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The Discrete Galerkin Method

for Integral Equations

By Kendall Atkinson* and Alex Bogomolny

Abstract. A general theory is given for discretized versions of the Galerkin method for solving

Fredholm integral equations of the second kind. The discretized Galerkin method is obtained

from using numerical integration to evaluate the integrals occurring in the Galerkin method.

The theoretical framework that is given parallels that of the regular Galerkin method,

including the error analysis of the superconvergence of the iterated Galerkin and discrete

Galerkin solutions. In some cases, the iterated discrete Galerkin solution is shown to coincide

with the Nyström solution with the same numerical integration method. The paper concludes

with applications to finite element Galerkin methods.

1. Introduction. Consider the numerical solution of the Fredholm integral equation

of the second kind,

(1.1) x(s)- f K(s,t)x(t)da(t)=y(s),       s e D.
JD

In this paper we will define and analyze the discrete Galerkin method for the

numerical solution of (1.1). The Galerkin method is a well-known procedure for the

approximate solution of this equation (e.g., see [5, p. 62]); and the discrete Galerkin

method results when the integrations of the Galerkin method are evaluated numeri-

cally. Before giving a more precise definition of the discrete Galerkin method, we

review results for the Galerkin method.

In Eq. (1.1), the region D is to be a closed subset of Rm, some m > 1; and the

dimension of D can be less than m, for example, if D is a surface in R3. For the

discrete Galerkin method, we will assume that K(s, t) is continuous for s, t e D,

although that is not necessary for the discussion of Galerkin's method given below.

The equation (1.1) is written symbolically as

(1.2) (I-Jf)x=y,

with the integral operator assumed to be a compact operator from L2(D) to L2(D)

and from L°°(D) to C(D). Further, it is assumed that (1.1) is uniquely solvable in SC

for all y e 3C, for both 3C= C(D) and SC= L2(D). Additional assumptions on D

and K(s, t) will be given as they are needed in the applications presented later in the

paper. Generally y e C(D), and this will imply x e C(D).
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596 KENDALL ATKINSON AND ALEX BOGOMOLNY

The Galerkin method for solving (1.2) is defined as follows. Let [Sh: h > 0}

denote a sequence of finite-dimensional approximating subspaces of both L2(D)

and C(D), and let Ph denote the orthogonal projection of L2(D) onto Sh. Then to

approximate (1.2), solve

(1.3) (l-PhJT)xh = Phy,       xheL2(D);

or equivalently, pick xh e Sh such that

(1.4) ((I-jr)xh,4,) = (y,xb),   all*eSA,

using the inner product of L2(D). This is called the Galerkin method for (1.2),

relative to the subspace Sh. In addition, define the iterated Galerkin solution by

(1.5) xt=y+Jfxh.

The error analysis of xh and x* is well known, both in L2(D) and C(D). For a

simple error analysis of xh in L2(D), see [5, p. 62]; for more general error analyses

of xh and x*, in both L2(D) and C(D), see [12], [13], [15], [28], [29].

The error analysis of xh and x*, whether in L2(D) or C(D), usually depends on

showing that

(1.6) \\JíT-PhJiT ||-0   as/,^0

with the norm dependent on which space 3C= L2(D) or C(D) is being considered. If

(1.7) Phx~*x   as ft ^ 0, all x e .£",

then (1.6) follows from the compactness of Jf on X; and generally we will be

assuming (1.7) for both choices of %'. From (1.6) and the assumed existence of

(/ — Jf)"1 on 3C, it follows that (/ - i^Jf )_1 exists and is uniformly bounded for

all sufficiently small values of h. Furthermore,

(1.8) x-xh = (l-PhX)-\x-Phx),

(1.9) \\x - xh\\^\(l- PhXyx\\\x - Phx\\.

Together with (1.7), this shows convergence, along with the rate of convergence. The

value of ||x — Phx\\ will depend on both Sh and the smoothness of the unknown

solution x.

For the iterated Galerkin solution x*, it is straightforward to show that

(1.10) (l-XPh)xt=y

and that

(1.11) Fhxt = xh.

Using an error analysis for x*, one can also be given for xh as follows:

x - xh = x - Phxt =[x- Phx] + Ph[x - xf],

II*    -**ll«ll*-    ̂ ^ll   +   ll^JlH*    -**H-
The analysis of (1.10) in L2(D) hinges on the fact that with the corresponding

operator norm,

(1.13) \\Jf-jrPh\\ = \\jir*-PhJt*\\^0   ash^O.

The compactness of JT implies the same for Jf *, and then the assumption (1.7)

implies ||Jf* - PhJf*|| -* 0. Derivation of (1.13) employs the fact that Ph is an

orthogonal projection in L2(D). When Ph is not orthogonal, as on 9C= C(D), one
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DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 597

uses ad hoc methods to establish superconvergence; for example, see [15]. It is the

purpose of this note to introduce a formalism that allows the derivation of similar

estimates for a wide class of discrete Galerkin methods.

Using (1.13), a straightforward stability and convergence analysis can be given for

(1.10). In fact, (Í.10) is a degenerate kernel method if the application of (1.10) to

(1.1) is examined in more detail. The analysis of (1.10) generalizes to C(D). For this,

see [12], [13], [15], [28], [29].
For (1.10),

(1.14) x- xZ = (I-JfPh)~1jr(l - Ph)x.

Since I - Phisa projection, (I - Ph) = (I - Ph)2 and

(1.15)        ||x-xA*||<|(/-jf/'Ar1|||jr(/-pA)||||(/-?Ä)x||.

Using (1.13) for the case 6C= L2(D), (1.15) shows that xjf converges to x more

rapidly than does xh. A similar result can be shown in the space C(D); see the

papers cited above. This more rapid convergence is called 'superconvergence'.

In practice, the integrals in (1.4) and (1.5) are not computed exactly, which leads

to the discrete and discrete iterated Galerkin methods, respectively. We shall

introduce these discrete methods in the next section, initially posing them in a matrix

algebra framework. It is shown that in many important cases, the iterated discrete

Galerkin method is exactly the same as the direct application of the numerical

integration method to (1.1), yielding a Nyström method. Section 3 contains some

applications and implications of this result. In Sections 4, 5, and 6 we introduce a

functional analysis framework for discrete Galerkin methods, a framework that is a

'discrete analogue' of the analyses given above for the regular Galerkin method.

