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Abstract4

Consider an integral with a point singularity in its integrand, such as5

ρ−α or log ρ. We introduce and discuss two methods for approximating6

such integrals, in both two and three dimensions. The methods are first7

introduced using the unit disk as the quadrature region, and then they are8

extended to other regions and to three dimensions. The error behavior9

of the numerical integration for singular points near to the boundary is10

examined.11
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1 Introduction14

Consider calculating the singular integral15

I(f ; s) =

∫
Ω

f(t) log |t− s| dt, s ∈ Ω, (1)

with Ω an open bounded region in the plane R2 and f a smooth function. This16

particular integral satisfies the Poisson equation17

∆sI(f ; s) = −2πf(s), s ∈ Ω.

The integral I is called a planar Newtonian potential.18

With this as motivation, consider calculating the more general integral19

I(f ; s) =

∫
Ω

f(t)k (|t− s|) dt, s ∈ Ω. (2)

For example, consider20

k (ρ) = ρ−α, α < 2, (3)

*University of Iowa, kendall-atkinson@uiowa.edu
�California State University San Marcos, chien@csusm.edu
�California State University San Marcos, ohansen@csusm.edu

1



or21

k (ρ) = log ρ, (4)

in both cases with ρ > 0. The problem we study is whether we can find efficient22

numerical methods for all α < 2 and all s ∈ Ω. We first introduce some ideas23

for approximating such integrals over Ω = B2, the unit disk. These can then24

be extended to more general regions Ω by using a transformation Φ : B2 → Ω,25

which we illustrate in a later section. Our methods also transfer to integrands26

with a more general point singularity. All of our methods use a smoothing of27

the singularity, following it with a quadrature that benefits from the smoothing.28

The numerical integration of singular functions has been studied before, and29

thus there also have been a number of approximation techniques proposed for30

their evaluation. A number of papers have been written on this topic; see, for31

example, [7], [10], [11], [12], and [14]. In a later section we extend our ideas to32

quadrature over other planar regions and over the unit ball B3; see §4, §5.33

2 Smoothing the singularity: Method #134

We begin with the problem of approximating35

I (g; s) =

∫
B2

g(w; s)dw, s ∈ B2
. (5)

where g(w; s) is allowed to be singular at w = s, as in (2). A procedure that36

has been used with univariate integrals is to make a change of the variable of37

integration, creating a new integrand that is smoother. For univariate integrals,38

see an example in [3, p.306], and an example for surface integrals is given in [4].39

We look for mappings40

Φs : B2 1−1−→
onto

B2 (6)

with Φs (s) = s which make the singular behaviour more manageable for w ≈ s41

when using a standard quadrature over B2. We then calculate approximately42

the integral43

I (g; s) =

∫
B2

g (Φs (t) ; s) |detDtΦs (t)| dt (7)

in which we have used the transformation w = Φs (t), t ∈ B2. The quantity44

|detDtΦs (t)| denotes the Jacobian of the mapping. We want this Jacobian to45

decrease the singular behaviour associated around s with the integrand g in46

(5).47

Let s ∈ B2
. Then for an arbitrary point t ∈ B2

, t 6= s, draw a straight line48

from s to t. Denote by Ps (t) the point at which the continuation of that line49

intersects the boundary S1 = ∂B2; cf. Figure 1. Define50

Φs (t) = s+ T

(
|t− s|2

|Ps (t)− s|2

)
(t− s) , t ∈ B2\{s}. (8)
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Figure 1: Illustration of Ps (t)

The function T : [0, 1]→ [0, 1] is to satisfy, at a minimum,51

T (0) = T ′ (0) = 0,
T (1) = 1,
T ′ (r) > 0, 0 < r < 1.

(9)

As t approaches t0 = Ps (t) on the boundary of B2, the fraction52

|t− s|2

|Ps (t)− s|2
→ 1,

and consequently, Φs (t)→ t0. With the above properties for T (r), the mapping53

Φs of (8) satisfies (6), and moreover,54

Φs (s) = s,

if Φs is extended continuously.55

As examples, we have the following.

T1 (r) = r2, (10)

T2 (r) = r3, (11)
56

T3(r;κ) =


0, r = 0,

exp

(
−κ
(

1− r
r

))
0 < r ≤ 1,

(12)
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(a) Original uniform grid (b) Transformed grid

Figure 2: Illustration of mapping (8)

with κ > 0. The derivatives of the first two choices are obvious. For the third,57

T ′3 (r) =


0, r = 0,

κ

r2
exp

(
−κ
(

1− r
r

))
, 0 < r ≤ 1,

.

The main idea is to make detDtΦs (t) be zero at t = s, along with possibly58

additional derivatives. Then the integrand in (7) will be smoothed at t = s.59

As an example of Φs (t) using (10), see Figure 2(b). In it, s = (0.25, 0.3);60

and the mesh in Figure 2(b) is the transformation Φs applied to the mesh in61

Figure 2(a). Many of the circles about s in Figure 2(a) are mapped into much62

smaller elliptical curves about s in Figure 2(b).63

2.1 Calculating the Jacobian of Φs64

Write65

Ps (t) = s+ σ+ (t− s) . (13)

Using66

1 = |Ps (t)| = |s+ σ+ (t− s)|

leads to67

|s|2 + 2σ+s · (t− s) + σ2
+ |t− s|

2
= 1.

