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Multivariate quadrature of a singular integrand

Kendall Atkinson* David Chien' Olaf Hansen?
December 25, 2020

Abstract

Consider an integral with a point singularity in its integrand, such as
p~ @ or log p. We introduce and discuss two methods for approximating
such integrals, in both two and three dimensions. The methods are first
introduced using the unit disk as the quadrature region, and then they are
extended to other regions and to three dimensions. The error behavior
of the numerical integration for singular points near to the boundary is
examined.
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AMS Subject Classification: 65D32

1 Introduction

Consider calculating the singular integral
1059 = [ fOogle=s|at. sc (1)
Q

with © an open bounded region in the plane R? and f a smooth function. This
particular integral satisfies the Poisson equation

ANJI(f;s) = —2nf(s), s €.

The integral I is called a planar Newtonian potential.
With this as motivation, consider calculating the more general integral

I(f:s) = /Q FOR(E—s) . seq. 2)

For example, consider

k(p)=p"" a <2, (3)
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k (p) =log p, (4)

in both cases with p > 0. The problem we study is whether we can find efficient
numerical methods for all & < 2 and all s € Q. We first introduce some ideas
for approximating such integrals over £ = B2, the unit disk. These can then
be extended to more general regions by using a transformation ® : B2 — Q,
which we illustrate in a later section. Our methods also transfer to integrands
with a more general point singularity. All of our methods use a smoothing of
the singularity, following it with a quadrature that benefits from the smoothing.
The numerical integration of singular functions has been studied before, and
thus there also have been a number of approximation techniques proposed for
their evaluation. A number of papers have been written on this topic; see, for
example, [7], [10], [11], [12], and [14]. In a later section we extend our ideas to
quadrature over other planar regions and over the unit ball B?; see §4, §5.

2 Smoothing the singularity: Method #1

We begin with the problem of approximating
I(g;s) = / g(w; s)dw, seB. (5)
B2

where g(w;s) is allowed to be singular at w = s, as in (2). A procedure that

has been used with univariate integrals is to make a change of the variable of

integration, creating a new integrand that is smoother. For univariate integrals,

see an example in [3, p.306], and an example for surface integrals is given in [4].
We look for mappings

o, : B2 =} B2 (6)
onto
with @, (s) = s which make the singular behaviour more manageable for w ~ s
when using a standard quadrature over B2. We then calculate approximately
the integral

Tgis) = [ o(@.(0):5) et Do ()] e (7

in which we have used the transformation w = ®, (t), t € B2. The quantity
|det D@ (t)| denotes the Jacobian of the mapping. We want this Jacobian to
decrease the singular behaviour associated around s with the integrand g in
().

Let s € B°. Then for an arbitrary point ¢ € EQ, t # s, draw a straight line
from s to t. Denote by P (t) the point at which the continuation of that line
intersects the boundary S! = dB?; cf. Figure 1. Define

jt — s/

[0 =s+T| ———
=5+ <|Ps<t>—82

) (t—s), t € B*\{s}. (8)
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Figure 1: Tlustration of Py (t)

The function T : [0, 1] — [0,1] is to satisfy, at a minimum,

T (r) >0, 0<r<l.
As t approaches tg = P; (t) on the boundary of B2, the fraction

s
P, (0) — s’

and consequently, @ (t) — to. With the above properties for T' (r), the mapping
. of (8) satisfies (6), and moreover,

b, (s) = s,

if &, is extended continuously.
As examples, we have the following.

T (r) =72, (10)
Ty (r) =13, (11)
0, r =0,
Ts(rs k) = exp (—5(1;T)> 0<r<l, (12)
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(a) Original uniform grid (b) Transformed grid

Figure 2: Illustration of mapping (8)

with kK > 0. The derivatives of the first two choices are obvious. For the third,

0, r =0,

/ _ 1—
T () £exp k(=L , 0<r<i,
r2 r

The main idea is to make det D;®; (t) be zero at ¢ = s, along with possibly
additional derivatives. Then the integrand in (7) will be smoothed at t = s.

As an example of @, (¢) using (10), see Figure 2(b). In it, s = (0.25,0.3);
and the mesh in Figure 2(b) is the transformation ®4 applied to the mesh in
Figure 2(a). Many of the circles about s in Figure 2(a) are mapped into much
smaller elliptical curves about s in Figure 2(b).

2.1 Calculating the Jacobian of &,

Write
P(t)=s+oy(t—s). (13)
Using
L=|Ps ()] =[s+ o4 (t—s)
leads to

s> + 20 5-(t—s)+ 02 |t —s]> =1.