Unlike the previous analyses of the discrete Galerkin method by [12, Chapter 3],

[23], [30], our approach yields convergence results for the discrete methods directly,

without referring to the convergence of their continuous analogues. Albeit more

restrictive, our approach yields more general results where applicable. For reasons of

space, Section 6 is placed separately at the end of the issue, in photo-offset form.

Section 7 contains applications of this method to several classes of problems.

This paper is devoted to the nonhomogeneous equation (1.1), but the results

generalize to the numerical solution of the associated eigenvalue problem. The

approximating operators in Section 5 are shown to be a collectively compact family.

This means that the standard analyses of the numerical eigenvalue problem can be

used, for example, [1], [3], [4], [14, Chapters 5-7], and [25]; and these results can be

combined with the techniques of this paper to give an analysis of the discrete

Galerkin method for solving the eigenvalue problem. Future papers will discuss the

eigenvalue problem, iterative variants to solve the associated linear systems, and

applications to Galerkin methods for nonlinear equations.

Discrete Galerkin methods for boundary value problems have also been analyzed

previously. An important early paper is [20]; and an analysis of a discrete least-

squares method is given in [2]. Although their results are related to those given here,

our schema is more general and is not as restricted in the properties of the operators,

the approximating subspaces, and the numerical integration scheme.
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598 KENDALL ATKINSON AND ALEX BOGOMOLNY

2. The Discrete Galerkin Method. The Galerkin equation (1.3)-(1.4) is solved by

reducing it to an equivalent finite linear system. To this end, let [<px,..., tpN} be a

basis of Sh, with N = Nh the dimension of Sh. Assume

N

(2.1) xh(s) = £ aj%(s),       s e D.

7 = 1

Then (1.4) is equivalent to solving for ( a.} in the linear system

N

(2.2) I, «j{(<Pj,<Pi)-{*%,*,)} = {y,9i),       i-l,...,N.
7 = 1

We will assume that this is easily solvable, although in practice the size of N may

necessitate an iterative method of solution. The conditioning of this linear system is

examined in [5, p. 79] and [32]. The iterated Galerkin solution x% is obtained by

substituting (2.1) into the definition (1.5).

To solve (2.2) and (1.5) in practice, usually we must numerically evaluate the

integrals that occur in these formulas. Thus, introduce the numerical integration

scheme

(2-3) f f(t)da(t)= llwkRf(tkR),

with all tkR e D and all wkR + 0. Here R — Rh is the number of node points; and

we assume that the numerical integration scheme converges as R -* oo (h -» 0), for

all f e C(D). Ordinarily, the weights and nodes will be written simply as wk and tk,

with the dependence on R (or h) understood implicitly. In all cases when using (2.3)

in this paper, we will assume that

(2.4) [HI]        Rh>N„,h>0.

This will be needed for reasons that will become apparent later.

Use (2.3) to approximate all of the integrals in (2.2), applying it twice to evaluate

the iterated integrals of (Jt"q>j, <p,). Let

(2-5) zh(s) = £ ßjVj(s),       s e D,

7-1

with ßx,...,ßN determined from the linear system

N I    R R      R

E/?,  E "w,-('*)9/('*)- E E*w*('*.'/)9/('/)«P/('*)!
7 = 1       U-l k-\ l~*l I

(2.6)

=   E wky(tk)q>i(tk), i = l,..., TV.
k = l

Note that the coefficients (tp,, <p.) are also being approximated, as this is necessary

for some of our later applications. In the earlier works [12], [30], these coefficients

were assumed to be evaluated exactly; and in some cases, our work will imply the

earlier results. To complete our approximation of the Galerkin method, define the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 599

discrete iterated Galerkin solution by

R

(2.7) zt(s)-y(s)+Í,wkK(s,tk)zh(tk),       s e D.
k = l

To simplify the analysis of zh and z%, introduce the following matrix notation. Let

<£> be the matrix of order N X R with

(2.8) *,k-<Pi(tk),        i=l,...,N,k = l,...,R.

Also, define

k={K(tk,tl)},       k,l = \,...,R,

W = diagonal[ wx,...,wR],

(210)     y=[y(h),~-,y(tR)]T,      v = [ßx,...,ßNV,

** = bh{h)'---^h(tR)]T,     z* = [z*(tx),...,zf;(tR)]T.

The linear system (2.6) can be written as

(2.11) &W$Tfi - <t>WKW<frT$ = <i>Wy,

and

(2.12) zh = *rß.

The iterated solution z * satisfies

(2.13) z* = y + KWzh.

With this, we have

Lemma 2.1. <S>Wzh = <&Wz*h.

Proof. Multiply (2.13) by QW, yielding

®Wz*h = $Wy + <S>WKWzh.

Combining (2.12) and (2.11),

$Wzh = $Wy + $WKWzh.

This shows the desired result.   D

For the remainder of the paper, we will assume

(2.14) [H2]       Rank($) = N,       h > 0.

The lemma leads directly to our first important result.

Theorem 2.2. Let N = R, and suppose that the system (2.11) has a solution zh.

Then the iterate z* is a solution to the Nyström method for solving (1.1), with (2.3) as

the numerical integration method:

R

(2.15) z*(s) - E wkK(s, tk)zt(tk) = y(s),       s e D.
k = l

Proof. From the assumption N = R, $ is a nonsingular square matrix. Then from

Lemma 2.1, zh = zjf. Combine this with the definition (2.7) to obtain (2.15), as

desired.   □
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600 KENDALL ATKINSON AND ALEX BOGOMOLNY

This theorem has consequences that will be explored in the following section. We

first say something further about the matrix i>. For R > N, the matrix

(2.16) Gh = ®W$>T

is the discretization of the Gram matrix of the original Galerkin system (2.2),

(2.17) Th=[(<p,,cpJ)}.

The discrete Gram matrix Gh is not necessarily an approximation of Th, as will be

shown in the next section with an example, where Sh is a space of periodic

piecewise-linear functions. This means that Eq. (2.6) need not be an approximation

to (2.2) in order to assure convergence of zh (or z%) to x. The theory developed in

Sections 4 and 5 to explain this convergence differs from the customary approach

via perturbation theory, as given in [12], [30]. In certain cases Gh = Th, and then our

discrete Galerkin method (2.6) becomes the same as that analyzed earlier. Such cases

are considered in Sections 3 and 7.