Solving this quadratic equation for the positive root σ+,68

σ+ =

−s · (t− s) +

√
[s · (t− s)]2 +

(
1− |s|2

)
|t− s|2

|t− s|2
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Note that from (13),69

|t− s|2

|Ps (t)− s|2
=

1

(σ+)
2

What is the Jacobian of Φs (t)? For the components of Φs (t) , for j = 1, 2,70

write71

Φs,j = sj + T

(
1

(σ+)
2

)
(tj − sj) .

Taking the derivatives becomes complicated. To begin, for t = (t1, t2), j = 1, 2,
and k = 3− j,

∂Φs,j
∂tj

= T

(
1

(σ+)
2

)
+ (tj − sj)T ′

(
1

(σ+)
2

)
∂

∂tj

(
1

(σ+)
2

)
,

∂Φs,j
∂tk

= (tj − sj)T ′
(

1

(σ+)
2

)
∂

∂tk

(
1

(σ+)
2

)
.

72

∂

∂tj

(
1

(σ+)
2

)
=
−2

(σ+)
3

∂σ+

∂tj

The complicated computation is to form the partial derivatives of σ+ with re-
spect to t1 and t2. For j = 1, 2,

∂σ+

∂tj
=
−2 (tj − sj)
|t− s|4

×

{
−s · (t− s) +

√
[s · (t− s)]2 +

(
1− |s|2

)
|t− s|2

}

+
1

|t− s|2
{−sj +Dj}

Dj =
{

[s · (t− s)]2 +
(

1− |s|2
)
|t− s|2

}− 1
2

×
{
sj [s · (t− s)] +

(
1− |s|2

)
(tj − sj)

}
.

Example 1 In Figure 3 the Jacobian |detDtΦs (t)| is plotted, using T1 with73

s = (0.3, 0.4). It shows the Jacobian relative to the variable t as used in the74

transformed integral (7). The nodes in the t variable are a polar coordinates grid75

with 20 evenly spaced subdivisions in the radial direction and 40 subdivisions in76

the angular direction.77

For the numerical integration of (7), we use the well-known formula78 ∫
B2

g (x) dx ≈ In (g) ≡ 2π

2n+ 1

n∑
l=0

2n∑
m=0

ωlrlĝ

(
rl,

2πm

2n+ 1

)
(14)
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Figure 3: Jacobian of mapping (8)
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Figure 4: The quadrature error with varying Tj along the radial line θ = π/6
using the mapping (8)
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with ĝ (r, θ) ≡ g (r cos θ, r sin θ). The formula uses the trapezoidal rule with79

2n + 1 subdivisions for the integration over [0, 2π] in the azimuthal variable80

θ.The numbers rl and ωl are, respectively, the nodes and weights of the (n+ 1)-81

point Gauss-Legendre quadrature formula on [0, 1]. This quadrature over B2 is82

exact for all polynomials g ∈ Π2
2n; see [13, §2.6].83

Example 2 Consider the integral

I(f ; s) ≡ 1

2π

∫
B2

f(w) log |w − s| dw (15)

f(w) = J1(µρ) cosφ

with w ≡ ρeiφ and µ
.
= 2.4048255577 (the smallest root of J0 (t)). The true

integral is

I(f ; s) = λJ1(µr) cos θ, s ≡ reiθ, (16)

λ = −µ−2.

Figure 4 shows the error in evaluating I(f ; s) along the line84

s = r (cos (π/6) , sin (π/6)) , 0 ≤ r ≤ 1.

We use all three of the functions Tj (r), (10)-(12), with κ = 1 for T3. In the85

graph, the case T0 denotes the identity mapping Φ (t) = t, t ∈ B2, meaning there86

is no change of variable in the integral. The integration parameter is n = 64 (the87

number of quadrature points is approximately n×2n). All three transformations88

work well until r ≈ 1, with T2 being the best. Thus there needs to be some way89

to improve the accuracy when s is near the boundary or on it, and this will also90

be true of our method #2.91

3 Smoothing the singularity: Method #292

In setting up another way to smooth the singularity, it is easiest to begin with93

the singularity in the form s = (s1, 0), 0 ≤ s1 ≤ 1. A rotation of the disk extends94

the method to more general s ∈ B2; see §3.4. Consider evaluating I (g; s) using95

a polar coordinates representation with center at s, and initially assume s1 < 1:96

I (g; s) =

∫ 2π

0

∫ R(θ)

0

g (s1 + r cos θ, r sin θ) r dr dθ, (17)

97

R(θ) = −s1 cos θ +

√
1− s2

1 sin2 θ. (18)

As before we are particularly interested in singularities similar to (3), (4). In-98

troduce the mapping99

r = Tθ (ν) = T

(
ν

R(θ)

)
R(θ), 0 ≤ ν ≤ R(θ).
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with the mapping T satisfying (9). Note that100

T
′

θ (ν) = T
′
(

ν

R(θ)

)
.