Solving this quadratic equation for the positive root o,

—s~(t—s)+\/[s-(t—s)]2+(1—|s|2> It — sf?

|t = s

o4 =

4



o Note that from (13),
t—s® 1

P (t) =s* (04)°
70 What is the Jacobian of @, (t)? For the components of @, (¢t),for j = 1,2,

n write
1
Py =5;+T <2> (tj —s5)-
(o4)

Taking the derivatives becomes complicated. To begin, for t = (¢1,t2), j = 1,2,
and k =3 — 7,

00, ; 1 (1 Yo [ 1
FZaa (mf) Tl T (mf) o (mﬁ) ’
0o, ,

R W
o~ LT <<a+>2> o, <<o+>2>'
a( 1 )Z -2 dos
ot (<7+)2 (0'+)3 ot

The complicated computation is to form the partial derivatives of o, with re-
spect to t; and to. For j =1,2,

72

80+ - —2 (tj — Sj)
ot; It —s|*

X {—s-(t—s)+\/[s-(t—s)]2+(1—|8|2) |t_52}

1
+——{=s; +Dj}
|t — s

Dy = {Js- (= s+ (1= o) = s}
x {ssls (=) + (1= 1sP) (& — ;) }

7 Example 1 In Figure 3 the Jacobian |det D@ (t)| is plotted, using Ty with
7 s = (0.3,04). It shows the Jacobian relative to the variable t as used in the
75 transformed integral (7). The nodes in the t variable are a polar coordinates grid
s with 20 evenly spaced subdivisions in the radial direction and 40 subdivisions in
7 the angular direction.

78 For the numerical integration of (7), we use the well-known formula
2 o 2rm
dr ~ I, = , 14
Lowtrsnw=grg S ana (ngyy) 09
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Figure 4: The quadrature error with varying 7} along the radial line § = 7/6
using the mapping (8)
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with g (r,0) = g (rcos@,rsinf). The formula uses the trapezoidal rule with
2n + 1 subdivisions for the integration over [0,27] in the azimuthal variable
6. The numbers r; and w; are, respectively, the nodes and weights of the (n + 1)-

point Gauss-Legendre quadrature formula on [0, 1]. This quadrature over B? is

exact for all polynomials g € I3 ; see [13, §2.6].

Example 2 Consider the integral

1
1f5) = o= [ fw)loglu — 5| du (15)
2 B2
f(w) = Ji(up) cos ¢
with w = pe'® and p = 2.4048255577 (the smallest root of Jo (t)). The true
integral is
I(f;s) = My (ur)cosf, s=re, (16)
A= —p 2
Figure 4 shows the error in evaluating I(f;s) along the line
s =1 (cos(m/6),sin (7/6)), 0<r<1.

We use all three of the functions Tj (r), (10)-(12), with & = 1 for T3. In the
graph, the case Ty denotes the identity mapping ® (t) = t, t € B2, meaning there
is no change of variable in the integral. The integration parameter isn = 64 (the
number of quadrature points is approzimately nx 2n). All three transformations
work well until v ~ 1, with Ts being the best. Thus there needs to be some way
to improve the accuracy when s is near the boundary or on it, and this will also
be true of our method #2.

3 Smoothing the singularity: Method #2

In setting up another way to smooth the singularity, it is easiest to begin with
the singularity in the form s = (s1,0), 0 < 57 < 1. A rotation of the disk extends
the method to more general s € B?; see §3.4. Consider evaluating I (g; s) using
a polar coordinates representation with center at s, and initially assume s; < 1:

2r  rR(0)
I(g;s) = /o /0 g (s1+rcos,rsind)r drdf, (17)

R(0) = —s1cosf + /1 — s3sin? 4. (18)

As before we are particularly interested in singularities similar to (3), (4). In-
troduce the mapping

v

r=Ty(v)=T (R(9)> R(@), 0<wv<R(®)



w0 with the mapping T satisfying (9). Note that

701 = (37)

11 The integral becomes

2n rR(0) ,
I(g;s) = /0 /0 g(s1+ Ty (v)cosh, Ty (v)sinb) Ty (v) Ty (v) dvdb. (19)

