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Abstract

Let Ω be an open, simply connected, and bounded region in Rd, d ≥ 2,
and assume its boundary ∂Ω is smooth and homeomorphic to Sd−1. Con-
sider solving an elliptic partial differential equation Lu = f(·, u) over Ω
with zero Dirichlet boundary value. The function f is a nonlinear function
of the solution u. The problem is converted to an equivalent elliptic prob-
lem over the open unit ball Bd in Rd, say L̃ũ = f̃(·, ũ). Then a spectral
Galerkin method is used to create a convergent sequence of multivariate
polynomials ũn of degree ≤ n that is convergent to ũ. The transforma-
tion from Ω to Bd requires a special analytical calculation for its imple-
mentation. With suffi ciently smooth problem parameters, the method is
shown to be rapidly convergent. For u ∈ C∞

(
Ω
)
and assuming ∂Ω is

a C∞ boundary, the convergence of ‖ũ− ũn‖H1 to zero is faster than
any power of 1/n. The error analysis uses a reformulation of the bound-
ary value problem as an integral equation, and then it uses tools from
nonlinear integral equations to analyze the numerical method. Numeri-
cal examples illustrate experimentally an exponential rate of convergence.
A generalization to −∆u + γu = f(u) with a zero Neumann boundary
condition is also presented.

1 Introduction

Consider the nonlinear problem

Lu (s) = f (s, u(s)) , s ∈ Ω (1)

u (s) = 0, s ∈ ∂Ω (2)

with L an elliptic operator over Ω and a homogeneous Dirichlet boundary con-
dition. Let Ω be an open, simply—connected, and bounded region in Rd, and
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assume that its boundary ∂Ω is suffi ciently differentiable and is homeomorphic
to Sd−1. Assume L is a strongly elliptic operator of the form

Lu(s) ≡ −
d∑

i,j=1

∂

∂si

(
ai,j(s)

∂u(s)

∂sj

)
+ γ (s)u (s) , s ∈ Ω, (3)

We present a spectral method for solving (1)-(2) based on multivariate poly-
nomial approximation over the unit ball Bd. Our numerical method is similar
to that presented in earlier papers for linear problems; see [2], [6]. However, the
nonlinearity in (1) leads to the solving of nonlinear algebraic systems. Moreover,
the convergence analysis requires a new approach as the standard variational
analysis applies to only the linear framework. We give a new error analysis that
uses a reformulation of the problem (1)-(2) and its numerical approximation
using nonlinear integral equations; see §3.
In (3), the functions ai,j(s), 1 ≤ i, j ≤ d, are assumed to be several times

continuously differentiable over Ω, and the d× d matrix [ai,j (s)] is to be sym-
metric and to satisfy

ξTA(s)ξ ≥ αξTξ, s ∈ Ω, ξ ∈ Rd (4)

for some α > 0. Also assume the coeffi cient γ ∈ C
(
Ω
)
. Note that because the

right-hand function f is allowed to depend on u, an arbitrarily large multiple of
u can be added to each side of (1), thus justifying an assumption that

min
s∈Ω

γ (s) > 0. (5)

The problem (1)-(2) can be reformulated as a variational problem. Introduce

A (v, w) =

∫
Ω

 d∑
i,j=1

ai,j(s)
∂v(s)

∂si

∂w(s)

∂sj

 ds
+

∫
Ω

γ (s) v (s)w (s) ds, v, w ∈ H1
0 (Ω) ,

(6)

(F (v)) (s) = f (s, v(s)) , s ∈ Ω, v ∈ H1 (Ω) . (7)

Note that the Sobolev space Hm (Ω) is the closure of Cm
(
Ω
)
using the norm

‖g‖Hm(Ω) =

√∑
|i|≤m

‖Dig‖2L2(Ω), g ∈ Cm
(
Ω
)
, m ≥ 1

with i a multi-integer, i = (i1, . . . , id) , |i| = i1 + · · ·+ id, and

Dig (s) =
∂|i|g (s)

∂si11 · · · ∂s
id
d

.

The space H1
0 (Ω) is the closure of C1

0 (Ω) using ‖·‖H1(Ω), where elements of

C1
0 (Ω) ⊆ C1

(
Ω
)
are zero on some open neighborhood of the boundary of Ω.
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Noting (4) and (5), it can be assumed that A is a strongly elliptic operator
on H1

0 (Ω), namely

A (v, v) ≥ c0 ‖v‖2H1(Ω) , ∀v ∈ H1
0 (Ω)

for some finite c0 > 0. Reformulate (1)-(2) as the following variational problem:
find u ∈ H1

0 (Ω) for which

A (u,w) = (F (u) , w) , ∀w ∈ H1
0 (Ω) . (8)

Throughout this paper we assume the variational reformulation of the problem
(1)-(2) has a locally unique solution u ∈ H1

0 (Ω). For analyses of the existence
and uniqueness of a solution to (1)-(2), see Zeidler [16, §28.5].
In the following §2 we define our spectral method for the case that Ω = Bd;

and following that we show how to reformulate the problem (1)-(2) for a general
smooth region Ω as an equivalent problem over Bd. This follows the earlier
development in [2]. In §3 we present a convergence analysis for our numerical
method, an approach using results from the numerical analysis of nonlinear
integral equations. Implementation of the method is discussed in §4, followed
by numerical examples in §5. An extension to a Neumann boundary value
problem is given in §6.