The integral becomes101

I (g; s) =

∫ 2π

0

∫ R(θ)

0

g (s1 + Tθ (ν) cos θ, Tθ (ν) sin θ)Tθ (ν)T
′

θ (ν) dν dθ. (19)

For the case of s1 = 1, the outer integral will be over
[
−π2 ,

π
2

]
, with

I(g; s) =

∫ π
2

−π2

∫ R(θ)

0

g(1− r cos θ, r sin θ)r dr dθ, (20)

R(θ) = 2 cos θ.

In the case of (2)-(4), this leads to

I(f ; s) =

∫ π
2

−π2

∫ R(θ)

0

f (1− r cos θ, r sin θ) rk (r) dr dθ, (21)

rk (r) = r log r or rk (r) = r1−α. (22)

3.1 Quadrature102

With 0 ≤ s1 < 1, consider using a quadrature rule on [0, 1] with nodes {ρ1, . . . , ρn}103

and weights {ω1, . . . , ωn}. For the inner integral over 0 ≤ ν ≤ R(θ), use nodes104

{R(θ)ρ1, . . . , R(θ)ρn} and weights {R(θ)ω1, . . . , R(θ)ωn}. We use the Gauss-105

Legendre nodes and weights over [0, 1]. Apply this quadrature to the inner106

integral in (19):107 ∫ R(θ)

0

g(s1 + Tθ(ν) cos θ, Tθ(ν) sin θ)Tθ(ν)T ′θ(ν) dν

≈
n∑
j=1

R(θ)ωjg(s1 + Tθ(R(θ)ρj) cos θ, Tθ(R(θ)ρj) sin θ) (23)

×Tθ(R(θ)ρj)T
′
θ(R(θ)ρj)

For the various quantities in this numerical integral,

Tθ(R(θ)ρj) = T (ρj)R(θ), (24)

T ′θR(θ)ρj) = T ′(ρj).

For the angular integration over [0, 2π], use the trapezoidal rule with 2n subdi-108

visions. The total number of nodes is n× 2n.109
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Figure 5: The quadrature error with varying Tj along the radial line θ = π/6
using the integrals (19) and (20).

Example 3 Evaluate the integral (15). Figure 5 shows the error in evaluat-110

ing I (g; s) along the line s = r (cos (π/6) , sin (π/6)), 0 ≤ r ≤ 1. We use all111

three of the functions Tj (r), (10)-(12), with κ = 1 for T3. For the boundary112

point s = (1, 0), we use the formulation (20), and we use 4n nodes for the θ-113

integration. In the graph, the case T0 denotes the identity mapping T0 (r) = r,114

meaning there is no change of variable in the integral over 0 ≤ r ≤ R(θ). (Note:115

This is not the same as using the identity mapping Φ (t) ≡ t on B2 when con-116

structing the approximate quadrature.) The integration parameter n = 32, and117

the total number of nodes is 32 × 64 (until r = 1 when it is 32 × 128). Three118

transformations, T1-T3, work well until r ≈ 1. Thus there needs to be some way119

to improve the accuracy when s is near the boundary or on it. This is discussed120

further in §3.2 and §3.6.121

Example 4 In Figures 6(a) and 6(b), we show the integral (15) and error over122

the entire disk B2. The transformation T2 is used over the interior of B2, and123

(20) is used for boundary calculations. The integration parameter is n = 16;124

and the grid uses 15 subdivisions in the radial direction and 30 in the angular125

direction.126

Example 5 Evaluate the integral127

I (f ; s) =

∫
B2

f (t)

|t− s|α
dt (25)
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Figure 6: Integration of (15)-(16).
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Figure 7: Quadrature of errors

with α = π/3 and128

f (t) = cos (πt1t2)− t22. (26)

The errors in the integral along the line θ = π/6 are shown in Figure 7. These129

errors are shown for the transformations T0, T1, T2, T3, with κ = 1 for T3. We130

also use Gauss-Jacobi quadrature as discussed in the following.131

Remark. Recalling the integration (17) when applied to (24),132

I (g; s) =

∫ 2π

0

∫ R(θ)

0

g (s1 + r cos θ, r sin θ) r dr dθ,

=

∫ 2π

0

∫ R(θ)

0

r1−αf (s1 + r cos θ, r sin θ) dr dθ,
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with a smooth function f . Following [8], use Gauss-Jacobi quadrature on the133

interval [0, R (θ)] with the weight function r1−α. If the integrand has this type of134

singularity (as with some of our examples), then the Gauss-Jacobi quadrature is135

excellent, often obtaining a small error when using a relatively small number of136

quadrature nodes. This is illustrated in Figure 7 of Example 5. However, if the137

integrand becomes more complicated, then our method with the transformation138

r = Tθ(ν) is needed, as the next example demonstrates.139

Example 6 Consider the integral140

I (f ; s) =

∫
B2

log |t− s|
|t− s|α

f (t) dt (28)

with α = π/3 and f as in (26). We evaluate the integral as in the previous141

example, but along the line θ = 0. The numerical errors are shown in Figure 8.142