To aid in further understanding the meaning of the matrix 0, we give the

following results.

Lemma 2.3. Let N = R. Then [H2] is true if and only if for every set of data

(ft,,..., bN}, there exists a unique element <p e Sh with

(2.18) ¥>(*,)-*!.       i = l,...,N.

In fact, we have that the mapping f e C(D) -» qp e Sh, with <p(s) interpolating f(s)

at the nodes [t■}, is a bounded linear projection operator on C(D).

Proof. This is straightforward and well known. Also, this interpolation property is

well known to be true for many pairs Sh, {/}, and thus [H2] is easily checked by

considering the equivalent interpolation problem (2.18).    D

Remark. Let N = R. Then

(2.19) $WQ>T=I   if and only if $T$W = I.

Proof. Again, the proof is straightforward and we omit it.   D

3. Applications of the Discrete Galerkin-Nyström Method. In this section we

consider only the case Nh = Rh, h > 0, with the resultant Theorem 2.2. When the

discrete Galerkin solution zh exists, the iterated discrete Galerkin solution z% is

simply a solution of the Nyström method for solving (1.1), with (2.3) as the

integration method. Therefore, the well-developed convergence theory for the

Nyström method can be used to show the convergence of the discrete Galerkin

method, even in the heretofore disregarded event of the Gram matrix Th not being

computed exactly.

The Nyström approximation method is

N

(3-1) £*(*)-£ w,K(s,iMt,)=y(s),     s*D.
1=1

With the assumptions that (i) Eq. (1.1) is uniquely solvable on C(D), (ii) K(s, t) is

continuous for s, t e D, and (iii) the numerical integration method (2.3) is conver-

gent on C(D), it is well known that (3.1) is uniquely solvable in C(D) for all

sufficiently small h, say h < h0. For a development of this theory, see [5, p. 88].
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From the error analysis of (3.1),

(3.2) x-$h = (I-Xhy\Xx-Xhx),        h^h0,

where Jth denotes the numerical integral operator in (3.1). Because of Theorem 2.2,

we will henceforth identify $h with z*.

The Nyström method also gives a justification of the discrete Galerkin method

when N = R. To show that the system in (2.11) is nonsingular, write it as

(3.3) $W$T - <&WKW$T=<bW[l - KW]<S>T.

The matrix / — KW arises when solving (3.1), and it is known that

(3.4) !(/-^)"i<||(/-.**)"i,        *<V
The matrix norm on the left side is the matrix row norm; see [5, p. 105]. Since i>, W,

and <E>r are also nonsingular, this shows that the system (3.1) is nonsingular; and the

condition number of the matrix on the left side of (3.3) can be found from

information on 0, Gh, and / — KW..

The result (3.2) says that the choice of Sh is not important in the rate of

convergence of z% to x, provided that [H2] is satisfied, along with N = R. Also, the

Gram matrix Th does not have to be evaluated exactly in order to obtain conver-

gence.

Application 1. Let n > 0, D = [a, b], h = (b — a)/n, Sj = a + jh for 0 <y < n.

Let Sh = &r_x, the set of functions that are polynomials of degree < r on each

subinterval [s-_x,Sj], j = \,...,n. The functions in 5Pr_x need not be continuous at

the node points s... The dimension of Sh is

(3.5) Nh = rn.

On each subinterval [sj_x, Sj], let an integration scheme be given:

(3-6) f'  f(t)dt= ÍvkJf(rkJ),
*/-l k = l

with sJ_1 < rXJ < ••• < rrj < s,. Assume that (3.6) has degree of precision d on

each subinterval [Sj_x,j ]. The formula (3.6) leads naturally to an integration

formula over all of [a,b], and the number of integration nodes will be R = rn.

(Note: Because of the discontinuous nature of the functions in Sh, we can allow

Ty = Sj_x and TrJ = Sj, while still considering t . and rx -+1 as distinct nodes.)

The space Sh is not contained in C[a, b], so the analysis will be extended to allow

functions which can be considered as continuous on each subinterval [s¡_lt s¡]. This

can be done in several ways, as is pointed out in [9]. We will use a formulation using

L°°[a, b], with the point functional evaluations defined as in Section 2 of the cited

paper. With this, we have the following theorem.

Theorem 3.1. Assume (1.1) is uniquely solvable on C[a, b]. Further assume that

x e Cd+1[a, b] and that K(s, t) is d + 1 times differentiable with respect to t. Then

the iterated discrete Galerkin solution z% satisfies

(3-7) ||x-zA*||00 = Ö(/I'/+1).

If d^ 2r — 2, then Th = Gh. For a maximal order of convergence, choose (3.6) to be

Gauss-Legendre quadrature on [Sj_x, Sj], j' = 1,..., n. Then d = 2r — 1 and

(3-8) \\x-zt\\x = 0(h2r).
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Proof. These results are a straightforward use of (3.2), together with easily derived

error bounds for the numerical integration in (3.6). The fact that Gh = Th when

d > 2r - 2 follows from the fact that the integrand in

n       s

(<P/,<pJ= E \'  <P,{t)yk(t)dt
7-1 V«

is a polynomial of degree < 2/* - 2 on each subinterval. The result (3.8) is the same

as that given in [12, Theorem 3.6].   D

Application 2. Let D be a piecewise-smooth surface in R3, with

(3.9) D = DXU ••• uZ)y.

For each £>., assume the existence of a smooth mapping

(3.10) Fj-.Dj^Dj,       7 = 1,...,/,

where D] is a polygonal region in the plane. For each such region Dj, let {A¿ } be a

triangulation of Z)., and let /^(A^ ) = àkJ define a corresponding triangulation of

Dj. Collecting together all these triangulations of Dx,..., Dj one has a triangulation

{A1;..., A„} of the surface D.