2 A spectral method

Begin with the special case Ω = Bd, and then move to a general region Ω. Let
Xn denote a finite-dimensional subspace of H1

0

(
Bd
)
, and let

{
ψ1, . . . , ψNn

}
be

a basis of Xn. Later a basis is given by using polynomials of degree ≤ n over
Rd, denoted by Πd

n, with Nn the dimension of Πd
n. An approximating solution

to (8) is sought by finding un ∈ Xn such that

A (un, w) = (F (un) , w) , ∀w ∈ Xn. (9)

More precisely, find

un (x) =

Nn∑
`=1

α`ψ` (x) (10)

that satisfies the nonlinear algebraic system

Nn∑
`=1

α`

∫
Bd

 d∑
i,j=1

ai,j(x)
∂ψ`(x)

∂xi

∂ψk(x)

∂xj
+ γ (x)ψ` (x)ψk (x)

 dx
=

∫
Bd
f

(
x,

Nn∑
`=1

α`ψ` (x)

)
ψk(x) dx, k = 1, . . . , Nn.

(11)

As notation, we generally use the variable x when considering Bd and the vari-
able s when considering Ω.
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To obtain a space for approximating the solution u of (1)-(2), proceed as
follows. Denote by Πd

n the space of polynomials in d variables that are of degree
≤ n: p ∈ Πd

n if it has the form

p(x) =
∑
|i|≤n

aix
i1
1 x

i2
2 . . . xidd ,

i = (i1, . . . , id), |i| = i1 + · · · id. As the approximation space over Bd, choose

Xn =
{(

1− |x|2
)
p(x) | p ∈ Πd

n

}
⊆ H1

0

(
Bd
)

(12)

Let Nn = dimXn = dim Πd
n. For d = 2, Nn = (n+ 1) (n+ 2) /2. Practical

implementation of the numerical method (9)-(11) is discussed in §4.

2.1 Transformation of the domain Ω

For the more general problem (1)-(2) over a general region Ω, we reformulate
it as a problem over Bd. Begin by reviewing some ideas from [2], to which the
reader is referred for additional details.
Assume the existence of a function

Φ : Bd 1−1−→
onto

Ω (13)

with Φ a twice—differentiable mapping, and let Ψ = Φ−1 : Ω
1−1−→
onto

Bd. For

v ∈ L2 (Ω), let

ṽ(x) = v (Φ (x)) , x ∈ Bd (14)

and conversely for ṽ ∈ L2
(
Bd
)
,

v(s) = ṽ (Ψ (s)) , s ∈ Ω. (15)

Assuming v ∈ H1 (Ω), it is straightforward to show

∇xṽ (x) = J (x)
T ∇sv (s) , s = Φ (x)

with J (x) the Jacobian matrix for Φ over the closed unit ball Bd,

J(x) ≡ (DΦ) (x) =

[
∂Φi(x)

∂xj

]d
i,j=1

, x ∈ Bd. (16)

To use our method for problems over a region Ω, it is necessary to know explicitly
the functions Φ and J . The creation of such a mapping Φ is taken up in [5] for
cases in which only a boundary mapping is known, from Sd−1 ≡ ∂Bd to ∂Ω, a
common way to define the region Ω.

Assume
det J(x) 6= 0, x ∈ Bd. (17)
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Similarly,
∇sv(s) = K(s)T∇xṽ(x), x = Ψ(s)

with K(s) the Jacobian matrix for Ψ over Ω. By differentiating the identity

Ψ (Φ (x)) = x, x ∈ Bd

it follows that
K (Φ (x)) = J (x)

−1
.

Assumptions about the differentiability of ṽ (x) can be related back to assump-
tions on the differentiability of v(s) and Φ(x).

Lemma 1 Let Φ ∈ Cm
(
Bd
)
. If v ∈ Ck

(
Ω
)
, then ṽ ∈ Cq

(
Bd
)
with q =

min {k,m}. Similarly, if v ∈ Hk (Ω), then ṽ ∈ Hq
(
Bd
)
.

A proof is straightforward using (14). A converse statement can be made as
regards ṽ, v, and Ψ in (15). Moreover, the differentiability of Φ over Bd is
exactly the same as that of Ψ over Ω.

2.2 Reformulation from Ω to Bd

Applying this transformation to the equation (1), it follows that

−
d∑

i,j=1

∂

∂xi

(
det (J(x)) ãi,j(x)

∂ũ(x)

∂xj

)
+ γ̃ (x) ũ(x)

= f̃ (x, ũ(x)) , x ∈ Bd, (18)

where

f̃ (x, ũ(x)) = det (J(x)) f (Φ (x) , ũ(x)) , x ∈ Bd (19)

γ̃ (x) = det (J(x)) γ (Φ (x)) (20)

and

Ã (x) = J (x)
−1
A(Φ (x))J (x)

−T

≡ [ãi,j(x)]
d
i,j=1 . (21)

A derivation of this is given in [2, Thm. 3]. With (18), also impose the Dirichlet
condition

ũ(x) = 0, x ∈ Bd. (22)

The problem of solving (18)-(22) is completely equivalent to that of solving
(1)-(2). Also, the differential operator in (18) will be strongly elliptic. As
noted earlier, the creation of such a mapping Φ is discussed at length in [5] for
extending a boundary mapping ϕ : Sd−1 → ∂Ω to a mapping Φ satisfying (13)
and (17).
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3 Error analysis

In [14] Osborn converted a finite element method for solving an eigenvalue
problem for an elliptic partial differential equation to a corresponding numerical
method for approximating the eigenvalues of a compact integral operator. He
then used results for the latter to obtain convergence results for his finite element
method. We use his construction to convert the numerical method for (8) to
a corresponding method for finding a fixed point of a completely continuous
nonlinear integral operator, and this latter numerical method will be analyzed
using the results given in [12, Chap. 3] and [1].
Important results about polynomial approximation have been given recently

by Li and Xu [10], and they are critical to our convergence analysis.