With the weight function r1−α, the Gauss-Jacobi method is not an improvement.143

Remark. Another example for which our transformation-based methods are144

needed is145

I (f ; s) =

∫
B2

f (t)

|t− s|α + |t− s|β
dt

with 0 < α < β < 2, β − α 6= 1. Examples 5 and 6 and the example in this146

remark indicate that the Gauss-Jacobi method is very efficient in dealing with147

weight singularities for which the Gauss-Jacobi weights and nodes are known.148

But if the weights and nodes for a Gauss-Jacobi function have to be derived first,149

for example for the case in Example 6, the transformation method presented150

in this paper seems more flexible because a fixed quadrature method is used151

in combination with an easily adjusted transformation. The transformation152

also does not need to fit the singularity perfectly, examples show that while153

T2(r) = r3 might be the optimal transformation, the transformation r4 still154

produces very good results too.155

3.2 Quadrature near the boundary.156

With the integration of (20) for s = (1, 0), the trapezoidal rule is no longer157

suitable for the angular integration. Instead we use Gauss-Legendre quadrature158

for − 1
2π ≤ θ ≤ 1

2π, with 4n nodes, an empirically chosen value to improve159

accuracy at a boundary point. For the r-integration, motivated by (22), we160

proceed as before in (23). The total number of nodes is n× 4n.161

An alternative to handling the boundary point s = (1, 0) begins with an
alternative to (20):

I (g; s) =

∫ 2

0

r

∫ β(r)

−β(r)

g (1− r cos θ, r sin θ) dθ dr, (27)

β (r) = cos−1
(

1
2r
)
.
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Figure 9: Integration of (25)-(26) over B2.

Note again the integrands as shown in (21)-(22), although now the r and θ162

integrations have been reversed. Note that β (r) lacks smoothness around r = 2163

because of the cos−1 function, and it is necessary to compensate for this in the164

numerical integration of the outer r-integration in (27).165

Introduce the further transformations of [0, 1]:

T4(r) = 3r2 − 2r3, (28)

T5(r) = 10r3 − 15r4 + 6r5. (29)

They are the probability density functions of the beta distribution with B(2, 2)
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and B(3, 3), respectively. These satisfy

T (0) = 0, T (1) = 1,

T ′ (r) > 0, 0 < r < 1,

T ′ (0) = T ′ (1) = 0.

The transformation T5 also has zero second derivatives at 0 and 1, and T4 and166

T5 have a simple extension with even higher derivatives being set to zero. Apply167

one of these transformations to the outer r-integrals in (27), say with n nodes.168

This will compensate for the possible ill-behaviour of the integrand when r ≈ 2.169

Example 7 Consider the integral170

I(1; s) ≡
∫
B2

1

| w − s |α
dw

where α = π/4 and s = (1, 0). We use the four functions Tj(r), (10)-(11)171

and (28)-(29) for the r-integration and no transformation is used for the θ-172

integration. Both the θ-integration and the r-integration are then approximated173

using Gauss-Legendre quadrature with n nodes for the integral. The true value174

of the integration is calculated with large n. The column labeled “Ratio” gives175

the ratio of successive errors. See Table 1.

T1 T2 T4 T5
n Error Ratio Error Ratio Error Ratio Error Ratio
4 2.21e-02 0.00 4.51e-02 0.00 3.09e-03 0.00 5.59e-03 0.00
8 3.15e-03 7.02 5.96e-03 7.59 1.41e-04 21.95 9.61e-06 581.54

16 4.27e-04 7.39 7.90e-04 7.54 5.39e-06 26.10 8.10e-08 118.63
32 5.57e-05 7.66 1.03e-04 7.70 1.98e-07 27.23 5.77e-10 140.32
64 7.12e-06 7.82 1.31e-05 7.83 7.06e-09 28.02 3.91e-12 147.82

128 9.01e-07 7.91 1.66e-06 7.91 2.48e-10 28.49 1.95e-14 199.91
256 1.13e-07 7.95 2.08e-07 7.95 8.63e-12 28.73 3.55e-15 5.50

Table 1: Numerical examples using (27) with various transformations

176

If (20) is used to calculate the integration, two transformations will be
needed, one for the r-integration and one for the θ-integration. Consider the
integral

I(1; s) ≡
∫
B2

1

| w − s |α
dw (30)

=

∫ π/2

−π/2

∫ 2 cos(θ)

0

r1−α dr dθ =

∫ π/2

−π/2

(2 cos(θ))2−α

2− α
dθ

The integrand (2 cos(θ))2−α is not smooth around π/2 and −π/2 as long as α177

is not 1. So, it is necessary to compensate for this in the numerical integration178

of θ-integration.179
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θ-int T0 T5
r-int T1 T2 T1 T2

n Error Ratio Error Ratio Error Ratio Error Ratio
8 6.62e-04 0.00 1.24e-04 0.00 2.16e-03 0.00 1.62e-03 0.00

16 2.99e-05 22.15 8.76e-06 14.10 2.07e-05 104.13 3.98e-07 4069.07
32 1.27e-06 23.62 4.51e-07 19.43 8.11e-07 25.54 2.99e-09 133.00
64 5.18e-08 24.43 2.18e-08 20.70 3.00e-08 27.04 2.11e-11 141.94

128 2.10e-09 24.64 1.03e-09 21.16 1.07e-09 27.96 1.42e-13 148.37
256 8.59e-11 24.48 4.82e-11 21.35 3.77e-11 28.47 8.88e-16 160.00

