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Abstract. Consider the nonlinear operator equation x Y{(x) with Y{ a completely continuous mapping
of a domain in the Banach space into ; and let x* denote an isolated fixed point of YL Let n, n => 1,
denote a sequence of finite dimensional approximating subspaces, and let Pn be a projection of onto
The projection method for solving x Y{(x) is given by xn P,Y{(x), and the iterated projection solution
is defined as Y{(x). We analyze the convergence of x, and , to x*, giving a general analysis that
includes both the Galerkin and collocation methods. A more detailed analysis is then given for a large class
of Urysohn integral operators in one variable, showing the superconvergence of n to x*.
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1. Introduction. Consider the nonlinear operator equation

(1.1) x Y{(x),

where Y{ is a completely continuous operator defined on the closure D of an open
subset D of a Banach space . An example of such an operator yc is the Urysohn
integral operator

(1.2) Yg(x)(t)=jK(t,s,x(s))ds, t6l-l, xD,

with [l a closed bounded region in m, some rn _--> 1. It will be examined in more detail
in 3. We are interested in the evaluation of fixed points x* of Y{, and we will investigate
the use of projection methods to approximate such fixed points.

For , a finite dimensional approximating subspace of , let P, be a projection
of onto ,. The projection method consists of solving

(1.3) x,, P,,Y{(x,,).

This method was analyzed in Krasnoselskii (1964, Chap. 3, 3), and results on the
rate of convergence of {x,} to x* were obtained. We will give additional such results,
including improved convergence rates for some widely used subspaces

The iterated projection solution is defined by

(1.4) .,, Y{(x,,).

When , is a Hilbert space and P, is an orthogonal projection, the sequence
always converges more rapidly than does {x,}, as shall be seen in 2; and this is also
true for some other projection methods. We will give an analysis of the convergence
of {,}, including results on uniform and pointwise convergence.

Projection methods have been studied extensively, as is indicated in Krasnoselskii,
Vainikko et al. (1972) and Krasnoselskii and Zabreiko (1984, p. 327). We will generalize
to the nonlinear case the results of Chatelin and Lebbar (1984) for projection methods
for linear integral equations. This will include detailed convergence results for the use
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PROJECTION AND ITERATED PROJECTION METHODS 1353

of spaces , of piecewise polynomial functions, for both Galerkin and collocation
projection methods. In addition, we obtain estimates for the order of convergence of
the derivatives of the approximate solutions given by the iterated Galerkin and iterated
collocation methods. Related results in the linear case have been given by Sloan and
Thom6e (1985).

Section 2 contains a general framework for the convergence analysis of projection
and iterated projection methods. Section 3 gives mapping properties for a class of
Urysohn integral operators, and 4 gives preliminary approximation results for piece-
wise polynomial functions. The Galerkin method for Urysohn integral operators on
an interval 11 a, b] is analyzed in 5, and similar results for the collocation method
are given in 6. Numerical examples are given in 7.

Although projection methods are widely used, there are severe practical problems
in using them to solve nonlinear integral equations. In future papers we will discuss
modifications ofthese methods, to make them into more efficient and practical methods.

2. The projection and iterated projection method. We assume a slightly different
setting for Yf than indicated in the Introduction. Let
be a closed subspace. Assume Yf is a completely continuous operator defined on D
D an open set, and assume the values Yf(x) for all x D. The main application
is to let = L(I)), C(I)), with f a closed bounded region in Rm, some m-> 1.

