Qualifying Examination on Differential Equations, Fall 2005

August 23, 2005

1 Section on ODE

(Solve three of the problems)

1. Find and classify all equilibria of the system of equations

$$x' = x + x^2 + y + y^2,$$

 $y' = -x - x^2 + y + y^2.$

2. Prove that the system of equations

$$x' = y + x - x^3,$$

$$y' = -x + y - y^3$$

has at least one non-constant periodic solution. You may assume that (0,0) is the only equilibrium point.

- 3. Consider the ode y' = f(x) with a function $f: \mathbb{R} \to \mathbb{R}$ which is infinitely differentiable. Estimate the truncation error for one step of the second-order Taylor method for this equation.
- 4. Let y_1 and y_2 be two solutions of the equation $x' = -x^2 + t^2$, and let $y_1(0) = 1, y_2(0) = 2$. Prove that we have $0 < y_1(t) < y_2(t) < y_1(t) + 1$ for all t > 0.

2 Section on PDE

(Solve three of the problems)

1. Compute the Fourier series

$$\sum_{k=1}^{\infty} a_k \sin\left(kx\right)$$

for the function

$$f(x) = \begin{cases} 1 & \text{for} \quad x \in [0, \pi/2] \\ 0 & \text{for} \quad x \in (\pi/2, \pi] \end{cases}$$

on the interval $[0,\pi]$. Also solve the heat equation $u_t(x,t) = u_{xx}(x,t)$ on the square $[0,\pi] \times [0,\infty)$ with the initial value u(x,0) = f(x) and the boundary condition $u(0,t) = u(\pi,t) = 0$.

- 2. Using separation of variables, find the eigenfunctions of the Laplace operator with Neumann boundary conditions on the rectangle $[0,1] \times [0,1]$.
- 3. Let $B = \{x \in \mathbb{R}^n \mid |x| < 1\}$. Show that if $u \in C^2(B) \cap C^0(\overline{B})$, u(x) = 0 for |x| = 1 and $|\Delta u| \le K$, then also

$$-\frac{K}{2n} \le u \le \frac{K}{2n}.$$

Hint: Use maximum principle for a function v=u-w where $w\left(x\right)=0$ for $|x|=1, \Delta w=\pm K$. Note that w is a simple polynomial.

4. What is the proper weak solution of the equation

$$u_t + u \cdot u_x = 0$$

for the initial values

$$f_1(x) = \begin{cases} 2 \text{ for } x > 0\\ 0 \text{ for } x \le 0 \end{cases}$$

and

$$f_2(x) = \begin{cases} 0 \text{ for } x > 0 \\ 3 \text{ for } x \le 0 \end{cases}?$$

5. Solve the initial value problem

$$u_t + e^t u_x = u$$

with u(x,0) = x. Describe and draw the characteristics.