Theorem 2 (Li and Xu) Let r ≥ 2. Given v ∈ Hr
(
Bd
)
, there exists a sequence

of polynomials pn ∈ Πd
n such that

‖v − pn‖H1(Bd) ≤ εn,r ‖v‖Hr(Bd) , n ≥ 1. (23)

The sequence εn,r = O
(
n−r+1

)
and is independent of v.

Theorem 3 (Li and Xu) Let r ≥ 2. Given v ∈ H1
0

(
Bd
)
∩Hr

(
Bd
)
, there exists

a sequence of polynomials pn ∈ Xn such that

‖v − pn‖H1(Bd) ≤ εn,r ‖v‖Hr(Bd) , n ≥ 1. (24)

The sequence εn,r = O
(
n−r+1

)
and is independent of v.

These two results are Theorems 4.2 and 4.3, respectively, in [10]. For the second
theorem, also see the comments immediately following [10, Thm. 4.3].

For the convergence analysis, we follow closely the development in Osborn
[14, §4(a)]. We omit the details, noting only those different from [14, §4(a)].
Taking f to be a given function in L2

(
Bd
)
, the element u ∈ H1

0 (Ω) for which

A (u,w) = (f, w) , ∀w ∈ H1
0 (Ω) ,

can be written as u = T f with T : L2

(
Bd
)
→ H1

0

(
Bd
)
∩H2

(
Bd
)
and bounded,

‖T f‖H2(Bd) ≤ C ‖f‖L2(Bd) , f ∈ L2

(
Bd
)
.

The operator is the ‘Green’s integral operator’for the associated Dirichlet prob-
lem. More generally, for r ≥ 0, T : Hr

(
Bd
)
→ H1

0

(
Bd
)
∩Hr+2

(
Bd
)
,

‖T f‖Hr+2(Bd) ≤ Cr ‖f‖Hr(Bd) , f ∈ Hr
(
Bd
)
.

In addition, T is a compact operator on L2

(
Bd
)
into H1

0

(
Bd
)
, and more gen-

erally, it is compact from Hr
(
Bd
)
into H1

0

(
Bd
)
∩ Hr+1

(
Bd
)
. With our as-

sumptions, T is self-adjoint on L2

(
Bd
)
, although Osborn allows more general
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non-symmetric operators L. The same argument is applied to the numerical
method (9) to obtain a solution un = Tnf with Tn having properties similar to
T and also having finite rank with range in Xn.
The major assumption of Osborn is that his finite element method satisfies

an approximation inequality (see [14, (4.7)]), and the above theorems of Li and
Xu are the corresponding statements for our numerical method. The argument
in [14, §4(a)] then shows

‖T − Tn‖L2→L2 ≤
c

n2
. (25)

Our variational problems (8) and (9) can now be reformulated as

u = T F (u) , (26)

un = TnF (un) , (27)

and we regard these as equations on some subset of L2

(
Bd
)
, dependent on the

form of the function f defining F . The operator F of (7) is sometimes called
the Nemytskii operator; see [12, Chap. 1, §2] for its properties.
It is necessary to assume that F is defined and continuous over some open

subset D ⊆ L2

(
Bd
)
:

v ∈ D =⇒ f (·, v) ∈ L2

(
Bd
)
,

vn → v in L2

(
Bd
)

=⇒ f (·, vn)→ f (·, v) in L2

(
Bd
)
.

(28)

These are somewhat restrictive. As an example in one variable, if b (·, v) = v2

and if v ∈ L2 (0, 1) then b (·, v) may not belong to L2 (0, 1). The function
v (s) ≡ 1/ 3

√
s is in L2 (0, 1), whereas v (s)

2
= 1/

3
√
s2 does not belong to L2 (0, 1).

An analysis of when (28) is true can be based on [13]. Generally, if f (·, v) is
bounded by a linear function of v, then (28) is true. Experimentally, the spectral
method (9) works well for cases with f (·, v) increasing at greater than a linear
rate in v.
The operators T and Tn are linear, and the Nemytskii operator F provides

the nonlinearity. The reformulation (26)-(27) can be used to give an error
analysis of the spectral method (9). The mapping T F is a compact nonlinear
operator on an open domain D of a Banach space X , in this case L2

(
Bd
)
. Let

V ⊆ D be an open set containing an isolated fixed point solution u∗ of (26).
We can define the index of u∗ (or more properly, the rotation of the vector field
v − T F (v) as v varies over the boundary of V ); see [12, Part II].

More generally, let K be a completely continuous operator, and let it have an
isolated fixed point u∗ of nonzero index. This fixed point is stable in the sense
that small compact perturbations of K, say K̃, lead to one or more fixed points
for K̃ with those fixed points all close to u∗. For an overview of the concepts of
index and rotation, see [1, Properties P1-P5, pp. 801-802]. Property P4 gives
a way of computing the index of u∗, and Property P5 gives further intuition as
to the stability implications of a fixed point having a nonzero index.
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Theorem 4 Assume the problem (8) with Ω = Bd has a solution u∗ that is
unique within some open neighborhood V of u∗; further assume that u∗ has
nonzero index. Then for all suffi ciently large n, (9) has one or more solutions
un within V , and all such un converge to u∗ as n→∞.

Proof. This is an application of the methods of [12, Chap. 3, Sec. 3] or [1,
Thm. 3]. A suffi cient requirement is the norm convergence of Tn to T , given in
(25); [1, Thm. 3] uses a weaker form of (25).