To have a standard means of defining approximations and numerical integration

on {AA}, we introduce an alternative way of defining A¿. For each ak, let vXk, v2k,

and û3k be its three vertices. Also let ê be the unit simplex in the plane:

(3.11) ê= {(s,t)\s,t,l -s- t >0}.

l-i

Define mk: è -» Ak by
onto

(3.12) mk(s, i) = Fj(ùvx k + tv2k + sô3ii),       (î, í) e ê, ù = 1 - s - t,

where Âk c Dj. We define Sh as the set of functions that are images under mk of

polynomials of degree  < r on ê, for k = 1,..., «. Again the space 5A will not be

contained in the continuous functions, and the analysis must be extended to LX(D)

in order to carry out an error analysis.

For numerical integration, let

t *
(3.13) f(s,t)da=   Z*jf(Sj,îj).

e 7-1

Then for integrals over Ak, use

f  f(Q)dS(Q)= ff(mk(s,t))\DsmkXDtmk\do
\ J'e

(3.14) ,

=    HWkjf{mk{SjJj))
7-1

with wkj = Wj\Dsmk X Dtmk(sj, f)|. Ds denotes the partial derivative with respect to

5, and similarly for £>,. For more information on both the triangulation of D and the

numerical integration (3.14), see [7], [8].

The dimension of Sh is

(3.15) N = n(r+ l)(r + 2)/2;

and the total number of integration nodes is

(3.16) R = nf.
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Thus to have N = R,we must choose

„     (r + l)(r + 2)
(3.17) /= i-'j-'-.

Subject to this, we choose (3.13) to maximize the degree of precision d. For formulas

chosen from [24], [31], we have the possibilities shown in Table 1.

Assuming (i) an integration rule of degree of precision d, (ii) sufficient smoothness

of the functions K(s, t) and x(t) on each Z>-, and (iii) sufficient smoothness of each

Dj (by means of the mappings Fj), we obtain from (3.2) that

(3.18) i*-*í|L-0(A'+1),
where h denotes the maximum of the diameters of the triangles A ■ making up the

triangulation of Dx,..., Dj. This is a relatively straightforward argument, and we

refer the reader to [7].

Table 1

Maximal degree integration rules

0 12 3

1 3 6 10

12          4 6

We note that, in general, Gh ¥= Th, because of the presence of the Jacobian

\Dsmk X D,mk\ in the integrand of (3.14). Nonetheless, what is referred to as

superconvergence is still attained. With approximations in Sh of degree < r, one

would ordinarily have

(3.19) ||x - xJL = 0(hr+1)

for the Galerkin approximation and

(3.20) ||*-*A*L = 0(A2r+2)

for the iterated Galerkin approximation. According to Table 1 and (3.18), we do not

quite attain this order of superconvergence with zj¡", although there is an improve-

ment over (3.19). More accurate numerical integration will be needed to replicate

(3.20), and this will be returned to in Section 7.

Application 3. We consider two different approximating families Sh while using

the same integration rule, thus arriving at the same iterated discrete Galerkin

method. Let D be a smooth simple closed curve in the plane. Then C(D) can be

replaced by C [0, 2tt], the space of continuous periodic functions on [0,27r]. As our

first choice of Sh, use Sh = 3~n, the set of trigonometric polynomials of degree < n,
n

<p(s) = a0 +  E [ajCOs(js) + bjsw(js)].

7 = 1

Then the dimension of Sh is N = 2« + 1. For the second choice of Sh, let Sh = áCh,

the set of continuous piecewise-linear periodic functions on [0,277], with each

<p e £Ph linear on [t¡_v tf\, j = 1,... ,2n + 1,

tj=jh,       0<;'<2n,       h = 2V(2« + 1),

?2ti + 2        h-

The dimension of ¿¡?h is also /V = 2« + 1.
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For the integration rule, use the trapezoidal rule with the nodes in (3.21). Then the

number of distinct nodes is only R = 2n + 1 because of the periodicity of the

functions being integrated. This is a natural integration rule to use when Sh = 9~n,

because the integration rule then has degree of precision d = 2n and Gh = Th. This

would seem to preserve the rapid convergence of the Galerkin method with Sh = 3~h.

For the space Sh = ¿?h, however, we will not have Gh = Th. For a basis of áCh, use

the standard 'hat' functions:

((s-tj_x)/h,     tj_x^S^tj,

9j(s)= UtJ + x-s)/h,    tj<s<tJ+l,j-l,...,2n+ 1,

\0, otherwise.

Then Th is almost tridiagonal (it is circulant); and 0 = I, Gh = hi. Gh is not a good

approximation of Th.

According to the standard theory of Galerkin's method, one would expect

ll*-*Joc = 0(/i2), ||x-x*|00 = 0(/z4)

with Sh = yh. But according to Theorem 2.2 and formula (3.2), we need only

consider the integration error in examining the error in z£, and it will coincide with

the result using the more sophisticated approximation from 3~n. It is well known that

for sufficiently smooth periodic integrands, the trapezoidal rule converges very

rapidly; see [6, p. 253] and [16, p. 314]. Thus ||x - z%\\x will converge very rapidly,

regardless of which underlying space Sh is being used. When going back to zh,

however, this greater speed will be lost for approximants from 3fh, except at the

node points (since zh(t¡) = z *(?,)).

4. The Discrete Orthogonal Projection. We will introduce a discrete analogue to

the orthogonal projection Ph of L2(D) onto Sh. Using this discrete projection, we

will give an error analysis in Section 5 for the discrete Galerkin method when

R > N. In this section the discrete projection is defined and its properties are

examined. Examples with important subspaces Sh will be given in Sections 6 and 7.

Using the numerical integration method (2.3), define

(4.1) (/,*)» =   E wkf{tk)g(tk),       f,geC(D),
k-\

(4.2) 11/11*-A/«/)*.       f^C(D).
The latter is only a seminorm on C(D), but we will henceforth assume it is a norm

onSA:

(4.3) [H3]        feSh    and    ||/||A = 0   implies /=0.

We also assume

(4.4) [H4]        Wj>0,        j = l,...,R.

With [H4], it is usually straightforward to prove [H3]. In particular, we have the

following easily proven result.

Lemma 4.1. Let [H4] hold, and, in addition, assume that functions from Sh possess

the interpolating property (2.18) with respect to a subset of N of the integration nodes

used in (4.1). Then [H3] holds.    D

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 605

With the definitions (4.1) and (4.2) and using [H4], it is easy to show that

(4.5) |(/,gh|<ll/Ulg||*,       f,geC(D),

(4.6) 11/11* <c||/1
R

Hwk
1

1/2

,        f^C(D).