For the case of s; = 1, the outer integral will be over [—g, g], with

3 RO)
I(g;s) = / / g(1 —rcosf,rsinf)rdrdd, (20)
-z Jo
R(0) = 2cos#.

In the case of (2)-(4), this leads to

5 RO
I(f;s):/ / f (1 —rcosf, rsind)rk(r) drdb, (21)
rk(r) =rlogr or rk(r)=r'"% (22)

w 3.1 Quadrature

03 With 0 < 51 < 1, consider using a quadrature rule on [0, 1] with nodes {p1, ..., pn}
e and weights {w1,...,wy,}. For the inner integral over 0 < v < R(#), use nodes
ws {R(0)p1,...,R(0)pn} and weights {R(0)ws,..., R(0)w,}. We use the Gauss-
s Legendre nodes and weights over [0,1]. Apply this quadrature to the inner
w7 integral in (19):

R(6)
/ g(s1+ Ty(v) cos 0, Ty(v) sin0)Ty(v)Ty(v) dv
0

3

~ R(0)wjg(s1 + To(R(0)pj)cost, Ty(R(0)p;)sin0) (23)
1

J

xTp(R(0)p;)T5(R(0)p;)
For the various quantities in this numerical integral,

To(R(0)p;) = T(p;)R(H), (24)
TaR(0)p;) = T'(py)-

s For the angular integration over [0, 27|, use the trapezoidal rule with 2n subdi-
w0 visions. The total number of nodes is n X 2n.
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Figure 5: The quadrature error with varying 7} along the radial line § = 7/6
using the integrals (19) and (20).

Example 3 FEvaluate the integral (15). Figure 5 shows the error in evaluat-
ing I(g;s) along the line s = r (cos (mw/6),sin(7/6)), 0 < r < 1. We use all
three of the functions Tj (r), (10)-(12), with k = 1 for T5. For the boundary
point s = (1,0), we use the formulation (20), and we use 4n nodes for the 0-
integration. In the graph, the case Ty denotes the identity mapping To (1) = r,
meaning there is no change of variable in the integral over 0 < r < R(6). (Note:
This is not the same as using the identity mapping ® (t) =t on B? when con-
structing the approzimate quadrature.) The integration parameter n = 32, and
the total number of nodes is 32 x 64 (until r = 1 when it is 32 x 128). Three
transformations, T -Ts, work well until r ~ 1. Thus there needs to be some way

to improve the accuracy when s is near the boundary or on it. This is discussed
further in §3.2 and §3.6.

Example 4 In Figures 6(a) and 6(b), we show the integral (15) and error over
the entire disk B2. The transformation To is used over the interior of B2, and
(20) is used for boundary calculations. The integration parameter is n = 16;
and the grid uses 15 subdivisions in the radial direction and 30 in the angular
direction.

Example 5 FEwvaluate the integral

1) = [ 10 g (25)

2 |t7$|a
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(a) The function (15)-(16). (b) The error in evaluating (15)-(16).

Figure 6: Integration of (15)-(16).
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Figure 7: Quadrature of errors

with « = 7/3 and
f(t) = cos (mtity) — t3. (26)

The errors in the integral along the line 0 = /6 are shown in Figure 7. These
errors are shown for the transformations Ty, 11, T, T3, with kK = 1 for T5. We
also use Gauss-Jacobi quadrature as discussed in the following.

Remark. Recalling the integration (17) when applied to (24),

27 pR(0)
I(g;s) = /0 /0 g(s1+rcosf,rsinf)r drdf,

27 pR(0)
/ / 17 f (51 +rcosh,rsind) drdd,
o Jo

10
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with a smooth function f. Following [8], use Gauss-Jacobi quadrature on the
interval [0, R ()] with the weight function r!=. If the integrand has this type of
singularity (as with some of our examples), then the Gauss-Jacobi quadrature is
excellent, often obtaining a small error when using a relatively small number of
quadrature nodes. This is illustrated in Figure 7 of Example 5. However, if the
integrand becomes more complicated, then our method with the transformation
r = Ty(v) is needed, as the next example demonstrates.

Example 6 Consider the integral

1o = [ SEES o ar (29)

|t — sl

with o = /3 and f as in (26). We evaluate the integral as in the previous
example, but along the line § = 0. The numerical errors are shown in Figure 8.
With the weight function =%, the Gauss-Jacobi method is not an improvement.

Remark. Another example for which our transformation-based methods are

needed is )
I(J”;S)z/]Bz |t—s|a+|tf5|ﬁdt

with 0 < o < 8 < 2, 8 —a # 1. Examples 5 and 6 and the example in this
remark indicate that the Gauss-Jacobi method is very efficient in dealing with
weight singularities for which the Gauss-Jacobi weights and nodes are known.
But if the weights and nodes for a Gauss-Jacobi function have to be derived first,
for example for the case in Example 6, the transformation method presented
in this paper seems more flexible because a fixed quadrature method is used
in combination with an easily adjusted transformation. The transformation
also does not need to fit the singularity perfectly, examples show that while
Ty(r) = r® might be the optimal transformation, the transformation r* still
produces very good results too.