Let {,} be a sequence of finite dimensional subspaces of , such that

(2.1) Inf Ily-xll- 0 as n
’n

Let {P,} be a sequence of projections associated with {,}"

(2.2) P," (,,, n >= 1.
onto

Assume that when restricted to , the projections are uniformly bounded:

(2.3) sup IIP10ll _-< p

By the principle of uniform boundedness, (2.1) and (2.3) are equivalent to assuming

(2.4) IIP,,y-ylI--,o as n-->oo for all

The projection method for solving (1.1) is

(2.5) x,,= P:C(x),

or equivalently,

(2.6) P,,(x,, -Y{(x,,))=O,

In the literature, the name "Galerkin method" is used in the case P, is an orthogonal
projection. In case P, is an interpolation operator, (2.5) is called a collocation method.
For these methods applied to linear operator equations, see Atkinson (1976, Part II,
Chap. 2).

The iterated projection method is given by

(2.7)

It was first introduced by Ian Sloan for linear integral equations; for example, see
Sloan (1976). From (2.7), it is immediate that

(2.8) P,,.,, x,,,
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1354 K.E. ATKINSON AND F. A. POTRA

and hence Y, satisfies

(2.9) :. Yd P.:. ).

An analysis of the existence and convergence of {.} can be given using Atkinson
(1973) or Weiss (1974). Under suitable assumptions on :K and the fixed point x*, it
can be shown that . exists for all sufficiently large . In addition,

(2.10)

The convergence of {x,,} will follow by using (2.8) to write

(2.11) x* x,, [x* P,,x*] + P,[x*- ,,].

Instead of using this approach, we will use one based on first considering the projection
solution x,.

The following major result for the existence and convergence of {x,} is due to
Krasnoselskii.

THEOREM 2.1. Suppose that x*6 D ik a fixed point of nonzero index for 77{. Then
for all sufficiently large n, the equation (2.5) has at least one solution x, f’) D such that

(2.12) limit Ilxo x*ll- 0.

Proof See Krasnoselskii (1964, Chap. 3, 3) or Krasnoselskii and Zabreiko (1984,
p. 326).

To simplify the notation, we will suppose (2.5) has a solution x, for all n-> 1.
Assume Y{(x) is Fr6chet ditterentiable about x*, and let L= Y{’(x*). Define

(2.13) r,
ilx, _x,i

From (2.12) and the definition of L,

(2.14) r, --) 0 as n --)

In addition, assume Y{’(x) is Lipschitz continuous in some neighborhood V of x*:

(2.15) IIX’(x) C’(y)ll <- qllx- yll, x, y e V

for some constant q. For example, q could be a bound on Y{"(x) over V, if the second
Fr6chet derivative exists. Then easily,

(2.6) r <- 1/2qllx
for example, see Potra and Ptfik (1984, p. 21).

It is known that Y{ being completely continuous implies that L Y{’(x*) is compact
on (see Krasnoselskii and Zabreiko (1984, p. 77)). Also, Y{(D) implies
Range (L)= . Using (2.4) with these facts, we have (see Atkinson (1976, pp. 53-54))

(2.17) a,:= II(I-P.)LIIO as n-)c.

We will also need to consider the sequence

(2.18) b. := ILL(/- P.)lll
It is uniformly bounded:

(2.19) b.<=b, n_->l;

and for some cases (for example, if T is a Hilbert space and P,, is orthogonal), we
have b.--> 0 as n-, as will be seen later in Theorem 2.3.
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PROJECTION AND ITERATED PROJECTION METHODS 1355

If 1 is not an eigenvalue, of L, then (I-L)- is a bounded operator on to .
(This will also imply that x* is of nonzero index as a fixed point of Y{ (see Krasnoselskii
(1964, p. 136)), and that x, will be the unique solution of (2.5) within some sufficiently
small neighborhood of x*.) As further notation, let

a:llI-Lll, c:lt(I-L)-ll, d:a-1.

THEOREM 2.2. If 1 is not an eigenvalue ofL Yf’(x*), then there are two nonnegative
sequences {e,}, {}, convergent to zero, such that

(2.20) d(1 e)llP,x* x*ll <- ilx* x, <- c(1 + 8,)l}P,x* x*ll.
Proof. Using the identity

I L)(x,, x*) (P. I) L(x,, x*) + (P. I)x* + P. [Y((x.) Y{(x*) L(x,, x*)],

and bounding from above and below, we obtain (2.20). The constants are given by

c(a,,+pr.) d(a,,+pr,,)n En
1 c(a,, +pr.)’ 1 + d(a,, +pr.)"