Table 2: Numerical examples using (20) with various transformations

Example 8 This example shows the numerical integration of (30) with various180

transformations for r- and θ-integration. Note that α = π/4, s = (1, 0), and181

T0(x) = x . This example shows that choosing a right transformation for the182

θ-integration will improve the effect of transformations in the r-integration. See183

Table 2.184

3.3 The case α = 1.185

Applying the change of variable of (17), the integral186

I (f ; s) =

∫
B2

f (t)

|t− s|
dt (31)

becomes187

I (f ; s) =

∫ 2π

0

∫ R(θ)

0

f (s+ r cos θ, r sin θ) dr dθ. (32)

This integrand is generally smooth. Thus no transformation of the r-variable is188

needed to obtain rapid convergence.189

3.4 Rotating B2
190

For s ∈ B2 the disk B2 is rotated so that the singularity is on the line joining191

(0, 0) and (1, 0). To carry this out, begin by finding ψ, the angle between the192

positive x-axis and the radial line through s. Introduce193

A =

[
cosψ − sinψ
sinψ cosψ

]
.

Then194

A

[
|s|
0

]
= s.

In the integral195

I (g; s) =

∫
B2

g(w; s)dw, s ∈ B2
,

14
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Figure 10: Convergence powers p for (33).

introduce the change of variable w = At:196

I (g; s) =

∫
B2

g(At; s)dt,

noting the determinant of the Jacobian of the rotational transformation is 1. In
this new integral, the point ŝ ≡ (|s| , 0)

T
is the singular point in the integration.

Of special note for singular integrals of the form (2)-(4),

|s− w| = |s−At| =
∣∣A (ATs− t

)∣∣
=
∣∣ATs− t

∣∣ = |ŝ− t| .

3.5 Rates of convergence197

To study the rate of convergence of our numerical method (23), the convergence198

of the errors or that of the successive differences was studied. The error was199

observed on some interval [r cos θ, r sin θ], with 0 ≤ r ≤ 0.9. This smaller interval200

was chosen because (1) the method is different when including a boundary point,201

and (2) there are difficulties with the numerical method near to the boundary.202

As a particular case, the rate of convergence was studied for the case of the203

singularity204

k (ρ) = ρ−α, 0 < α < 2. (33)

The integral being transformed is (25) with f (t) ≡ 1.205

15



A sequence of values of α ∈ (0, 2) was chosen, avoiding special values such206

as α = 1 for which the convergence is more rapid. The error model207

I − IN ≈
c

Np
(34)

was studied, with N the number of quadrature nodes in B2 and some p > 0, to208

see how well the model fit the computed error. For a given α ∈ (0, 2), the error209

was observed for N = 2n × 2n+1, n = 1, 2, . . . This model (34) fit well the210

errors, although the details are omitted here. Following this, the corresponding211

p of the assumed relation (34) was determined. Figure 10 shows the empirical212

results for these powers p with varying α and with the transformations T0 (r) ≡213

r, T1, and T2 defined earlier in (10)-(11). These empirical results show a linear214

pattern as regards the relationship of α and p, and they lead to the quite good215

estimates216

p ≈

 2− α, T0,
4− 2α, T1,
6− 3α, T2.

(35)

This result is consistent with [9, Exam. 4, p. 599].217

3.6 Error behavior near the boundary218

Recall that (2)–(3) with the singular point s = (s1, 0) can be written as219

Iα (f ; s) =

∫ 2π

0

∫ R(θ)

0

f(s1 + r cos(θ), r sin(θ))r−α+1 dr dθ. (36)

If we use the trapezoidal rule for the outside integration over [0, 2π], we need220

to understand how the trapezoidal rule ‘behaves’ for R(θ) as s1 varies between221

0 and 1, but s1 < 1, always. This is the topic of the current section. We will222

assume that f is a smooth function, for example a polynomial, so the main223

emphasis is on the integration of the kernel function r−α+1. Figures 4, 5, and224

7 all show an error increase towards the boundary s1 = 1 and this seems to be225

independent of the method used. At the end of this section we will see how226

to modify the numerical integration methods to ensure an error smaller than a227

given bound ε.228

In the above integral (36) we can substitute r = R(θ)t to transform the
r-integration to a t–integration over [0, 1] and then use a scaling of the form
t = uq, q ≥ 1, to smooth the behavior of the inner integral at u = 0. Doing this
leads to

Iα(f, s) =

∫ 2π

0

qR(θ)−α+2×∫ 1

0

uq(2−α)−1f(s1 +R(θ)uq cos(θ), R(θ)uq sin(θ)) du dθ (37)

By using, for example,229

q =
3

2− α
+ 1

16



the exponent of the u will be larger than 2, so the integrand is twice continuously
differentiable and a weighted Gaussian quadrature rule will approximate the
inner integral

Fα(s, θ) =

∫ 1

0

uq(2−α)−1f(s1 +R(θ)uq cos(θ), R(θ)uq sin(θ)) du

≈
M∑
j=1

ω
(M)
j f(s1 +R(θ)(ξ

(M)
j )q cos(θ), R(θ)(ξ

(M)
j )q sin(θ))