3.2 Quadrature near the boundary.

With the integration of (20) for s = (1,0), the trapezoidal rule is no longer
suitable for the angular integration. Instead we use Gauss-Legendre quadrature
for *%ﬂ' <0< %w, with 4n nodes, an empirically chosen value to improve
accuracy at a boundary point. For the r-integration, motivated by (22), we
proceed as before in (23). The total number of nodes is n x 4n.

An alternative to handling the boundary point s = (1,0) begins with an

alternative to (20):

2 B(r)
[(g;s):/o r ﬁ()g(l—rcos@,rsin@) do dr, (27)

B(r)= cos™! (%r) .

11
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(b) Quadrature errors

Figure 9: Integration of (25)-(26) over B2.

Note again the integrands as shown in (21)-(22), although now the r and 6
integrations have been reversed. Note that 8 (r) lacks smoothness around r = 2
because of the cos™! function, and it is necessary to compensate for this in the
numerical integration of the outer r-integration in (27).
Introduce the further transformations of [0, 1]:
Ty(r) = 3r* — 213, (28)
Ts(r) = 10r® — 150" + 6r°. (29)

They are the probability density functions of the beta distribution with B(2,2)

12
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and B(3,3), respectively. These satisfy

TO)=0, T(1)=1,
T (r) > 0, 0<r<l,
T'(0)=T'(1) = 0.

The transformation T5 also has zero second derivatives at 0 and 1, and Ty and
T have a simple extension with even higher derivatives being set to zero. Apply
one of these transformations to the outer r-integrals in (27), say with n nodes.
This will compensate for the possible ill-behaviour of the integrand when r ~ 2.

Example 7 Consider the integral

I(l;s)z/ édw
g |w—s|*

where a« = ©/4 and s = (1,0). We use the four functions Tj(r), (10)-(11)
and (28)-(29) for the r-integration and no transformation is used for the 0-
integration. Both the 0-integration and the r-integration are then approximated
using Gauss-Legendre quadrature with n nodes for the integral. The true value
of the integration is calculated with large n. The column labeled “Ratio” gives
the ratio of successive errors. See Table 1.

T T> Ty Ts
n Error Ratio Error Ratio Error Ratio Error Ratio
4 | 2.21e-02 0.00 4.51e-02 0.00 3.09e-03 0.00 | 5.59e-03 0.00
8 | 3.15e-03 7.02 5.96e-03 7.59 1.41e-04 | 21.95 | 9.61e-06 | 581.54
16 | 4.27e-04 7.39 7.90e-04 7.54 5.39e-06 | 26.10 | 8.10e-08 | 118.63
32 | 5.57e-05 7.66 1.03e-04 7.70 1.98e-07 | 27.23 | 5.77e-10 | 140.32
64 | 7.12e-06 7.82 1.31e-05 7.83 7.06e-09 | 28.02 | 3.91e-12 | 147.82
128 | 9.01e-07 7.91 1.66e-06 791 2.48e-10 | 28.49 | 1.95e-14 | 199.91
256 | 1.13e-07 7.95 2.08e-07 7.95 8.63e-12 | 28.73 | 3.55e-15 5.50

Table 1: Numerical examples using (27) with various transformations

If (20) is used to calculate the integration, two transformations will be
needed, one for the r-integration and one for the f-integration. Consider the
integral

[(1;5)E/B ¥dw (30)

2 jw—s|®

— ~/2 /2 cos(®) Tl—a dr df = /71'/2 (2 COS(G))Z_a do
—n/2J0 —7/2 2-«

The integrand (2cos(6))2~“ is not smooth around 7/2 and —7/2 as long as «
is not 1. So, it is necessary to compensate for this in the numerical integration
of f-integration.

13
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0-int To Ts

r-int T1 P T 15
n Error Ratio Error Ratio Error Ratio Error Ratio
8 | 6.62e-04 0.00 | 1.24e-04 0.00 | 2.16e-03 0.00 | 1.62e-03 0.00

16 | 2.99e-05 | 22.15 | 8.76e-06 | 14.10 | 2.07e-05 | 104.13 | 3.98e-07 | 4069.07
32 | 1.27e-06 | 23.62 | 4.51e-07 | 19.43 | 8.11e-07 25.54 | 2.99e-09 133.00
64 | 5.18e-08 | 24.43 | 2.18e-08 | 20.70 | 3.00e-08 27.04 | 2.11e-11 141.94
128 | 2.10e-09 | 24.64 | 1.03e-09 | 21.16 | 1.07e-09 27.96 | 1.42e-13 148.37
256 | 8.59e-11 | 24.48 | 4.82e-11 | 21.35 | 3.77e-11 28.47 | 8.88e-16 160.00

Table 2: Numerical examples using (20) with various transformations

Example 8 This example shows the numerical integration of (30) with various
transformations for r- and O-integration. Note that « = w/4, s = (1,0), and
To(z) = x . This example shows that choosing a right transformation for the
0-integration will improve the effect of transformations in the r-integration. See
Table 2.