Since the integration rule is convergent on C(D), the constant c can be bounded

independent of h.

Define the projection operator Qh: C(D) -* Sh by

(4.7) (fi*/,*)» =(/,*)*    allies,.

To see that such a Qhf is uniquely defined, let Sh = Span{<p,,..., <pN} and write

N

(4.8) Qhf(s) = (p(s)=  £a.?.(s),       seD.
7-1

To satisfy (4.7), it is necessary and sufficient that ax,...,aN satisfy the linear system

(4.9) E «,(?,><P,)Ä =(/>?,)*,        i = l,...,N.
7-1

The coefficient matrix is a Gram matrix relative to the inner product (4.1), and it is

also the matrix Gh of (2.16). To show Gh is nonsingular, we use the standard

arguments to show it is positive definite, with the aid of [H3]. Thus (4.9) is uniquely

solvable and Qhf is uniquely defined. The linearity of (4.9), relative to /, will also

show Qh is linear; and the uniqueness of Qhf shows Qh is a projection, i.e.,

Ql - Qh-
As a first indication of the usefulness of Qh, we give the following result.

Lemma 4.2. Let zh and z* be the discrete Galerkin and discrete iterated Galerkin

solutions, from (2.5)-(2.7), assuming they exist. Then

(4.10) zh = Qhz*,

in analogy with (1.11) for the original Galerkin method.

Proof. Recall Lemma 2.1, that <bWzh = <bWz%.

Equating corresponding elements,

R R

E *W,('*)*a('*) =   E *W>/('*)**('*),        i = l,...,tf,
k=l k-1

(zh'<Pi)h={z*,<Pl)h'        i = l,...,N.

Since {<pj,..., cpN} is a basis of Sh, this says

(**,*)*=(***,*)*    all^G5A.

From zh e Sh, the uniqueness of oAz¿* combined with this latter result proves

(4.10).    D
Some additional properties of Qh are given in the following

Lemma 4.3. (a) Qh is selfadjoint on C(D), relative to the discrete inner product

(4.1):

(4.11) (ß*/,g)* = (/,ß*g)*,       f,geC(D).
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(b)

(4.12) llß*/ll*< 11/11*,       f^C(D).
(c) If the family [Qh: h > 0} is uniformly bounded on C(D), using the usual

operator norm induced by the uniform norm \\ ■ \\x, then

(4.13) \\f- QJ\\X < c • minimum||/- q>\\x,

with c independent of h and f.

(d) When N = R, the projection Qh is the interpolating projection from C(D) onto

Sh, i.e.,

(4.14) (ö*/)(0 =/(',),       i = l,...,N.

Proof, (a) From (4.7) with \p = Qhg,

(ß*/,0*g)* = (/,ß*g)*.
Similarly,

(ß*g,ß*/)*=(g,ß*/)*-

Using the symmetry of the inner product, result (4.11) is proven,

(b)

llß*/ll* = (ß*/.ß*/)*
= (/,ß*/)*>   using * = QJ in (4.7)

< 11/11*110*/ IL.   using(4.5).
If Qhf * °> cancel IIÔa/II* t0 Prove i4-12)- If Qhf = °>then (4.12) is trivially true.

(c) Let

(4.15) q = Supremum || Qh || < oo.
*>o

Then for any <p e Sh,

(4.16) /- Qhf = f- <p + Q„<p - QJ= (I - Q„)(f-<p),

(4.17) ll/-Ö*/IL<(l + ?)ll/-C>IU.
Let c = 1 + q, and form the minimum of the right side over Sh to prove (4.13).

(d) The system (4.9), defining Qhf, can be written as

G> = <Wf,       i=[f(tx),...,f(tN)]T.

Using (2.16) for Gh,

$H/$ra = $Wi.

Since $ and W are nonsingular, we have

«Fct = f.

But from (4.8), with i = t¡, we have

ß*/(/<)-(»ra)i-(0,-/(0,       i-l,...,N,

and thus the result is proven.   D

Part (c) shows that Qhf -> f in C(D) if (i) the family {Qh: h > 0} is uniformly

bounded on C(D), and (ii) the family [Sh: h > 0} approximates all elements of

C(D). Conversely, if Qhf-*f for all fe C(D), then {Qh} is uniformly bounded
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by the principle of uniform boundedness. We examine next the general problem of

bounding the family { Qh} for some important approximating families ( Sh}.

In general, we need to bound Qhf in (4.8), subject to ax,..., aN satisfying (4.9).

The choice of the basis {<px,...,<pN} of Sh is at our disposal. Since the coefficient

matrix of (4.8) is Gh, a bound for Qh can be produced by using

Hloo^lG,;1! Max |(/,<p,)J
1 < Í < tV

(4.18) n

< IG*"11|||/|L Max   £ w*|«p,(f*)|
K'^t-l

with a = [ax,..., aN]T. The matrix norm used in \\Gkl\\ is the row norm. Combining

(4.8) and (4.18),

(4.19) \\Qkf\L*c\\f\

(4.20) c = ||GA-1

N

Max Y Wi(s)\
R

Max   Y ">k\<Pi(h)\
l«i«/V k = l

Thus the problem of bounding Qh is reduced to that of bounding Gkx, at least in the

case when the underlying subspaces Sh are of finite element type. For then,

N

Max Y \<PÂS)\
*eD , = i

can be reasonably assumed to be bounded independent of h; while for the last term

in (4.20), an estimate

R

Max   Y wk\<PiUk)\ <ch&
Ki^N k_x

could be established.

Bounds on \\Tkl\\ were studied in [10], [18] in case of spline spaces Sh, and in [17],

[19] for finite element spaces over subregions in R". The possibility of defining the

discrete inner product and the corresponding projection was mentioned in the latter

paper; and the discrete projection onto spline spaces in conjunction with collocation

methods at Gaussian points was used in [21], [22]. Unlike the latter two papers and

aforementioned works [12], [30], we do not require Gh = Th in order to establish

convergence ||x - zjf|| -» 0.

Anticipating the superconvergence results for the discrete iterate z*, we next show

that the discrete Galerkin solution zh inherits certain superconvergence properties of

z

Lemma 4.4. Let zh and z% be defined as in Lemma 4.2. Then

(4-21) llß**-2*ll*<c|x-zA*||00,

where c is the constant in (4.6).