This result is given in Krasnoselskii and Zabreiko (1984, p. 326), without the values
of the constants being given.

In the case that ;, - x* more rapidly than x, x*, the constants c and d in (2.20)
can be replaced by 1. This follows from (2.11). The result (2.20) shows that the speed
of convergence of x, to x* is exactly the same as that of P,x* to x*. Thus it does not
depend explicitly on YF, but only on the approximation properties of , and P,x*.
(The convergence does depend on YF implicitly, since the smoothness of x* depends
on the properties of {.)

The iterated Galerkin method in Hilbert spaces. Let be a Hilbert space and let
P,, be the orthogonal projection of onto ,. We will show that {:n} converges more
rapidly than {x,}. To this end, we introduce

(2.21)

We say the method is superconvergent if

Sn’)O as n -> o.

THEOREM 2.3. Assume that is not an eigenvalue of L r’(x*). In addition, let
be a Hilbert space and let P, be the orthogonal projection of onto ,. Then , is

superconvergent to x*; more precisely, for some constant s > 0,

(2.22) s. <_- s. Max { b., r.},

and b, 0, so that s,
Proof By the orthogonality of P, and the argument of Sloan (1976, Thm. 1),

(2.23) b, II(I-P.)*L*II II(I-P)L*II-O.
For the convergence of :, to x*, use the identity

(I- L)(,, -x*)= [I- L(I- P,,)][?Tg(x.)- Y{(x*)- L(x. -x*)]

-L(I-P.)(L-I)(x,,-x*).

Multiplying by (I- L)-1, and then bounding the right side, we find that

(2.24) ll.- x*ll [( + b.). + ab.]llx, -x*ll.
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1356 K.E. ATKINSON AND F. A. POTRA

Inequality (2.22) follows easily. Note that this latter inequality gives a bound for
II-x*ll, showing the dependence on b, and r,. [3

We have seen in (2.16), assuming (2.15), that

r. o(llx. x*ll) O(llP.x*-

We will see that for integral operators with sufficiently smooth kernel functions that
b, o(llP.x*-x*ll). Thus for such operators, we have

(2.25) I1 x*ll- o(llP.x* x*ll) o(llx.

This can make a dramatic difference in the convergence, as is illustrated with the
examples in 7. Theorem 2.3 gives convergence in an L2 sense; the applications to
Urysohn integral operators are left until later, following (2.32).

The iterated projection method in Banach spaces. Results on the uniform conver-
gence of the Galerkin method will follow from the results given here.

THEOREM 2.4. Assume c is a Banach space, and assume is not an eigenvalue of
L Y{’(x*). Then {:, } is superconvergent if and only if

(2.26) e.:= ]](I-P,)x*]]
0 asnoe.

Moreover, in this case there is a constant such that

(2.27) s,-< . Max {a,b,, r,, e,}.

Proof The following identity is easily verified:

(2.28)

Then

Hence

(I- L)(Y. -x*) [I- L(I- P.)][Y{(x.)- Y{(x*)- L(x. -x*)]

L(I- P.)2L(x. -x*)- L(I- P,,)x*.

I1 x*ll dllL(I P.)x* II- d[(1 + b,,)r,, + a.b.]llx. x*ll.

s. >- df,,e,, d[(1 + b,,)r,, + a,,b.]

with f, II(I-P.)x*ll/llx.- x*ll. From Theorem 2.2,f, is bounded above and bounded
away from zero, as n- oe. Thus if s,- 0, which means {9,} is superconvergent; then
the convergence to zero of { r,} and {a,} implies that e,- 0 as n- ce.