=: Fα,M (s, θ) (38)

with a high precision. Here ω
(M)
j and ξ

(M)
j , j = 1, . . . ,M , are weights and nodes230

of a weighted Gauss quadrature on [0, 1]. We will use M = 20 in our examples231

below and assume that we can use Fα(s, θ) = Fα,20(s, θ). This assumption is232

verified by error estimates with the help of larger M values.233

This leaves us with the integration

Iα(f, s) =

∫ 2π

0

qR(θ)2−αFα(s, θ) dθ

≈ 2πq

N

N−1∑
j=0

R

(
2π

N
j

)2−α

Fα,M (s,
2π

N
j)

=: Iα,M,N (f, s) (39)

Again we assume that the main problem for the integration is the term R(θ)2−α
234

and the function Fα is well behaved. For some applications the function Fα235

might also have some more complicated behavior, but as long as Fα is smooth,236

standard error estimations and extrapolation can be applied.237

If we look at the function

R(θ) = −s1 cos θ +

√
1− s2

1 sin2(θ),

given in (18), we see that the first term is smooth and the problem for the238

integration arises from the second term. So we concentrate from now on the239

following integral240

Jβ(s1) :=

∫ 2π

0

(1− s2
1 sin2(θ))

β
2 dθ. (40)

where β = 2− α, and its numerical integration241

Jβ,N (s1) :=
2π

N

N−1∑
j=0

fβ,s1

(
2π

N
j

)
(41)

fβ,s1(θ) :=
(
1− s2

1 sin2 (θ)
) β

2 (42)

17
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Figure 11: The functions N = ℵ0.5,ε(s1), for ε = 10−8 (left), and ε = 10−12

(right), on s1 ∈ [0, 0.999]

To estimate the error of the trapezoidal rule for fβ,s1 we need the Fourier ex-242

pansion which is given by243

fβ,s1(θ) =

∞∑
j=0

(
β/2

j

)
(−1)js2j

1 sin2j(θ) (43)

=
∑
k∈Z

cβ,2k(s1)e2kiθ (44)

where244

cβ,2k(s1) =
(s1

2

)2k
(
β/2

k

)
2F1(−β

2
+ k, k +

1

2
; 2k + 1; s2

1) (45)

with the hypergeometric function 2F1, see [1]. The error of the trapezoidal rule245

is given by246

ENβ (s1) := |Jβ(s1)− Jβ,N (s1)| = 2π

∣∣∣∣∣∣
∑

j∈Z\{0}

cβ,jN (s1)

∣∣∣∣∣∣ (46)

This function allows us to estimate the necessary N to approximate Jβ(s1) by247

Jβ,N (s1) with an error smaller than a given ε. We will only look for N values248

that are powers of 2:249

ℵβ,ε(s1) := min{2j | E2j

β (s1) < ε, j ≥ 5}

Here we used 5, so that at least 32 points are used for the trapezoidal rule. This250

might be too large for certain smooth functions and will need to be adjusted for251

more complicated functions. In Figure 11 we plot two ℵ functions for β = 1/2,252

so α = 1.5, and ε = 10−8, 10−12. We see that for a large range of s1 values253

N = 32 is sufficient to guarantee a small error in evaluating the single integral254
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Figure 12: The error of the trapezoidal rule Jβ,ℵ0.5,ε(s1)(s1) for ε = 10−8 (left),
and ε = 10−12 (right), on s1 ∈ [0, 0.999]

(40). Close to the right endpoint s1 ≈ 1 we will need to increase the N value.255

If we use the calculated N = ℵ2−α,ε(s1) values for the calculation of Jβ,N (s1)256

and plot the error we get the graphs in Figure 12. Figure 12 shows that by257

using the N values, given by ℵβ,ε, the error of the one dimensional integrals are258

well controlled and below the required maximum. We like to emphasize that259

for the generation of the error graphs in Figure 12 we use 1000 values for s1,260

s1 = j/1000, j = 0, . . . , 999. So Figure 12 and the following Figures 13 and 14261

show the error up to points extremely close to the boundary of the domain.262

Now we put the two numerical methods together for the approximation of263

Iα(f, s), see (37). We use Fα,20(s, θ), see (38), and N given by ℵβ,ε for the264

calculation of Iα,20,N (f, s), see (39).265

We use the following approximation

Iα(f, s) =

∫ 2π

0

qR(θ)2−αFα(s, θ) dθ

≈ 2πq

N

N−1∑
j=0

R (θN,j)
2−α×

M∑
j=1

ω
(M)
j f(s1 +R(θN,j)(ξ

(M)
j )q cos(θN,j), R(θ)(ξ

(M)
j )q sin(θN,j)

=: Iα,ε,M (f, s), where θN,j =
2π

N
j, N = ℵ2−α,ε(s1) (47)

where ε > 0 is a predetermined level of precision.266

To minimize the impact of a complicated function f , we use the simple267

functions f0(s) = 1 and f1(s1, s2) = es1s2 . To estimate the error we calculate268

Iα,ε,20(f, s)− Ĩα,ε,40(f, s).