Proof. Using consecutively (4.10), (4.12), and (4.6), one has

llß**-zh\\h = |ß*(*-zh)I*«II*-z*II*<4x~z*IL- D
Assuming (4.19), we state a stronger result.
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Lemma 4.5. Assume (4.19) holds, i.e., \\Qhf\\0B < c\\f\\x for all f e C(D) with c

independent of h. Then

(4-22) IIO**-¿*lloc<HI*-^IL-
Proof. In (4.19), set / = x - z%; and then use

llß**-z*L =||ß*(*-**)IL < c\\x -z*\L- n
With N = R, Qh is just the interpolating projection. Thus (4.22) extends the result

of Richter [26], on the superconvergence of (x - xh)(t¡) for collocation at Gaussian

points, to the case of the discrete Galerkin method.

Thus we see that the convergence of the discrete Galerkin method hinges on

availability of the bound (4.19). This will be discussed in Sections 6 and 7. But first

we introduce the formalism for handling the fully discretized Galerkin method.

5. General Error Analysis. Recall the numerical integral operator Jf/7 based on

the integration rule (2.3),

R

(5.1) (■**/)(*)=   Y^K(s,tj)f(tj),       seD.
7 = 1

Using the notion of the discrete inner product (4.1), we also have

(5-2) (•**/)(*) = (*„/)*,

where ks = K(s, ■).

Lemma 5.1. The discrete Galerkin method (2.5)-(2.6) can be written equivalently as

(5-3) (/ - Q„Xh)zk = Qhy,       z„eC(D).

Moreover, the discrete iterated Galerkin solution satisfies

(5-4) (I-JfhQh)z*=y.

Proof. From (5.3), zh = Qh(y + ^hzh) G •$*. Using this, rewrite (5.3) as

Qh[(I-Jfh)z„-y]=0,       zheSh.

This is equivalent to saying that zh e Sh and that it satisfies

{(I-Jfh)zh-y,^)h = 0   allies,.

Choose a basis {<p,,..., <pN} of Sh, and successively set t// = ç>„ i = 1,..., N. This

leads directly to the formulation (2.5)-(2.6), showing the equivalence with the

formula (5.3).

As to zjf, the definition (2.7) is equivalent to

(5-5) z*=y+Jfhzh,

from which ßAz* = Qhy + Qh^~hzh = z*> supplying another proof of Lemma 4.2.

Now replacing zh with ßAz* in (5.5), we prove (5.4).   D

Solvability of the two equations (5.3) and (5.4) follows easily from the standard

theory of collectively compact families of operators, [1], [5].

Theorem 5.2. Assume the integral equation (I — Jf)x = y is uniquely solvable for

every y e C(D), and assume K(s,t) is continuous for s, t e D. Let

(5.6) {Shc C(D): h > 0}

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 609

be a sequence of approximating subspaces with the property that for eachfe C(D),

(5.7) p„(/) =  minllZ-tplU-iO    ash^O.

Finally, assume that the discrete projections [Qh: h > 0} are uniformly bounded,

(5.8) 9= supUßJ <oo.
*>o

77iev2 (Ô*J^*} and {Jf*ß*} eac/t /orw a pointwise convergent and collectively

compact family of operators. Hence, for all sufficiently small h, the operators I — QhOfh

and I - JfhQh are invertible on C(D) (for, say, h < h0), and

(5.9) \(I - QM^l * B,       \\(I-jrkQk)-ll<B<«>.
Moreover,

(5.10) (/ - QkJr„)(x -zh) = (l- Q„)(y + jf„x) + (Jf- Xh)x

and

(5.11) (I-XhQ„)(x-zt)-jrx-jrhQhx.

Thus both ||x — zh\\x and ||x — z*\\ tend to 0 as h -> 0.

Proof. We concentrate on the equation (5.4). Equation (5.3) can be dealt with in a

similar manner. We show that {JfhQh: h > 0} is a pointwise convergent and

collectively compact family of operators on C(D). Then the general theory of

collectively compact operators can be used to complete the proof (e.g., see [1] or [5,

p. 96]).
From (5.7), (5.8), and (4.17),

(5.12) ll/-ß*/L<(l + <?)P*(/).
proving that ßA/ -> / as /i -> 0, for all / e C(D). Then

(5.13) Ji7-jr*ß*/= W--ar*/]+jr*[/-ß*/].

It is straightforward to show that ||Jf/- 0thf\\x -* 0 (see [5, p. 90]); and then the

principle of uniform boundedness implies {JTh} is uniformly bounded. Combining

the latter with (5.12), the last term in (5.13) also goes to zero, completing the proof

that JthQJ -> JtTf.

The collective compactness of {Jt"hQh: h > 0} will follow by standard arguments.

Combined with the pointwise convergence of {XhQh), the remaining results follow

from known theory [1], [5].   D

We now give another proof of Theorem 2.2, within this new framework.

Corollary 5.3. When N = R, the discrete iterated Galerkin solution results from a

Nyström approximation of the integral equation (1.1).

Proof. From Lemma 4.3(d), we have JfThQhf(s) = Jfhf(s) for all / e C(D). Thus

formula (5.4) for z¿* reduces to

(/-Jfjz* = vs

the Nyström method.   D

To obtain superconvergence results for z¿* to x in the original Galerkin method,

examine the error term in (5.11). This reduces to examining the error

3fx(s)-XhQhx(s).
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Lemma 5.4. Let ks(t) = K(s, t), s, t e D. Then

(5.14)   Xx(s)-X„Qhx(s) = [Xx(s)-X„x(s)] +((/ - Qh)ks,(l - Qh)x)h

and

\Xx(s) -JThQhx(s)\ <|jfx(s) -Jfhx(s)\

(5'15) +ll('-ô*)M*,1-ll(/-ô*)*ll*,oc-
The seminorms are

R

(5.16) 11/11*,! =  E »j\f(tj)\>       11/II*.» = Maximum |/(0 |.
y=l l</<«

Proof. Write

Jfx(s)-JfhQhx(s)= [Xx(s)-Xhx(s)]+Xh(I-Qh)x(s).