3.3 The case a = 1.
Applying the change of variable of (17), the integral

oo [ L@
I(f,s)—/Bz et (31)
becomes ST
I(f;s):/o /0 f(s+rcosf,rsind) drdb. (32)

This integrand is generally smooth. Thus no transformation of the r-variable is
needed to obtain rapid convergence.

3.4 Rotating B2

For s € B? the disk B? is rotated so that the singularity is on the line joining
(0,0) and (1,0). To carry this out, begin by finding v, the angle between the
positive z-axis and the radial line through s. Introduce

| cosyp  —siny
A= { sin ¢ cos }

A{lgl]s.

I(g;s) :/ g(w;s)dw,  seB
]BQ

Then

In the integral

14
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Figure 10: Convergence powers p for (33).

introduce the change of variable w = At:

I(g;s) = /}BZ g(At; s)dt,

noting the determinant of the Jacobian of the rotational transformation is 1. In
this new integral, the point 5= (|s| ,O)T is the singular point in the integration.
Of special note for singular integrals of the form (2)-(4),

|s—w|:|s—At\:|A(ATs—t)|
=|ATs —t| =[5t

3.5 Rates of convergence

To study the rate of convergence of our numerical method (23), the convergence
of the errors or that of the successive differences was studied. The error was
observed on some interval [r cos 0, rsin 6], with 0 < r < 0.9. This smaller interval
was chosen because (1) the method is different when including a boundary point,
and (2) there are difficulties with the numerical method near to the boundary.
As a particular case, the rate of convergence was studied for the case of the
singularity

k(p)=p~°, 0<a<2. (33)

The integral being transformed is (25) with f (¢) = 1.

15
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A sequence of values of « € (0,2) was chosen, avoiding special values such
as a = 1 for which the convergence is more rapid. The error model

c
was studied, with N the number of quadrature nodes in B? and some p > 0, to
see how well the model fit the computed error. For a given « € (0, 2), the error
was observed for N = 2" x 2"*1 n = 1,2 ... This model (34) fit well the
errors, although the details are omitted here. Following this, the corresponding
p of the assumed relation (34) was determined. Figure 10 shows the empirical
results for these powers p with varying v and with the transformations Tp (1) =
r, T1, and T3 defined earlier in (10)-(11). These empirical results show a linear
pattern as regards the relationship of o and p, and they lead to the quite good
estimates

2—a, TO7
pad 4-2a, T, (35)
6—30(7 TQ.

This result is consistent with [9, Exam. 4, p. 599].

3.6 Error behavior near the boundary

Recall that (2)—(3) with the singular point s = (s1,0) can be written as

27 rR(0)
Io (fss) = /0 /0 f(s1 4 rcos(8),rsin(0))r—>Tt drdo. (36)

If we use the trapezoidal rule for the outside integration over [0, 27|, we need
to understand how the trapezoidal rule ‘behaves’ for R(6) as s; varies between
0 and 1, but s; < 1, always. This is the topic of the current section. We will
assume that f is a smooth function, for example a polynomial, so the main
emphasis is on the integration of the kernel function »~**!. Figures 4, 5, and
7 all show an error increase towards the boundary s; = 1 and this seems to be
independent of the method used. At the end of this section we will see how
to modify the numerical integration methods to ensure an error smaller than a
given bound e.