The difference between I and Ĩ is that we use N = 4ℵ2−α,ε(s1) instead of269
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Figure 13: The error of I1.5,ε,20(f0, s1) with ε = 10−8 (left), and ε = 10−12

(right), on s1 ∈ [0, 0.999]
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Figure 14: The error of I1.5,ε,20(f1, s1) with ε = 10−8 (left), and ε = 10−12

(right), on s1 ∈ [0, 0.999]

N = ℵ2−α,ε(s1) for the calculation of Ĩ. Figures 13 and 14 show the errors of270

I1.5,ε,20(f, s), ε = 10−8, 10−12 for f0 and f1.271

As we expect the estimated values for N work better in the case of the272

simpler function f0(s), but the slightly more complicated function f1(s) still273

shows errors that are mostly smaller than the given ε. So the function ℵβ,ε,274

β = 2 − α, is a good starting point for finding sufficiently large N values and275

maybe one additional N value for an error estimation will be sufficient to adjust276

the N to keep the error below a given bound. Figures (13) and (14) both show277

that we are able to control the quadrature error up to the boundary by using278

the estimated values for N .279
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4 Transforming other planar regions280

Assume the existence of an explicitly known continuously differentiable mapping281

Φ : B2 1−1−→
onto

Ω (48)

with Ω a simply connected region in the plane. Let282

J(t) ≡ (DΦ) (t) =

[
∂Φi(t)

∂tj

]2

i,j=1

, t ∈ B2

denote the Jacobian matrix of the transformation. Assume J(t) satisfies283

det J (t) 6= 0,

except possibly on a set of measure zero. See [5] for a discussion of methods284

for creating such mappings Φ.285

Consider the integral286

I(f, σ) =

∫
Ω

f(τ ;σ) dτ, σ ∈ Ω,

with σ denoting a point singularity in the integrand. Let τ = Φ (t), t ∈ B2.287

Then288

I(f,Φ(s)) =

∫
B2

f(Φ(t); Φ(s)) |det J(t)| dt, σ = Φ (s) , s ∈ B2. (49)

We illustrate using this with an elliptical region,289

Φ (τ1, τ2) = (aτ1, bτ2) . τ ∈ B2, (50)

with a, b > 0. Let σ = Φ (s) for some s ∈ B2. Then det J (t) ≡ ab, and290

I (f,Φ(s)) = ab

∫
B2

f (Φ(τ); Φ(s)) dτ . (51)

The earlier quadrature methods can now be applied to this integral.291

Example 9 Evaluate292

I (f ;σ) =

∫
Ω

f (τ)

|τ − σ|α
dτ (52)

with Ω the ellipse of (50) and σ ∈ Ω, using the transformed integral (51). We293

show graphs of the case with (a, b) = (0.75, 2.0), α = 1.5, n = 32,294

f (τ) ≡ f (x, y) = cos
(
x (y + 1) + 2y2

)
. (53)

The number of nodes is 32× 64, n = 32. The integration transformation is T1,295

given in (10), and the boundary formulation (20) is used with 4n nodes in the296

radial direction and 8n in the angular direction. The integral is shown in Figure297

15(a), and the error is shown in Figure 15(b). The largest error is along the298

boundary.299
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Figure 15: Integration of (52)-(53) over an ellipse with n = 32.

5 Smoothing a singularity in B3
300

Consider approximating301

I(f ; v) =

∫
B3

f(t)k(|v − t|) dt (54)

For simplicity, assume v = (0, 0, s) with 0 ≤ s < 1. Use the change of variables302

t = (0, 0, s) + ρ (cosϕ sin θ, sinϕ sin θ, cos θ) (55)

with 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π. To find the limits for ρ, solve |t| = 1:

ρ2 sin2 θ + (s+ ρ cos θ)
2

= 1,

ρ2 + 2sρ cos θ −
(
1− s2

)
= 0.

The desired positive root is

Pθ = −s cos θ +
√
s2 cos2 θ + 1− s2

= −s cos θ +
√

1− s2 sin2 θ, (56)

just as earlier in (18). The integral I(f ; v) transforms to303

I(f ; v) =

∫ 2π

0

∫ π

0

sin θ

∫ Pθ

0

ρ2f (t) k (ρ) dρ dθ dϕ (57)

with t given by (55). Perform the ρ-integration, and introduce

γ (χ) ≡
∫ Pθ

0

ρ2f (t) k (ρ) dρ, (58)

χ = (cosϕ sin θ, sinϕ sin θ, cos θ) ∈ S2.
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Then304

I(f ; v) =

∫
S2
γ (χ) dχ

The function γ (χ) is approximated as in the planar case. A transformation T is305

used, as before in (23), followed by Gauss-Legendre quadrature. Approximate306

γ (χ) as in the unit disk case. Then approximate I(f ; v) using spherical inte-307

gration. A variety of such methods are discussed in [6, Chap. 5], [13, §2.7]. We308

use the product method given in [6, (5.2)].It uses 2n2 nodes, n nodes for the309

θ-integration and 2n nodes for the ϕ-integration; and it has degree of precision310

2n− 1. The total number of nodes is n× 2n2.311

As the remaining case, let v = (0, 0, 1). Modifying (55), let312

t = (0, 0, 1)− ρ (cosϕ sin θ, sinϕ sin θ, cos θ) (59)

for 0 ≤ ϕ ≤ 2π. Solve for |t| = 1. This leads to313

Pθ = 2 cos θ.