For the converse statement, use (2.28) to obtain

(2.29) I1- x*ll c[e.f. + (1 + b,,)r. + a,,b.]llx.- x*ll.
This will show that e. 0 implies

COROLLARY 2.5. With the same hypothesis, there is , > 0 such that

(2.30)

Note that

:. x* @ Max {a.b., r., e. Ill P.x* x* I[.

(2.31) e.
IlL(I- P")2x*ll <- b..II(I-P.)x*ll

Then (2.27) implies (2.30).
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PROJECTION AND ITERATED PROJECTION METHODS 1357

Urysohn integral operators. Let f/ be a compact subset of " with nonempty
interior, or let it be a bounded, closed, piecewise smooth surface in m. We will consider
the Urysohn operator

(2.32) Y{(x)(t) I K(t, s, x(s)) ds

where the kernel K (t, s, u) is a measurable function from f x f x R into R.
From Krasnoselskii et al. (1976) we can deduce various conditions on K which

will imply Y{ is completely continuous on L2(f) or L(). The same reference also
contains various types of sufficient conditions for the Fr6chet ditterentiability of YL If
any of those conditions are satisfied, then the Fr6chet derivative Y{’(x) is the linear
integral operator

(2.33) (Yg’(x)h)(t)= -u K(t, s, x(s))h(s) ds.

Let {} be a sequence of finite dimensional subspaces of L2(f), satisfying (2.1)
on a closed subspace of L(I)), with containing the range of Y(. Let P be the
orthogonal projection of L(I)) onto . Then the results in and following Theorem
2.3 will apply, and we obtain the superconvergence of the iterated Galerkin method
along with the associated error bounds in the L norm.

However, as is often the case in numerical applications, we would like similar
results in the uniform norm. In order to apply Theorem 2.4 and its corollary, we must
estimate e of (2.26) for the L norm.

We have L= Y{"(x*), given by (2.33). Let us denote

(2.34) l,(s)=O K(t,s,x*(s)).
Ou

Then

I[L(I-P)x*](t)[--l((I-P)x*, )l
--I((I- P.)x*, (I P.)

--< I1(I- P.)x*llll(I- P.)
<_- [Meas (f)]l/211(I- P,)x*lloll(I-

It follows that

(2.35) e, _-< [Meas ()]1/2 sup

Under certain mild smoothness assumptions on the kernel of Urysohn’s operator
Y{, the family {/,: f} is precompact in L2(). From the pointwise convergence of
Pn, it will then follow that en-0 as n-, thus implying superconvergence of the
iterated Galerkin method in the uniform norm. In order to obtain bounds on the rate
of uniform convergence for the approximate x,, Y, given by the Galerkin and iterated
Galerkin methods, we only have to estimate the rates of convergence to zero of
liP.x*-x*ll, a,,, b., e. and r..

In 5 and 6, the above schema will be applied to the case f [0, 1] and . a
space of piecewise polynomial functions on some partition of f. For . a space of
piecewise polynomial functions of degree _-< r, we will show that

IIx*-x.ll--o IIx*-;.ll--o 2,+2n

provided the integrand K(s, t, u) is sufficiently smooth; see Theorems 5.2 and 6.1.
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1358 K.E. ATKINSON AND F. A. POTRA

The above schema can also be applied to multivariate problems, but that will be
deferred to another paper in which we look at discrete Galerkin methods (in analogy
with Atkinson and Bogomolny (1987) for linear integral equations).

3. Urysohn integral operators of class f(t, y). In this and the following sections,
we will consider a special class of Urysohn integral operators

(3.1) Tf(x)(t) K(t,s,x(s)) ds.

A theory will be presented that closely parallels that of Chatelin and Lebbar (1984)
for linear integral equations.

Let a and 7 be integers with a >_- 7, a _-> 0, 3’-->- 1. We will assume that the kernel
K has the following properties.