In the above integral (36) we can substitute r = R(6)t to transform the
r-integration to a t—integration over [0,1] and then use a scaling of the form
t =u9, ¢ > 1, to smooth the behavior of the inner integral at © = 0. Doing this
leads to

27
L(fo) = [ Ry

/ L0 o) | RO cos(0), R(O)uT sin(8)) du db (37)
0

By using, for example,

= ——+1
4 2—aJr

16



the exponent of the u will be larger than 2, so the integrand is twice continuously
differentiable and a weighted Gaussian quadrature rule will approximate the
inner integral

1
Fo(s,0) = /O w71 () + R()ul cos(), R(0)u? sin(6)) du

~
~

W™ f(s1 + R(0)(EM))9 cos(9), R(0) (€))7 sin(0))

M:

j=1
= Fa’]\/[(S, 9) (38)
. . - (M) (M) .
with a high precision. Here w; ™" and §; 7, j = 1,..., M, are weights and nodes
of a weighted Gauss quadrature on [0, 1} We Wlll use M = 20 in our examples
below and assume that we can use Fj(s,0) = Fy 20(s,6). This assumption is
verified by error estimates with the help of larger M values.
This leaves us with the integration

L(f.s) = /0 " GR(O)7F(5,0) db

2mq iy or \7° 2m
. (s 2
N jZ_OR<N]) (s 5 7)

=: Ia,M,N(f75) (39)

Q

Again we assume that the main problem for the integration is the term R(6)2~

and the function F, is well behaved. For some applications the function F,
might also have some more complicated behavior, but as long as F|, is smooth,
standard error estimations and extrapolation can be applied.

If we look at the function

R() = —s1 cosf + /1 — 57 sin*(0),
given in (18), we see that the first term is smooth and the problem for the

integration arises from the second term. So we concentrate from now on the
following integral

Js(s1) = /Oﬂ(l—smeQ(H))g do. (40)

i) (41)

where § = 2 — «, and its numerical integration

Jon(s1) = Z fa.5: (

fa.5,.(0) = (1 — s? sin? (0))

2y

[N}
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Figure 11: The functions N = RNg5.(s1), for ¢ = 1078 (left), and ¢ = 10712
(right), on s; € [0,0.999]

To estimate the error of the trapezoidal rule for fz,, we need the Fourier ex-
pansion which is given by

= 3 ﬁ/2 — jszjsin2j
fom(6) = Z( / )( 1952 sin® (6) (43)

Z cp.on(s1)e2k? (44)

kEZ
where
g1\ 2k 2 1
) = (3)7 (O)eRl-5 bk gz nsh a9

with the hypergeometric function 5 F}, see [1]. The error of the trapezoidal rule
is given by

EY(s1) = |Js(s1) — Jaw(s1)l = 2m| D e n(s1) (46)
JEZ\{0}

This function allows us to estimate the necessary N to approximate Jg(s1) by
Jg,n(s1) with an error smaller than a given . We will only look for IV values
that are powers of 2:

Rgo(s1) = min{2|E% (s1) <e,j>5}

Here we used 5, so that at least 32 points are used for the trapezoidal rule. This
might be too large for certain smooth functions and will need to be adjusted for
more complicated functions. In Figure 11 we plot two X functions for g = 1/2,
so a = 1.5, and € = 1078, 107!2. We see that for a large range of s; values
N = 32 is sufficient to guarantee a small error in evaluating the single integral
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Figure 12: The error of the trapezoidal rule Jg x, ; _(s;)(s1) for & = 1078 (left),
and ¢ = 10712 (right), on s; € [0,0.999)

(40). Close to the right endpoint s; ~ 1 we will need to increase the N value.
If we use the calculated N = Ry_, .(s1) values for the calculation of Jz n(s1)
and plot the error we get the graphs in Figure 12. Figure 12 shows that by
using the IV values, given by Ng ., the error of the one dimensional integrals are
well controlled and below the required maximum. We like to emphasize that
for the generation of the error graphs in Figure 12 we use 1000 values for sq,
s1 =4/1000, 7 =0,...,999. So Figure 12 and the following Figures 13 and 14
show the error up to points extremely close to the boundary of the domain.

Now we put the two numerical methods together for the approximation of
I, (f,s), see (37). We use Fy 20(s,6), see (38), and N given by Ng . for the
calculation of I, 20 n(f, ), see (39).

We use the following approximation

L(f,s) = /0 " GR(O)7F(5,0) db

27Tq Z R QNJ

'Mi

WM (st + R(O ) (€M) cos(O), RO)(EM)? sin(b,)

~
Il
-

2m
m(f,s), where Oy ; =

N]a N =Ny_ as(sl) (47)

where € > 0 is a predetermined level of precision.

To minimize the impact of a complicated function f, we use the simple
functions fo(s) = 1 and f1(s1, s2) = €192, To estimate the error we calculate

Ia,E,QO(fv 5) - fu,a,40(f7 8)'

The difference between I and I is that we use N = ANy_,, -(s1) instead of
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Figure 13: The error of Iy 5 20(fo,51) with e = 107% (left), and ¢ = 10712
(right), on s; € [0,0.999]
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Figure 14: The error of Iy 5. 20(f1,51) with e = 107® (left), and ¢ = 10712
(right), on s; € [0,0.999]

N = Ry_, -(s1) for the calculation of I. Figures 13 and 14 show the errors of
11.5,5,20(fa 5), €= 107%,10~'2 for fo and fi.