Then314

t = (0, 0, 1)− ρ (cosϕ sin θ, sinϕ sin θ, cos θ) ,

for 0 ≤ θ ≤ 1
2π, 0 ≤ ρ ≤ Pθ, 0 ≤ ϕ ≤ 2π. The integral to be evaluated is315

I (f) =

∫ π/2

0

sin θ

∫ 2π

0

∫ Pθ

0

ρ2f (t) k (ρ) dρ dϕdθ. (60)

Gauss-Legendre quadrature with n nodes is used for 0 ≤ θ ≤ 1
2π, and the316

trapezoidal rule with 2n nodes is used for 0 ≤ ϕ ≤ 2π. The total number of317

nodes is n× 2n2.318

Example 10 Consider the integral319

I(1; v) =

∫
B3

1

|v − u|α
du, v ∈ B3, (61)

with 0 < α < 3, which can be evaluated explicitly. Letting α = 2/π, Figure320

16 shows the result of using the identity transformation (T0 (ρ) = ρ), a simple321

quadratic transformation (T1 (ρ) = ρ2), and the cubic transformation (T2 (ρ) =322

ρ3). This calculation used n = 16, except with the boundary point v = (0, 0, 1)323

where n = 32 was used. When using the transformations T1 and T2, there is a324

problem near to and on the boundary. As earlier, using a larger value for n325

when near to the boundary will improve the error.326

5.1 Rotating B3
327

For the singular point v of (54) not located on the line segment joining (0, 0, 0)328

and (0, 0, 1), the ball can be reflected to move the singular point to that line329

segment. Let A denote the Householder matrix satisfying330

Av = [0, 0, |v|]T .
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Figure 16: Comparison of errors for (61) using T0, T1 and T2 with α = 2/π and
n = 16.

Recall that A is symmetric and orthogonal. In the integral (54), make the331

substitution t = Aτ :332

I(f ; v) =

∫
B3

f (Aτ) k (|v −Aτ |) dt (62)

noting that the Jacobian of the transformation has an absolute value of 1 for
its determinant. Using

|v −Aτ | = |A (Av − τ)|

=
∣∣∣[0, 0, |v|]T − τ ∣∣∣ ,

reduces (62) to the earlier case with a singular point between (0, 0, 0) and333

(0, 0, 1)334

Example 11 Consider the integral

I(f ; v) =

∫
B3

f (u)

|v − u|α
du, v ∈ B3, (63)

f (u) = cos

(
5u2

1

4 + u2
+ u3

)
,

with α = 5/π. We evaluate the integral along the line joining the origin and335

the boundary point v =
(

1
2
√

2
,
√

3
2
√

2
, 1√

2

)
, corresponding to (ϕ, θ) = (π/3, π/4).336
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Figure 17: Error for (63) along the line with θ = π/3, ϕ = π/4, with α = 5/π
and n = 16.

The quadrature uses n = 16, except n = 32 for the boundary point. Figure 17337

contains comparisons for the transformations T0, T1, and T2. The option T2 is338

the better one.339

Example 12 To have a broader look at the behaviour of the numerical method340

applied to (61), we observe the error when evaluating over a disk region in B3,341

obtained by intersecting a plane with B3 and having it pass through the origin.342

Figure 18(a) contains the disk for our example, with the disk orthogonal to the343

vector d =
( √

3
2
√

2
, 1

2
√

2
, 1√

2

)
, corresponding to ϕ = π/6, θ = π/4, shown in red.344

The horizontal disk is the usual B2, the planar unit disk. The exponent α = 2/π345

in the integral (61). Figure 18(b) shows the computed value of the integral (61).346

The error is a function of only r, the distance from the origin, and it follows347

closely what is shown in Figure 16. Again, n = 16 is used for the quadrature,348

and T2 is the transformation being used.349

Example 13 An analogous calculation is done for the integral (63). The quadra-350

ture parameter is n = 8, and it is evaluated over the same disk as in Figure351

18(a). The exponent α = 4/π in the integral (63). Figure 19(a) shows the352

integral over that disk, and Figure 19(b) shows its error. The maximum error353

over that disk is 7.48E − 5.354
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Figure 18: Integration of (61) over disk region.

5.2 The cases α = 1, 2355

Consider the kernel k (ρ) = ρ−α. In the cases of α = 1, 2, the kernel in (57)356

will have a smooth integrand. Therefore the integrand will be smooth and no357

smoothing transformation T (ρ) is necessary. The Gauss-Legendre quadrature358

for the radial integral will work well, as will the trapezoidal rule for the angular359

integration. The case α = 1 occurs frequently in practice. The integral360

I

(
−f
4π

; v

)
=
−1

4π

∫
B3

f (u)

|v − u|
du

is called a Newtonian potential ; it satisfies Poisson’s equation,361

∆w = f.

See [2] where these quadrature ideas can be applied.362

Concluding remarks.363

We have presented and illustrated numerical methods for integrals with a364

point singularity, for integration regions that are diffeomorphic to the unit disk365

or the unit ball. We thank the reviewers, including the suggestion for using366

Gauss-Jacobi quadrature.367
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