of
eight problems. Be sure to justify your answers. Good luck.

1. Groups:

We denote Z/nZ by Zn.
(1) Let G be a group acting on a set S, let s ∈ S. Define the orbit G.s of s

under G, define the stabilizer Gs of s in G. Prove that Gs is a subgroup of
G and that |G.s| = (G : Gs).

(2) Let G be a finite group of order pq where p, q are primes with p < q.
Suppose that q 6≡ 1 mod p. Prove that G is cyclic.

(3) Show that two elements of the symmetric group Sn are conjugate if, and
only if, they have the same cycle structure. Determine the number of
conjugates in S7 of the permutation

(1, 2, 3)(4, 5, 6)(7).

The following exercise may be counted either as a ring theory
exercise or a group theory exercise. If you want it to count for
ring theory, then you must say so, and you must do two other
group theory exercises.

(4) Let Fp denote the field with p elements, where p is a prime, p ≥ 3. Consider
the ring R = Fp[x]/(x3). This problem concerns the abelian group G of
units in R. Let x̄ denote the image of x in R.
(a) Show that R has p3 elements.
(b) Show that the ideal generated by x̄ is a proper ideal with p2 elements.

Conclude that the group G of invertible elements has at most p3−p2 =
p2(p− 1) elements.

(c) Show that elements of the form α+βx̄+γx̄2 with α 6= 0 are invertible.
Conclude that G has precisely p2(p − 1) elements. Hint: Compute
the p-th power of an element α + βx̄ + γx̄2.

(d) Referring to an appropriate general theorem, show that G ∼= A × B,
where A has order p2 and B has order p−1, and that A must be either
cyclic, or isomorphic to Zp × Zp.

(e) By appropriate choices of α, β, and γ, exhibit p2 − 1 elements of
order p and at least one element of order p − 1. Conclude that G ∼=
Zp × Zp × Zp−1.
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2. Rings:

All rings are assumed to have a multiplicative identity 1.
(1) (a) Let K be an infinite field, and let f(t), g(t) ∈ K[t]. Prove that if

f(c) = g(c) for all c ∈ K, then f(t) = g(t) in K[t].
(b) Is part (a) still true if we assume K is a finite field? If so, prove this;

otherwise give a counter-example.

(2) Prove that every principal ideal domain is a unique factorization domain.

(3) (a) Show that every maximal ideal in a commutative ring is prime.
(b) Give an example of a ring R and a prime ideal in R that is not maximal.
(c) Show that a non-zero ideal in Z is maximal if, and only if, it is prime.

(4) A commutative ring is said to be Noetherian if every ideal is finitely gen-
erated.
(a) Show that a commutative ring is Noetherian if, and only if, it satisfies

the ascending chain condition for ideals.
(b) Show that every non–zero non–unit element in a Noetherian integral

domain has at least one factorization into irreducibles.

3. Fields:

(1) Let E/F be a finite field extension, and let F ′ be any extension of F .
Suppose that E and F ′ are contained in a common field, and let EF ′ be
the composite. Prove that [EF ′ : F ′] ≤ [E : F ]. Give an example of
E,F, F ′ so that you have a strict equality.

(2) Let f(t) be an irreducible polynomial of degree p over the rationals, where
p is an odd prime. Suppose that f has p − 2 real roots and two complex
roots which are not real. Prove that the Galois group of f(t) over Q is
isomorphic to the symmetric group Sp.

(3) Let f(x) be a separable polynomial with coefficients in a field K and let L
denote the splitting field of f(x). Show that the fixed field of AutK(L) in
L is equal to K.

(4) Let f(x) be a polynomial with coefficients in a field K and let L denote the
splitting field of f(x). Let A be the set of roots of f(x) in L. Show that
for every σ ∈ AutK(L), σ(A) = A. Show, moreover, that AutK(L) acts
faithfully on A, and that the action is transitive if f(x) is irreducible.

4. Linear algebra and modules:

We will let I denote the identity transformation of a vector space or the identity
matrix of any size.

(1) Let R be a ring with 1, let E be a left R-module and let L be a left ideal
of R. Define LE to be

LE = {x1v1 + · · ·+ xnvn |n ∈ Z+, xi ∈ L, vi ∈ E} .
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(a) Prove that LE is an R-submodule of E.
(b) Assuming that E is simple, prove that LE = E or LE = {0}.
(c) Assume that L and E are simple and that LE = E. Prove that L is

isomorphic to E as R-modules.

(2) Let K be an algebraically closed field, let V be a nonzero finite dimensional
vector space over K, and let A ∈ EndK(V ). Let VA be the corresponding
K[t]-module. Assume that VA is a cyclic K[t]-module which is generated by
v ∈ V , and suppose the annihilator of VA in K[t] is generated by (t− α)r,
where α ∈ K and r ∈ Z+. Prove that

{(A− αI)r−1v, . . . , (A− αI)v, v}
is a basis of V over K, and determine the matrix of A with respect to this
basis. Please be sure to explain all your steps.

(3) Let p(x),m(x) be polynomials with complex coefficients. Let n denote the
degree of p(x). State and prove necessary and sufficient conditions on the
pair of polynomials so that there exists an n–by–n complex matrix whose
characteristic polynomial is p(x) and whose minimal polynomial is m(x).

(4) Let F be an algebraically closed field of characteristic 6= 2. The purpose of
this exercise is to show that every invertible n–by–n matrix A with entries
in F has a square root B; that is, there is a matrix B such that B2 = A.
(a) Show that for an n–by–n matrix T whose only eigenvalue is λ, the

number of Jordan blocks of T is equal to n− r, where r is the rank of
T − λI. In particular, T has a single Jordan block if, and only if, the
rank of T − λI is n− 1.

(b) To prove that A has a square root, show that you can reduce to the case
that A is in Jordan form and has a single Jordan block with eigenvalue
1. Hint: Reduce successively to the case that A is in Jordan form and
has a single (non-zero) eigenvalue, then to the case that A is in Jordan
form and the only eigenvalue of A is 1, and finally to the case that A
is in Jordan form and has a single Jordan block with eigenvalue 1.

(c) Suppose that A is in Jordan form and has a single Jordan block with
eigenvalue 1. Show that the Jordan form of A2 also has a single Jordan
block with eigenvalue 1. Conclude that A is similar to A2. Since A is
similar to a matrix with square root, A itself has a square root.

(d) In case the characteristic of F is 2, give an example of an invertible
square matrix A which does not have a square root. Hint: Look at
2–by–2 matrices.