As we expect the estimated values for N work better in the case of the
simpler function fy(s), but the slightly more complicated function f;(s) still
shows errors that are mostly smaller than the given €. So the function Ng,
B8 =2 —a, is a good starting point for finding sufficiently large N values and
maybe one additional N value for an error estimation will be sufficient to adjust
the N to keep the error below a given bound. Figures (13) and (14) both show
that we are able to control the quadrature error up to the boundary by using
the estimated values for N.
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4 Transforming other planar regions
Assume the existence of an explicitly known continuously differentiable mapping

.8 10 (48)

onto
with ©Q a simply connected region in the plane. Let
a@(t)} 2 —2

; tecB
0t ij=1

a0 = (0% () = |

denote the Jacobian matrix of the transformation. Assume J(t) satisfies
det J (t) # 0,

except possibly on a set of measure zero. See [5] for a discussion of methods
for creating such mappings ®.
Consider the integral

I(f,O')Z/Qf(T;O')dT, o€,

with o denoting a point singularity in the integrand. Let 7 = ® (t), t € B2
Then

I(f, ®(s)) =/ F(@(t); ®(s)) |det J ()| dt, o= (s), seB’  (49)
B2
We illustrate using this with an elliptical region,
D (11, 12) = (am,b72) . T € B (50)
with a,b > 0. Let o = ® (s) for some s € B2. Then det J (¢) = ab, and

I(f,®(s)) =ab . f(2(7); 2(s)) dr. (51)
The earlier quadrature methods can now be applied to this integral.

Example 9 Fvaluate
1o = [ ar (52
ol —ol

with Q the ellipse of (50) and o € Q, using the transformed integral (51). We
show graphs of the case with (a,b) = (0.75,2.0), a = 1.5, n = 32,

F(r)=f(2,y) =cos (z(y+1) +2¢%) . (53)

The number of nodes is 32 x 64, n = 32. The integration transformation is Ty,
given in (10), and the boundary formulation (20) is used with 4n nodes in the
radial direction and 8n in the angular direction. The integral is shown in Figure
15(a), and the error is shown in Figure 15(b). The largest error is along the
boundary.
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Figure 15: Integration of (52)-(53) over an ellipse with n = 32.

w« 5 Smoothing a singularity in B?

sn  Consider approximating

1450) = [ k(o =t as 59

For simplicity, assume v = (0,0, s) with 0 < s < 1. Use the change of variables

302

t = (0,0, 5) + p(cos psin b, sin g sin §, cos ) (55)

with 0 < ¢ <27, 0 < 0 < 7. To find the limits for p, solve [t| = 1:
p?sin? 6 + (s + pcosf)® =1,

p* +2spcosf — (1 —s*) =0.

The desired positive root is

Py

—scosf + \/32c0s29 +1— 2
= —scosf + V1 —s2sin0,
just as earlier in (18). The integral I(f;v) transforms to

27 T Py
I(fiv) = /O /0 sinf /O P F Ok (p) dpdf dp

with ¢ given by (55). Perform the p-integration, and introduce

303

Py
v(x) = /0 P> (t) K (p) dp,

(58)
x = (cos psin 6, sin psin f, cos§) € S%.
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Then
I(f;v) = /Szv(x) dx

The function v (x) is approximated as in the planar case. A transformation T is
used, as before in (23), followed by Gauss-Legendre quadrature. Approximate
v (x) as in the unit disk case. Then approximate I(f;v) using spherical inte-
gration. A variety of such methods are discussed in [6, Chap. 5], [13, §2.7]. We
use the product method given in [6, (5.2)].It uses 2n? nodes, n nodes for the
f-integration and 2n nodes for the p-integration; and it has degree of precision
2n — 1. The total number of nodes is n x 2n?.
As the remaining case, let v = (0,0,1). Modifying (55), let

t=(0,0,1) — p(cos psinb,sin¢sin d, cos ) (59)
for 0 < ¢ < 2m. Solve for |¢t| = 1. This leads to
Py = 2cosb.
Then
t=(0,0,1) — p(cospsinb,sinpsinf, cosb),
for0 <6< %ﬂ', 0 < p <Py, 0< ¢ <27m. The integral to be evaluated is

w/2 27 Py
= sin 2 .
1= [ smo [ [0k ) dpdgas (60)

Gauss-Legendre quadrature with n nodes is used for 0 < 6 < %71’, and the
trapezoidal rule with 2n nodes is used for 0 < ¢ < 27. The total number of

nodes is n x 2n2.