The most standard case of a nonzero index involves a consideration of the
Frechet derivative of F ; see [4, §5.3]. In particular, the linear operatorF ′ (v) is
given by

(F ′ (v)w) (x) =
∂f (x, z)

∂z

∣∣∣∣
z=v(x)

× w(x)

Theorem 5 Assume the problem (8) with Ω = Bd has a solution u∗ that is
unique within some open neighborhood V of u∗; and further assume that I −
T F ′ (u∗) is invertible over L2

(
Bd
)
. Then u∗ has a nonzero index. Moreover,

for all suffi ciently large n there is a unique solution u∗n to (27) within V , and
u∗n converges to u

∗ with

‖u∗ − u∗n‖L2(Bd) ≤ c ‖(T − Tn)F (u∗)‖L2(Bd)

≤ c

n2
‖F (u∗)‖L2(Bd) . (29)

Proof. Again this is an immediate application of results in [12, Chap. 3, Sec.
3] or [1, Thm. 4].

Remark. To give some intuition to our assumption that I−T F ′ (u∗) is invert-
ible, consider a rootfinding problem for a real-valued function f (x) with x ∈ R,
letting α denote the root being sought. Then our invertibility assumption is the
analogue of assuming f ′ (α) 6= 0.

To improve upon this last result (29), we need to bound ‖(T − Tn) g‖L2(Bd)

when g ∈ Hr
(
Bd
)
for some r ≥ 1. Adapting the proof of [14, (4.9)] to our

polynomial approximations and using Theorem 3,

‖(T − Tn) g‖H1(Bd) ≤
c

nr+1
‖g‖Hr(Bd).

Using the conservative bound

‖v‖L2(Bd) ≤ ‖v‖H1(Bd) ,

we have
‖(T − Tn) g‖L2(Bd) ≤

c

nr+1
‖g‖Hr(Bd). (30)

Corollary 6 For some r ≥ 0, assume F (u∗) ∈ Hr
(
Bd
)
. Then

‖u∗ − u∗n‖L2(Bd) ≤ O
(
n−(r+1)

)
‖F (u∗)‖Hr(Bd) . (31)
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We conjecture that this bound and (30) can be improved to O
(
n−(r+2)

)
.

For the case r = 0, an improved result is given by (29).

A nonhomogeneous boundary condition. Consider replacing the homoge-
neous boundary condition (2) with the nonhomogeneous condition

u (s) = g (s) , s ∈ ∂Ω,

in which g is a continuously differentiable function over ∂Ω. One possible ap-
proach to solving the Dirichlet problem with this nonzero boundary condition
is to begin by calculating a differentiable extension of g, call it G : Ω→ R, with

G ∈ C2
(
Ω
)
,

G (s) = g (s) , s ∈ ∂Ω.

With such a function G, introduce v = u−G where u satisfies (1)-(2). Then v
satisfies the equation

Lv (s) = f (s, v(s) +G(s))− LG (s) , s ∈ Ω, (32)

v (s) = 0, s ∈ ∂Ω. (33)

This problem is in the format of (1)-(2).
Sometimes finding an extension G is straightforward; for example, g ≡ 1 over

∂Ω has the obvious extension G (s) ≡ 1. Often, however, we must compute an
extension. We begin by first obtaining an extension G using a method from [5],
and then we approximate it with a polynomial of some reasonably low degree.
For example, see the construction of least squares approximants in [3].

4 Implementation

We consider how to set up the nonlinear system of (9)-(11) and how to solve
it. Because we intend to apply the method to problems defined initially over a
region Ω other than Bd, we re-write (9)-(11) for this situation. The transformed
equation we are considering is the equation (18). We look for a solution

ũn (x) =

Nn∑
`=1

α`ψ` (x) ,

and un (s) is to be the equivalent solution considered over Ω: ũn (x) ≡ un (Φ (x)),
x ∈ Bd. The coeffi cients {α`|` = 1, 2, . . . , Nn} are the solutions of

Nn∑
k=1

αk

∫
Bd

 d∑
i,j=1

det J (x) ãi,j(x)
∂ψk(x)

∂xj

∂ψ`(x)

∂xi
+ γ̃(x)ψk(x)ψ`(x)

=

∫
Bd
f̃

(
x,

Nn∑
k=1

αkψk (x)

)
ψ` (x) dx, ` = 1, . . . , Nn.

(34)
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For the definitions of γ̃, f̃ , and Ã (x) ≡ [ãi,j(x)]
d
i,j=1, recall (19)-(21).

When solving the nonlinear system (34), it is necessary to have an initial
guess ũ(0)

n (x) =
∑Nn
`=1 α

(0)
` ψ` (x). In our examples, we begin with a very small

value for n (say n = 1), use ũ(0)
n = 0, and then solve (34) by some iterative

method. Then increase n, using as an initial guess the final solution obtained
with a preceding n. This has worked well in our computations, allowing us
to work our way to the solution of (34) for much larger values of n. For the
iterative solver, we have used the Matlab program fsolve, but will work in
the future on improving it.

4.1 Planar problems

The dimension of Π2
n is

Nn =
1

2
(n+ 1) (n+ 2) .