Then note that from (5.2),

•#"*(/ - Qk)x(') = (K,(i - Ô*)*)* = (*„(' - Ô*)2*)*

= ((I-Qh)ks,(I-Qh)x)h.

The last two steps used the facts that / - Qh is a projection and that it is selfadjoint

from Lemma 4.3(a). (5.15) follows easily from (5.14).   D

This shows the quantities that must be examined in order to obtain convergence

results for z%, namely, (1) Jfx - Jfhx, (2) x - Qhx, and (3) (/ - Qh)ks. The first is

simply the numerical integration error. The second and third are the errors in using

the projection of C(D) into Sh, and these are examined for particular cases in the

next two sections.

When Sh contains only piecewise-continuous functions, the above arguments can

still be used. Note that if Sh c LX(D), then Jf: LX(D) -> C(D) implies that

^hQh- C(D) -» C(D), and z¿* will still be a continuous function. The discrete

solution zh will not be continuous, but the following bound in (5.17) is still valid.

Note also that for the difference x - zh one has

(5.17) ||x - zh\\x =\\x - Qhz^\\x <||x - Ô**IL +IIÔ*II||* - z**||oo>

which provides a way other than (5.10) to estimate ||x - zh\\x. As the first applica-

tion of the above lemma, consider the simple case of a smooth kernel K(s, t) and a

smooth right-hand side y. Assume also that for smooth /,

inf ||/-«pL = o(a/);
<p<=s/,

and assume the integration formula used is of degree of precision d. Then under the

assumption that ( Qh} is uniformly bounded,

(5.18) \\x-zh\\x = 0(h^1-"^),

(5.19) ||x - z^\\x = o(hmn{2l'd+l)).

(5.19) actually coincides with a result by Chandler [12], while (5.18) improves the

corresponding result of his in the event we are concerned with, i.e., when the same

integration formula is used in defining Qh and Jfh.
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While we are on the case of smooth kernels, let us use (5.14) to make a remark

that parallels one in [28]. Namely, the rate of convergence observed in (5.19) remains

the same for all derivatives of x — z*, i.e.,

(5.20) ¡Da(x - z¿*) \\x = o(hmini2'-d+l)),

where a is a multi-index. This follows from (i) the fact that the uniform bounded-

ness of (/ - ^hQh)1 m C(D), h < hx, implies their uniform boundedness in

Ck(D), the space of k times continuously differentiable functions, and (ii) the easy

formula

(5.21) \\D"Xh(I - Qh)x\\x = max«/ - Qh)kf,(I - Qh)x)h,
s

where kf = DsaK(s,-).

6. Bounds on G~x. See the Supplements section at the end of this issue.

7. Applications. In this section, we derive the bound in (4.19)-(4.20), using the

results of the preceding section. To define the projection Qh, we have to specify the

spaces Sh and the numerical quadratures (2.3).

We consider finite element spaces as described in Section 6. Starting with an

integration formula over the reference element,

f

(7.1) fv(t)dt=   E*,#(0'
ê 7 = 1

we define the composite formula over D,

(v.2) f vit)** Y Ev(^),

where tjk = Fk(tj), and wjk = Wj\DFk(tj)\, k = l,...,E, j = !,...,/, in accor-

dance with (3.13)-(3.14).

Using (7.2), we define the scalar product (•, -)h as in (4.1) and (6.2), with

J

(7-3) (<P,*)ek =  Y*MtjM(tJk).
7 = 1

This clearly satisfies (6.10) and (6.11), if the scalar product (•, •) is defined by

means of

Jf

(7.4) (<p,¿)= E^ÍO'K',)-
7 = 1

To state a general result, we have to impose two additional conditions, in addition

to (a)-(j) of Section 6.

Fk is continuously differentiable and

^ max\DFk(t)\^K.m(ek),       k = \,...,E.

In case Fk is an affine mapping as in (6.11), this follows from \DFk\ = m(ek)/m(ê).

(1) Let Mj= {k:Cj^ek}. Then |Afy.| < M, j = 1,..., N.

This is easily verified for all commonly used finite element spaces.

We can now state the following general result.
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Theorem 7.1. Let spaces Sh be defined as in (a)-(l), where for definiteness, we set

h = max(d(ek)), k = 1,..., E. Then with (•, -)h defined as above and Qh as in (4.7),

(7-5) llß*ll<C,
independent of h.

Proof. We have to estimate the three terms in (4.20). First, using (j), we get

N N

Max Y Wiis)\=    Max    Max Y W¡(s)\
s^D        i k = l,..., E s^ek  ¡ = x

=    Max    Max Y \CP¡(S)\
(7.6) k-l....,E,ee„  ie,k

< M ■    Max    Max Max | <p(-(s ) |
k = l,...,E see4   ielk

< M ■    Max    Max|$-(s)|< C- M,
7 = 1.v   See

for a constant C independent of h.

For all i = 1,..., N and k e M¡, denote the progenitor of <p, over ek as q>¡ :

% = <Pi\.t ° Fk

as in (6.14). Using this notation, we next estimate the last factor in (4.20). Thus, for

all / = 1,..., N, we see that

r e    f

E w*k«('*)l = E E w;*|q>i(o*)l
k = l k=lj=l

(7.7)

= E E wfrlvJOl' from0)
*eM,j = l

/

< K  E    E *,.m ( e J1<p,t( 0 |.    from (k)
ksM, j = l

S
^k-   Max     Y   E 19/(01'    ^ax   m(ek)

/=1.'keM,j-l k = l,...,E

< k ■ M ■ ch" = C/t",

where ñ = n or ñ = n - 1 as in (h), and C is independent of h.

Finally, applying Lemma 6.3, (k), and the same bound on m(ek) as in (7.7), we

obtain through Theorem 6.1 the estimate

(7.8) \\G-hl\\^Ch--"

with C independent of h.

Combining (4.20), (7.6)-(7.8), we finish the proof.   D

Examples. Consider the unit simplex ê, as in (3.11). Let vx, v2, v3 be its vertices

while vx2, i>23> öi3 are the midpoints of its sides. First we study the element

{ê, 2o, á3,}, where £?x is the set of polynomials of degree less than 2, and

2° = ( 8b, <5(-, , 8{,J. The scalar products are defined with

(7.9) ($,,*)* =|E$>(ß,)<Kß,).
/' = 1
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The space Sh consists of piecewise-linear continuous functions, and the discrete

iterated Galerkin method reduces to the Nyström method with nodes at vertices of

the triangulation.