Example 10 Consider the integral

I(l;v)—/]w'v_lu'adu, v € B3, (61)
with 0 < a < 3, which can be evaluated explicitly. Letting « = 2/7, Figure
16 shows the result of using the identity transformation (To (p) = p), a simple
quadratic transformation (Ty (p) = p?), and the cubic transformation (Ty (p) =
p%). This calculation used n = 16, except with the boundary point v = (0,0, 1)
where n = 32 was used. When using the transformations Ty and Ts, there is a
problem near to and on the boundary. As earlier, using a larger value for n
when near to the boundary will improve the error.

5.1 Rotating B3

For the singular point v of (54) not located on the line segment joining (0, 0, 0)
and (0,0, 1), the ball can be reflected to move the singular point to that line
segment. Let A denote the Householder matrix satisfying

Av = 10,0, |v]]".

23



331

332

333

334

335

336

107 T T T T T T T T T

*
*
*
*
*
*
*
*
*
*
*
*
*
*
a‘
a‘
*
*
*
*
;T
*
*
*
*
*
*
*
*

* T,
o T,
o T,

1040

1045
0

Figure 16: Comparison of errors for (61) using Ty, 71 and 75 with o = 2/7 and
n = 16.

Recall that A is symmetric and orthogonal. In the integral (54), make the
substitution ¢t = At:

100) = [ 1 (An) k(o= arl) ar (62)

noting that the Jacobian of the transformation has an absolute value of 1 for
its determinant. Using
v — At| = |A (Av — 7)]
= [Oa 0, |UHT -7,

reduces (62) to the earlier case with a singular point between (0,0,0) and
(0,0,1)

Example 11 Consider the integral

I(f,v):/ = du, v e B3, (63)
B3 |V — ul

5u?
PR B

with « = 5/m.
the boundary point v = (ﬁ, %, %), corresponding to (p,0) = (n/3,7/4).

We evaluate the integral along the line joining the origin and
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Figure 17: Error for (63) along the line with § = 7/3, ¢ = 7/4, with a = 5/7
and n = 16.

The quadrature uses n = 16, except n = 32 for the boundary point. Figure 17
contains comparisons for the transformations Ty, T1, and Ts. The option Ts is
the better one.

Example 12 To have a broader look at the behaviour of the numerical method
applied to (61), we observe the error when evaluating over a disk region in B3,
obtained by intersecting a plane with B and having it pass through the origin.
Figure 18(a) contains the disk for our example, with the disk orthogonal to the
vector d = <%, ﬁ, %), corresponding to ¢ = w/6, 6 = w/4, shown in red.
The horizontal disk is the usual B?, the planar unit disk. The exponent o = 2/7
in the integral (61). Figure 18(b) shows the computed value of the integral (61).
The error is a function of only r, the distance from the origin, and it follows
closely what is shown in Figure 16. Again, n = 16 is used for the quadrature,
and Ty is the transformation being used.

Example 13 An analogous calculation is done for the integral (63). The quadra-
ture parameter is n = 8, and it is evaluated over the same disk as in Figure
18(a). The exponent o = 4/ in the integral (63).  Figure 19(a) shows the
integral over that disk, and Figure 19(b) shows its error. The mazimum error
over that disk is 7T.48F — 5.
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(b) Integral (61) over disk region
(a) Disk region in B?, orthogonal to d. orthogonal to d.

Figure 18: Integration of (61) over disk region.

s 5.2 The cases a=1,2

sss  Consider the kernel &k (p) = p~®. In the cases of a = 1,2, the kernel in (57)
7 will have a smooth integrand. Therefore the integrand will be smooth and no
3 smoothing transformation T (p) is necessary. The Gauss-Legendre quadrature
10 for the radial integral will work well, as will the trapezoidal rule for the angular
w0 integration. The case a = 1 occurs frequently in practice. The integral

-f.\_ -1 f (w)
I<47T’U> 7@/@3 v — ul du

s is called a Newtonian potential; it satisfies Poisson’s equation,

Aw = f.
32 See [2] where these quadrature ideas can be applied.

i3 Concluding remarks.

364 We have presented and illustrated numerical methods for integrals with a
s point singularity, for integration regions that are diffeomorphic to the unit disk
s or the unit ball. We thank the reviewers, including the suggestion for using
w7 Gauss-Jacobi quadrature.
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