For notation, we replace x with (x, y). We create a basis for Xn by first choosing
an orthonormal basis for Π2

n, say
{
ϕm,k|k = 0, 1, . . . ,m; m = 0, 1, . . . , n

}
. Then

define
ψm,k (x, y) =

(
1− x2 − y2

)
ϕm,k (x, y) . (35)

How do we choose the orthonormal basis {ϕ`(x, y)}N`=1 for Π2
n? Unlike the situa-

tion for the single variable case, there are many possible orthonormal bases over
B2, the unit disk in R2. We have chosen one that is convenient for our compu-
tations. These are the "ridge polynomials" introduced by Logan and Shepp [11]
for solving an image reconstruction problem. A choice that is more effi cient in
calculational costs is given in [3]; but we continue to use the ridge polynomials
because we are re-using and modifying computer code written previously for use
in [2], [3], [6], and [7].
We summarize here the results needed for our work. For general d ≥ 2, let

Vn =
{
P ∈ Πd

n | (P,Q) = 0 ∀Q ∈ Πd
n−1

}
,

the polynomials of degree n that are orthogonal to all elements of Πd
n−1. Then

Πd
n = V0 ⊕ V1 ⊕ · · · ⊕ Vn (36)

is a decomposition of Πd
n into orthonormal subspaces. It is standard to construct

orthonormal bases of each Vn and to then combine them to form an orthonormal
basis of Πd

n using this decomposition.
For d = 2, Vn has dimension n + 1, n ≥ 0. As an orthonormal basis of Vn

we use

ϕn,k(x, y) =
1√
π
Un (x cos (kh) + y sin (kh)) , (x, y) ∈ D, h =

π

n+ 1
(37)
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for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of the second
kind of degree n:

Un(t) =
sin (n+ 1) θ

sin θ
, t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . .

The family
{
ϕn,k

}n
k=0

is an orthonormal basis of Vn.
As a basis of Π2

n, we order
{
ϕm,k

}
lexicographically based on the ordering

in (37) and (36):

{ϕ`}
Nn
`=1 =

{
ϕ0,0, ϕ1,0, ϕ1,1, ϕ2,0, . . . , ϕn,0, . . . , ϕn,n

}
.

From (35), the family
{
ψm,k

}
is ordered the same.

To calculate the first order partial derivatives of ψn,k(x, y), we need U
′

n(t).
The values of U

′

n(t) and U ′n(t) are evaluated using the standard triple recursion
relations

Un+1(t) = 2tUn(t)− Un−1(t),

U
′

n+1(t) = 2Un(t) + 2tU
′

n(t)− U
′

n−1(t).

For the numerical approximation of the integrals in (34), which are over B2,
the unit disk, we use the formula∫

B2
g(x, y) dx dy ≈ 2π

2q + 1

q∑
l=0

2q∑
m=0

ĝ

(
rl,

2πm

2q + 1

)
ωlrl (38)

with ĝ (r, θ) ≡ g (r cos θ, r sin θ). Here the numbers rl and ωl are the nodes and
weights of the (q + 1)-point Gauss-Legendre quadrature formula on [0, 1]. Note
that ∫ 1

0

p(x)dx =

q∑
l=0

p(rl)ωl,

for all single-variable polynomials p(x) with deg (p) ≤ 2q+ 1. The formula (38)
uses the trapezoidal rule with 2q + 1 subdivisions for the integration over B2

in the azimuthal variable. This quadrature (38) is exact for all polynomials
g ∈ Π2

2q.

4.2 The three—dimensional case

We change our notation, replacing x ∈ B3 with (x, y, z). In R3, the dimension
of Π3

n is

Nn =

(
n+ 3

3

)
=

1

6
(n+ 1) (n+ 2) (n+ 3) .

11



Here we choose orthonormal polynomials on the unit ball as described in [8],

ϕn,j,k(x) =
1

hn,j,k
C
j+k+ 3

2

n−j−k (x)(1− x2)
j
2×

Ck+1
j

(
y√

1− x2

)
(1− x2 − y2)k/2C

1
2

k

(
z√

1− x2 − y2

)
, (39)

j, k = 0, . . . , n, j + k ≤ n, n ∈ N.

The function ϕn,j,k(x) is a polynomial of degree n, hn,j,k is a normalization con-
stant, and the functions Cλi are the Gegenbauer polynomials. The orthonormal
base {ϕn,j,k}n,j,k and its properties can be found in [8, Chapter 2].
We can order the basis lexicographically. To calculate these polynomials we

use a three—term recursion whose coeffi cients are given in [3].
For the numerical approximation of the integrals in (34), we use a quadrature

formula for the unit ball B3,∫
B3
g(x) dx =

∫ 1

0

∫ 2π

0

∫ π

0

ĝ(r, θ, φ) r2 sin(φ) dφ dθ dr ≈ Qq[g],

Qq[g] :=

2q∑
i=1

q∑
j=1

q∑
k=1

π

q
ωj νkĝ

(
ζk + 1

2
,
π i

2q
, arccos(ξj)

)
.

Here ĝ(r, θ, φ) = g(x) is the representation of g in spherical coordinates. For the
θ integration we use the trapezoidal rule, because the function is 2π−periodic
in θ. For the r direction we use the transformation∫ 1

0

r2v(r) dr =

∫ 1

−1

(
t+ 1

2

)2

v

(
t+ 1

2

)
dt

2

=
1

8

∫ 1

−1

(t+ 1)2v

(
t+ 1

2

)
dt

≈
q∑

k=1

1

8
ν′k︸︷︷︸

=:νk

v

(
ζk + 1

2

)
,

where the ν′k and ζk are the weights and the nodes of the Gauss quadrature
with q nodes on [−1, 1] with respect to the inner product

(v, w) =

∫ 1

−1

(1 + t)2v(t)w(t) dt.

The weights and nodes also depend on q but we omit this index. For the φ
direction we use the transformation∫ π

0

sin(φ)v(φ) dφ =

∫ 1

−1

v(arccos(φ)) dφ ≈
q∑
j=1

ωjv(arccos(ξj)),

12



where the ωj and ξj are the nodes and weights for the Gauss—Legendre quadra-
ture on [−1, 1]. For more information on this quadrature rule on the unit ball
in R3, see [15].
Finally we need the gradient to approximate the integral in (34). To do this

one can modify the three—term recursion in [3] to calculate the partial derivatives
of ϕn,j,k(x).