If one chooses instead 2° = {8[t ,80 ,80  } and replaces (7.9) with

.  „       1     3

(7.10) ($>,*)    =g    Y   MMfaj),
i, 7 = 1

<*j

then Sh will consist of piecewise-linear functions, continuous at the midpoints of the

sides of the triangular elements. The discrete iterated Galerkin method coincides

with the Nyström method with nodes at these points. Again, although (7.10) is exact

for the finite elements concerned, Qh does not reduce to the customary orthogonal

projection Ph.

It immediately follows from the general theory that, taking operators Jf with a

smooth kernel, we have ||x - z^\\x < ch2 in the first case, while ||x - zh*\\x < ch3

in the second case, since the degree of precision of the quadrature in (7.9) is 1, while

that of the quadrature in (7.10) is 2. Note that ||x - xj¡\\x < ch4, from which we see

that, though the discrete iterate zjf converges faster than zh (or for that matter xh), it

does not attain the full superconvergence of x%. As we see, to achieve this, it does

not suffice to choose an integration formula for which the integral in (7.4) is

evaluated exactly. To obtain the convergence rate 0(h4) for zj*, an integration

formula with degree of precision d ^ 3 is needed. From [24], there exists a formula

with d = 3 that has 4 nodes.

As the last example of finite element spaces, we consider the piecewise-smooth

surface D from (3.9). The triangulation is defined by (3.10)—(3.12), while the scalar

products (•,-)e are defined by means of the integration (3.13)—(3.14). The kernel of

the integral operator X is assumed to be smooth on each of the patches JD. The

same holds for the solution x, provided the right-hand side y is sufficiently smooth.

Theorem 7.1 applies directly; thus we have that (4.19) holds. Convergence

estimates easily follow from (5.14), (5.17). The difference ( Jf- Jfh)x(s) is bounded

as in [7], [8]; we have as before

ll*-z*L <c(hd+l + hr+1)   and    ||x - z*\\x < c(hd+1 + h2(r+l)).

To attain the rate of convergence of the exact Galerkin iterate xj*, which is

h2(r+1), one has to choose an integration formula with

(7.11) rf+l>2(r + l).

Finally, note again that (7.11) does not imply Qh = Ph.

Lastly, we would like to remark on the applicability of the developed theory to the

spline spaces. The crucial assumption (j) holds for the spline spaces S(r,k) with

2k < r — 1, where

S(r,k)={feCk[a,b}: /![,,_,,,, e 9T].

Here, A: a = t0 < • • • < tm = b is a partition of a finite interval [a, b], 0>r is the

set of polynomials of degree less than r. When 2k = r — 1 one has a space of

Hermite splines; with 2k < r - 1 the splines are less continuous than in the latter

case.
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Thus we can formulate the following

Corollary 7.2. Assume for Sh = S(r, k) with 2k < r - 1 that (a)-(k) hold. Then

with (-,-)h defined by (6.2) andQh by (4.7),

WQhHc,

independent of h.   D

Example. Let K be an operator with a smooth kernel. Then using the above-de-

fined spline spaces Sh of Corollary 7.2, we have two estimates for the exact Galerkin

and iterated Galerkin methods:

(7.12) ll*-**IL^'

and

(7.13) ||*-***|L<^2r.

provided the right-hand side y e C[a, b).

If the quadrature in (7.1) has degree of precision d, then from (5.14) we

immediately have

(7.14) \\x - zt\\x ^ c(hd+l + h2r);

and combined with (5.17),

(7.15) \\x-zh\\x<c(hd+l + hr).

Then using numerical integration maintains the accuracy of the Galerkin method if

d > r — 1. To preserve the accuracy of the iterate, we need d ^ 2r — 1; although

with d > r — 1, the discrete iterate will exhibit superconvergence. Compare with

[12].
Remark. Consider more general spline spaces Sh = S(r, k), with a greater order of

smoothness. Assume that the numerical integration (7.1) over the reference element

has degree of precision d > 2r - 2. As a basis for Sh, use the normalized /3-splines.

Then Gh= Th, because the numerical integration of all inner products is exact,

(<p,4>)h = (vA),     <p, ̂ ^ sh.

Thus, although Qh + Ph, the results of de Boor [10] can be used to bound \\Gkl\\,

giving the result (7.8) with ñ — 1. Also, since Ä-splines are nonnegative and

constitute a partition of unity, (7.6) is verified directly, with

N

E |«P,(Ä)I = 1»       a < s < v-
7 = 1

The assumption (1) holds easily, and this implies (7.7). Thus we also have for the

general spline spaces Sh = S(r,k) that

IßJNc,
independent of h, provided the degree of precision d of (7.1) satisfies d > 2r — 2.

With this, the inequalities (7.12)-(7.15) also apply to Sh = S(r,k). In (7.15), we

need d > 2r - 1 in order to recover the full speed of convergence of the iterated

Galerkin method. This was noted previously in [12].
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6. Bound on G, . In this section we adopt the approach of

[IT] in order to bound ^Z1 ^ in (4.20) . This approach is

quite general, and the reader may wish to refer ahead to Section

We distinguish between two cases-

(i)  D  is a region in  K ,

(ii)  D  is a surface in  IR

In  the  first  case,  the  modifications  needed  of  Descloux's

presentation are just notational; while in the second, they are

minor  in  every  respect.    Thus  we  introduce  the  following

notations and assumptions.

(a) D C K is either a region or a piecewise smooth

hyper sur face in K In the latter case, the surface

D is assumed to be Lipschitz; and the general schema

for  D  is that of application 2 in Section 3.

(b) m is either the Lebesgue measure in fft or the

measure over  D  induced by the latter.

{c)  The closure  D  of  D  is subdivided into the union of

closed sets  e..  i = 1,•••,E. = E,  each one of which
i h

is the closure of its interior in the natural topology

of D. h is a characteristic parameter of the

division. In the case D is a piecewise smooth

surface, the interior of each e. be longs to one and

only one of the smooth sections that make up D.

(d)  m(e. ) > O,  i = 1,•••,E;

m(ei   H e ) = 0,  i.j 1 . * * * . E ;  i * J .
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