Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Wednesday, August 16, 2006 Professors Frauke Bleher and Fred Goodman

Instructions: Do exactly two problems from each section for a total of eight problems. Be sure to justify your answers. Good luck.

1. Groups:

We denote $\mathbb{Z}/n\mathbb{Z}$ by \mathbb{Z}_n .

- (1) Let G be a group acting on a set S, let $s \in S$. Define the orbit G.s of s under G, define the stabilizer G_s of s in G. Prove that G_s is a subgroup of G and that $|G.s| = (G : G_s)$.
- (2) Let G be a finite group of order pq where p,q are primes with p < q. Suppose that $q \not\equiv 1 \mod p$. Prove that G is cyclic.
- (3) Show that two elements of the symmetric group S_n are conjugate if, and only if, they have the same cycle structure. Determine the number of conjugates in S_7 of the permutation

$$(1,2,3)(4,5,6)(7)$$
.

The following exercise may be counted either as a ring theory exercise or a group theory exercise. If you want it to count for ring theory, then you must say so, and you must do two other group theory exercises.

- (4) Let \mathbb{F}_p denote the field with p elements, where p is a prime, $p \geq 3$. Consider the ring $R = \mathbb{F}_p[x]/(x^3)$. This problem concerns the abelian group G of units in R. Let \bar{x} denote the image of x in R.
 - (a) Show that R has p^3 elements.
 - (b) Show that the ideal generated by \bar{x} is a proper ideal with p^2 elements. Conclude that the group G of invertible elements has at most $p^3 p^2 = p^2(p-1)$ elements.
 - (c) Show that elements of the form $\alpha + \beta \bar{x} + \gamma \bar{x}^2$ with $\alpha \neq 0$ are invertible. Conclude that G has precisely $p^2(p-1)$ elements. *Hint*: Compute the p-th power of an element $\alpha + \beta \bar{x} + \gamma \bar{x}^2$.
 - (d) Referring to an appropriate general theorem, show that $G \cong A \times B$, where A has order p^2 and B has order p-1, and that A must be either cyclic, or isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.
 - (e) By appropriate choices of α , β , and γ , exhibit p^2-1 elements of order p and at least one element of order p-1. Conclude that $G\cong \mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_{p-1}$.

1

2. Rings:

All rings are assumed to have a multiplicative identity 1.

- (1) (a) Let K be an infinite field, and let $f(t), g(t) \in K[t]$. Prove that if f(c) = g(c) for all $c \in K$, then f(t) = g(t) in K[t].
 - (b) Is part (a) still true if we assume K is a finite field? If so, prove this; otherwise give a counter-example.
- (2) Prove that every principal ideal domain is a unique factorization domain.
- (3) (a) Show that every maximal ideal in a commutative ring is prime.
 - (b) Give an example of a ring R and a prime ideal in R that is not maximal.
 - (c) Show that a non-zero ideal in \mathbb{Z} is maximal if, and only if, it is prime.
- (4) A commutative ring is said to be Noetherian if every ideal is finitely generated.
 - (a) Show that a commutative ring is Noetherian if, and only if, it satisfies the ascending chain condition for ideals.
 - (b) Show that every non-zero non-unit element in a Noetherian integral domain has at least one factorization into irreducibles.

3. Fields:

- (1) Let E/F be a finite field extension, and let F' be any extension of F. Suppose that E and F' are contained in a common field, and let EF' be the composite. Prove that $[EF':F'] \leq [E:F]$. Give an example of E, F, F' so that you have a strict equality.
- (2) Let f(t) be an irreducible polynomial of degree p over the rationals, where p is an odd prime. Suppose that f has p-2 real roots and two complex roots which are not real. Prove that the Galois group of f(t) over \mathbb{Q} is isomorphic to the symmetric group S_p .
- (3) Let f(x) be a separable polynomial with coefficients in a field K and let L denote the splitting field of f(x). Show that the fixed field of $\operatorname{Aut}_K(L)$ in L is equal to K.
- (4) Let f(x) be a polynomial with coefficients in a field K and let L denote the splitting field of f(x). Let A be the set of roots of f(x) in L. Show that for every $\sigma \in \operatorname{Aut}_K(L)$, $\sigma(A) = A$. Show, moreover, that $\operatorname{Aut}_K(L)$ acts faithfully on A, and that the action is transitive if f(x) is irreducible.

4. Linear algebra and modules:

We will let I denote the identity transformation of a vector space or the identity matrix of any size.

(1) Let R be a ring with 1, let E be a left R-module and let L be a left ideal of R. Define LE to be

$$LE = \{x_1v_1 + \dots + x_nv_n \mid n \in \mathbb{Z}^+, x_i \in L, v_i \in E\}.$$

- (a) Prove that LE is an R-submodule of E.
- (b) Assuming that E is simple, prove that LE = E or $LE = \{0\}$.
- (c) Assume that L and E are simple and that LE=E. Prove that L is isomorphic to E as R-modules.
- (2) Let K be an algebraically closed field, let V be a nonzero finite dimensional vector space over K, and let $A \in \operatorname{End}_K(V)$. Let V_A be the corresponding K[t]-module. Assume that V_A is a cyclic K[t]-module which is generated by $v \in V$, and suppose the annihilator of V_A in K[t] is generated by $(t \alpha)^r$, where $\alpha \in K$ and $r \in \mathbb{Z}^+$. Prove that

$$\{(A - \alpha I)^{r-1}v, \dots, (A - \alpha I)v, v\}$$

is a basis of V over K, and determine the matrix of A with respect to this basis. Please be sure to explain all your steps.

- (3) Let p(x), m(x) be polynomials with complex coefficients. Let n denote the degree of p(x). State and prove necessary and sufficient conditions on the pair of polynomials so that there exists an n-by-n complex matrix whose characteristic polynomial is p(x) and whose minimal polynomial is m(x).
- (4) Let F be an algebraically closed field of characteristic $\neq 2$. The purpose of this exercise is to show that every invertible n-by-n matrix A with entries in F has a square root B; that is, there is a matrix B such that $B^2 = A$.
 - (a) Show that for an n-by-n matrix T whose only eigenvalue is λ , the number of Jordan blocks of T is equal to n-r, where r is the rank of $T-\lambda I$. In particular, T has a single Jordan block if, and only if, the rank of $T-\lambda I$ is n-1.
 - (b) To prove that A has a square root, show that you can reduce to the case that A is in Jordan form and has a single Jordan block with eigenvalue 1. Hint: Reduce successively to the case that A is in Jordan form and has a single (non-zero) eigenvalue, then to the case that A is in Jordan form and the only eigenvalue of A is 1, and finally to the case that A is in Jordan form and has a single Jordan block with eigenvalue 1.
 - (c) Suppose that A is in Jordan form and has a single Jordan block with eigenvalue 1. Show that the Jordan form of A^2 also has a single Jordan block with eigenvalue 1. Conclude that A is similar to A^2 . Since A is similar to a matrix with square root, A itself has a square root.
 - (d) In case the characteristic of F is 2, give an example of an invertible square matrix A which does not have a square root. *Hint:* Look at 2-by-2 matrices.