5 Numerical examples

We begin with a planar example. Consider the problem

−∆u (s, t) = f (s, t, u (s, t)) , (s, t) ∈ Ω,
u (s, t) = 0, (s, t) ∈ ∂Ω.

(40)

Note the change in notation, from s ∈ R2 to (s, t) ∈ R2.

As an illustrative region Ω, we use the mapping Φ : B2 → Ω, (s, t) = Φ (x, y),

s = x− y + ax2,
t = x+ y,

(41)

with 0 < a < 1. It can be shown that Φ is a 1-1 mapping from the unit disk B2
.

In particular, the inverse mapping Ψ : Ω→ B2
is given by

x =
1

a

[
−1 +

√
1 + a (s+ t)

]
y =

1

a

[
at−

(
−1 +

√
1 + a (s+ t)

)] (42)

In Figure 1(a), the mapping for a = 0.95 is illustrated by giving the images
in Ω of the circles r = j/10, j = 1, . . . , 10 and the radial lines θ = jπ/10,
j = 1, . . . , 20. An alternative polynomial mapping ΦII of degree 2 for this
region is computed using the integration/interpolation method of [5, §3]; and
ΦII = Φ on the boundary.∂Ω as defined by (41). It is illustrated in Figure
1(b). This boundary mapping ΦII results in better error characteristics for our
spectral method as compared to the transformation Φ.
As discussed earlier, we solve the nonlinear system (34) for a lower value

of the degree n, usually with an initial guess associated with u(0)
n = 0. As we

increase n, we use the approximate solution from a preceding n to generate an
initial guess for the new value of n. We use the Matlab program fsolve to
solve the nonlinear system. In the future we plan to look at other numerical
methods that take advantage of the special structure of (34). To estimate the
error, we use as a true solution a numerical solution associated with a larger
value of n.
For a particular case, consider

f (s, t, z) =
cos (π st)

1 + z2
. (43)

13
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Figure 1: Illustrations of mappings on B2 for the region Ω given by (41)

A graph of the solution is shown in Figure 2, along with numerical results for
n = 5, 6, . . . , 20, with the solution u25 taken as the true solution. We use both
the mapping Φ of (41) and the mapping ΦII . Using either of the mappings, Φ
or ΦII , the graphs indicate an exponential rate of convergence for the mappings
{un}. The mapping ΦII is better behaved, as can be seen by visually comparing
the distortion in the graphs of Figure 1. This is the probable reason for the
improved convergence of the spectral method when using ΦII in comparison to
Φ.
As a second planar example we consider the stationary Fisher equation where

the function f in (40) is given by

f(s, t, u) = 100u(1− u), (s, t) ∈ Ω.

Fisher’s equation is used to model the spreading of biological populations and
from f we see that u = 0 and u = 1 are stationary points for the time dependent
equation on an unbounded domain; see [9, Chap. 17]. The original Fisher equa-
tion does not contain the term 100, but for small domains the Fisher equation
might have no nontrivial solution and the factor 100 corresponds to a scaling
by a factor 10 to guarantee the existence of a nontrivial solution on the domain
Ω. The domain Ω is the interior of the curve

ϕ(t) = (3 + cos(t) + 2 sin(t)) (cos t, sin t) (44)

We studied this domain in earlier papers (see [5]) where we called this domain
a ‘Limacon domain’. In the article [5] we also describe how we use equation

(44) to create a domain mapping Φ : B2 → Ω by two dimensional interpolation.
Similar to the previous example we calculate the numerical solutions un for
n = 1, . . . , 40, where we use the coeffi cients of un−1 as a starting value u

(0)
n for

14



­2
­1

0
1

2
3 ­1.5

­1

­0.5

0

0.5

1

1.5

­0.1

0

0.1

0.2

0.3

t

s

The solution u

5 10 15 20
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

n

U s ingΦ

U singΦ
I I

The maximum error

Figure 2: The solution u to (40) with right side (43) and its error

n = 2, . . . , 40 and for u(0)
1 we use coeffi cients which are non zero (all equal to

10), so the iteration of fsolve does not converge to the trivial solution. As a
reference solution we calculated u45; see Figure 3.
The shape of the solution is very much like we expect it, the function is close

to 1 inside the domain Ω and drops off very steeply to the boundary value 0.
By looking at the reference solution in Figure 3 we also see that the function
will be harder to approximate by polynomials than the function in the previous
example, because of the sharp drop off. This becomes clear when we look at the
convergence, also shown in Figure 3. The final error is in the range of 10−3—
10−4 with a polynomial degree of 40, so the error is in the same range as in
the previous example where we only used polynomials up to degree 20 for the
approximation. Still the graph suggests that the convergence is exponential as
predicted by (31) for the L2 norm.

A three dimensional example. In the following we present a three dimen-
sional example. We use the mapping Φ : B3 → Ω, (s, t, v) = Φ (x, y, z), defined
by

s = x− y + ax2,
t = x+ y,
v = 2z + bz2,

(45)

where a = b = 0.5. We have used this mapping in a previous article, see [2],
where one finds plots of the surface ∂Ω. On Ω we solve

−∆u (s, t, v) = f (s, t, v, u (s, t, v)) , (s, t, v) ∈ Ω
u (s, t, v) = 0, (s, t, v) ∈ ∂Ω

(46)

15



6420

s
1

­ 2­ 4
­ 2

0

2

s
2

4

­ 0 .5

0

0 .5

1

1 .5

6

Solution for Fisher’s equation

0 5 10 15 20 25 30 35 40
10

10

10

10

10
0

10
1

n

Error for Fisher’s equation

Figure 3: The reference solution and maximum error for Fisher’s equation

where f is defined by

f(s, t, v, u) =
cos(6s+ t+ v)

1 + u2
, (s, t, v) ∈ Ω.

We calculated approximate solutions u1, . . . , u20 and used u25 as a reference
solution. In Figure 4 we see the convergence in the maximum norm on a grid in
B3
. As in our previous examples the graph suggests that we have exponential

convergence.
In our final Figure 5 we show the graph of the reference solution u25 on

B3 ∩Pν where Pν is a plane in R3 normal to the vector ν. We have used several
normal vectors ν1 = (0, 0, 1)T , so Pν1 is the xy—plane, ν2 = (0, 0, 1)T , so Pν2
is the xz—plane, ν3 = (1, 0, 0)T , so Pν3 is the yz—plane, and ν4 = (1, 1, 1)T , so
Pν4 is a diagonal plane. Figure 5 shows that the solution reflects the periodic
character of the nonlinearity f . In the yz—plane the oscillation of f is much
slower which is also visible in the plot along the yz—plane.

6 A Neumann boundary value problem

Consider the boundary value problem

−∆u (s) + γ (s)u (s) = f (s, u(s)) , s ∈ Ω, (47)

∂u (s)

∂ns
= 0, s ∈ ∂Ω, (48)

with ns the exterior unit normal to ∂Ω at the boundary point s. Later we discuss
an extension to a nonzero normal derivative over ∂Ω. A necessary condition for
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Figure 4: For the problem (46), the convergence of the errors ‖u− un‖∞

the unknown function u∗ to be a solution of (47)-(48) is that it satisfy∫
Ω

f (s, u∗ (s)) ds =

∫
Ω

γ (s)u∗ (s) ds. (49)

With our assumption that (47)-(48) has a locally unique solution u∗, (49) is
satisfied.
Proceed in analogy with the earlier treatment of the Dirichlet problem. Use

integration by parts to show that for arbitrary functions u ∈ H2 (Ω) , v ∈
H1 (Ω), ∫

Ω

v(s) [−∆u(s) + γ(s)u] ds

=

∫
Ω

[Ou(s) · Ov(s) + γ(s)u(s)v(s)] ds−
∫
∂Ω

v (s)
∂u(s)

∂ns
ds. (50)

Introduce the bilinear functional

A (v1, v2) =

∫
Ω

[Ov1(s) · Ov2(s) + γ(s)v1(s)v2(s)] ds.

The variational form of the Neumann problem (47)-(48) is as follows: find u ∈
H1 (Ω) such that

A (u, v) = (F (u) , v) , ∀v ∈ H1 (Ω) (51)
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with, as before, the operator F defined by

(F (u)) (s) = f(s, u (s)).

The theory for (51) is essentially the same as for the Dirichlet problem in its
reformulation (8).
Because of changes that take place in the normal derivative under the trans-

formation s = Φ (x), we modify the construction of the numerical method. In
the actual implementation, however, it will mirror that for the Dirichlet prob-
lem. For the approximating space, let

Xn =
{
q | q ◦ Φ = p for some p ∈ Πd

n

}
.

For the numerical method, we seek u∗n ∈ Xn for which

A (u∗n, v) = (F (u∗n) , v) , ∀v ∈ Xn. (52)

A similar approach was used in [6] for the linear Neumann problem.
To carry out a convergence analysis for (52), it is necessary to compare

convergence of approximants in Xn to that of approximants from Πd
n. For sim-

plicity in notation, we assume Φ ∈ C∞
(
Bd
)
. Begin by referring to Lemma 1

and its discussion in §2.1, linking differentiability in Hm (Ω) and Hm
(
Bd
)
. In

particular, for m ≥ 0,

c1,m ‖v‖Hm(Ω) ≤ ‖ṽ‖Hm(Bd) ≤ c2,m ‖v‖Hm(Ω) , v ∈ Hm (Ω) , (53)

with ṽ = v ◦ Φ, with constants c1,m, c2,m > 0.
Also recall Theorem 2 concerning approximation of functions ṽ ∈ Hr

(
Bd
)

and link this to approximation of functions v ∈ Hr (Ω).

Lemma 7 Let Φ ∈ C∞
(
Bd
)
. Assume v ∈ Hr (Ω) for some r ≥ 2. Then there

exist a sequence qn ∈ Xn, n ≥ 1, for which

‖v − qn‖H1(Ω) ≤ εn,r ‖v‖Hr(Ω) , n ≥ 1. (54)

The sequence εn,r = O
(
n−r+1

)
and is independent of v.

Proof. Begin by applying Theorem 2 to the function ṽ (x) = v (Φ (x)). Then
there is a sequence of polynomials pn ∈ Πd

n for which

‖ṽ − pn‖H1(Bd) ≤ εn,r ‖ṽ‖Hr(Bd) , n ≥ 1.

Let qn = pn ◦ Φ−1. The result then follows by applying (53).

The theoretical convergence analysis now follows exactly that given earlier
for the Dirichlet problem. Again we use the construction from [14, §4(a)], but
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now use the integral operator T arising from the zero Neumann boundary con-
dition. As with the Dirichlet problem, it is necessary to have A be strongly
elliptic, and for that reason and without any loss of generality, assume

min
s∈Ω

γ (s) > 0.

The solution of (51) can be written as u = T F (u) with T : L2

(
Bd
)
→ H2

(
Bd
)

and bounded. Use Theorem 2 in place of Theorem 3 for polynomial approxima-
tion error, as in the derivation of (29). Theorems 4 and 5, along with Corollary
6 are valid for the spectral method for the Neumann problem (47)-(48).

6.1 Implementation

As in §4, we look for a solution to (51) by looking for

un (s) =

Nn∑
`=1

α`ψ` (s) (55)

with {ψ` | 1 ≤ j ≤ Nn} a basis for Xn. The system associated with (51) that
is to be solved is

Nn∑
`=1

α`

∫
Ω

 d∑
i,j=1

ai,j(s)
∂ψ`(s)

∂si

∂ψk(s)

∂sj
+ γ (s)ψ` (s)ψk (s)

 ds
=

∫
Ω

f

(
s,

Nn∑
`=1

α`ψ` (s)

)
ψk(s) ds, k = 1, . . . , Nn.

(56)

For such a basis {ψ`}, we begin with an orthonormal basis for Πn, say
{ϕj | 1 ≤ j ≤ Nn}, and then define

ψ` (s) = ϕ` (x) with s = Φ (x) , 1 ≤ ` ≤ N.
The function ũn (x) ≡ un (Φ (x)), x ∈ Bd, is to be the equivalent solution
considered over Bd. Using the transformation of variables s = Φ (x) in the
system (56), the coeffi cients {α`|` = 1, 2, . . . , Nn} are the solutions of

Nn∑
k=1

αk

∫
Bd

 d∑
i,j=1

ãi,j(x)
∂ϕk(x)

∂xj

∂ϕ`(x)

∂xi
+ γ(Φ (x))ϕk(x)ϕ`(x)

det J (x) dx

=

∫
Bd
f

(
x,

Nn∑
k=1

αkϕk (x)

)
ϕ` (x) detJ (x) dx, ` = 1, . . . , Nn.

(57)
For the equation (47) the matrix A (s) is the identity, and therefore from (21),

Ã (x) = J (x)
−1
J (x)

−T
.

The system (57) is much the same as (34) for the Dirichlet problem, differing
only by the basis functions being used for the solution ũn. We use the same
numerical integration as before, and also the same orthonormal basis for Πd

n.
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6.2 Numerical example

Consider the problem

−∆u (s, t) + u (s, t) = f (s, t, u (s, t)) , (s, t) ∈ Ω,
∂u (s)

∂ns
= 0, (s, t) ∈ ∂Ω,

(58)

with Ω the elliptical region ( s
a

)2

+

(
t

b

)2

≤ 1.

The mapping of B2 onto Ω is simply

Φ (x, y) = (ax, by) , (x, y) ∈ B2
.

As before, note the change in notation, from s ∈ Ω to (s, t) ∈ Ω, and from
x ∈ B2 to (x, y) ∈ B2.
The right side f is given by

f (s, t, u) = −eu + f1 (s, t) (59)

with the function f1 determined from the given true solution and the equation
(58) to define f (s, t, u). In our case,

u (s, t) =

(
1−

( s
a

)2

−
(
t

b

)2
)2

cos
(
2s+ t2

)
. (60)

Easily this has a normal derivative of zero over the boundary of Ω.
The nonlinear system (57) was solved using fsolve fromMatlab, as earlier

in §5. Our region Ω uses (a, b) = (2, 1). Figure 6 contains the approximate
solution for n = 18 and also shows the maximum error over Ω. Again, the
convergence appears to be exponential.

6.3 Handling a nonzero Neumann condition

Consider the problem

−∆u (s) + γ (s)u (s) = f (s, u(s)) , s ∈ Ω, (61)

∂u (s)

∂ns
= g(s), s ∈ ∂Ω (62)

with a nonzero Neumann boundary condition. Let u∗ (s) denote the solution
we are seeking. A necessary condition for solvability of (61)-(62) is that∫

Ω

f (s, u∗ (s)) ds =

∫
Ω

γ (s)u∗ (s) ds−
∫
∂Ω

g (s) ds. (63)
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Figure 6: The solution u to (58) with right side (59) and true solution (60)

There are at least two approaches to extending our spectral method to solve
this problem.
First, consider the problem

−∆v (s) = c0, s ∈ Ω, (64)

∂v (s)

∂ns
= g(s), s ∈ ∂Ω, (65)

with c0 a constant. From (63), solvability of (64)-(65) requires∫
Ω

c0 ds = −
∫
∂Ω

g (s) ds (66)

to be satisfied. To achieve this, choose

c0 =
−1

Vol (Ω)

∫
∂Ω

g (s) ds.

A solution v∗ (s) exists, although it is not unique. The solution of (64)-(65) can
be approximated using the method given in [6]. Then introduce

w = u− v∗.

Substituting into (61)-(62), the new unknown function w∗ satisfies

−∆w (s) + γ (s)w (s) = f (s, w(s) + v∗ (s))− γ (s) v∗ (s)− c0, s ∈ Ω, (67)

∂w (s)

∂ns
= 0, s ∈ ∂Ω. (68)
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The methods of this section can be used to approximate w∗; and then use
u∗ = w∗ + v∗.
A second approach is to use (50) to reformulate (61)-(62) as the problem of

finding u = u∗ for which

A (u, v) = (F (u) , v) + ` (v) , ∀v ∈ H1 (Ω) (69)

with

` (v) =

∫
∂Ω

v (s) g (s) ds.

Thus we seek

un (s) =

Nn∑
`=1

α`ψ` (s)

for which
A (un, v) = (F (u) , v) + ` (v) , ∀v ∈ Xn. (70)

The first approach, that of (61)-(68), is usable, and the convergence analysis
follows from combining this paper’s analysis with that of [6]. Unfortunately, we
do not have a convergence analysis for this second approach, that of (69)-(70),
as the Green’s function approach of this paper does not seem to extend to it.
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