(G1) The partial derivative

(3.2) l(t, s, u)=
OK(t,s,u)

(G2)

(3.3)

(G3)

exists for all (t, s, u)--[0, 1] x[0, 1]xR.
Define

XIYl-- {(/, $, u)IO--< S < <- 1, uR},

xIt: {(t, s, u)lO<= t<=s <- 1, u 6l}.

There are functions li C (i), i= 1, 2, with

ll(t,s,u), (t,s,u)eXItl, t#s,
l(t,s,u)=

12(t,s,u), (t,s,u)V2.

If 3’ => O, then Cv(qY). If 3’ =-1, then may have a discontinuity of the
first kind along the line s t.

The class of kernels satisfying (G)-(G3) will be denoted by (41(O 3’). The assump-
tion that the variable u ranges over all of can be weakened to having u belong to
a bounded set; but then the arguments will be more complicated in their details, without
any essential difference in the form of the final results. If K (a, 3’), then it is easily
shown that

(G4) There are two functions Ki C (Iti), 1, 2, such that

Kl(t, s, u), (t, s, u) 6 l, t#s,
(3.4) K(t, s, u)=

K2(t, s, u), (t, s, u)2.

As additional notation, we will let Lp Lp(O, 1), 1 <- p <=, and Ck ck[o, 1 ],
k _>-0. For x C k, define

k

Ilxll ,, IIx<’)ll,, 1 <_-- p <_-- c.
i=0

We will write Ilxll, for
THEOREM 3.1. Suppose that Urysohn’s operator (3.1) has a kernel K l(a, 3’).

Then
(a) Yf is a completely continuous operator from L into C, for , =0, 1,..., 3’1,

with 3’1 Min { 3’ + 1, a }.
(b) For a >-_ 1, 7{ is a continuous operator from C into C+1, , 0, 1,. , a 1.

Proof (i) We will first show (a) for 3’1 =0.
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PROJECTION AND ITERATED PROJECTION METHODS 1359

Let Ba be the closed ball in L, of radius a and centered at 0. Define

i(a)={(t,s,u):(t,s,u),,lul<=a}, i=1,2.

Denote

Mi Max {IK,(t, s, u)l: (t, s, u) qi(a)},
(3.5)

M Max {M1, M2}.

The function K is uniformly continuous on (a). Thus for any e > 0, there is 8 > 0
such that

(3.6) ]K,( + At, s, u) Ki( t, s, u)l=<
whenever (t, s, u), (t+At, s, u)fl,(a) and IAtl<_-- . Take

8 Min {81, 8, e/(2M1 + 2M2)}.

Let x B,, y ’f(x). We wish to show y C. Given e > 0, if IAtl <-- 8, then

[y(t+At)-y(t)l<-_ IKl(t+At, s,x(s))-Kl(t,s,x(s))l ds

t+8

(3.7) + IK(t+At, s,x(s))-K(t,s,x(s))[ ds
t--6

+ II,:(t+at, s,x(s))-K,(t,s,x(s))l ds.

(For the endpoints 0 and 1, we will have to suitably modify this argument.) The
sum of the first and third terms is majorized by (1- 28)e/2.

For the second integral in (3.7), over [t-8, t+8], let At>0. The integral is
majorized by

Igl(t + At, s, x(s)) Kl(t, s, x(s))l ds

t+At

+ IKl(t+At, s,x(s))-K2(t,s,x(s)) as
dt

r+8

+ IK2(t+At, s,x(s))-K2(t,s,x(s))l ds
t+At

<----2 8 + (M1 + M2)At+ (8 At).

A similar estimate holds if At < 0. Thus for IAtl < , we have

(3.8) ly(t + At) y(t)l----< e.

This shows that y {(x) C.
To show compactness of X, note that (3.8) shows that X(B) is an equicontinuous

family of functions. In addition, it is straightforward that

xnoll(x)ll<-M.
Thus (B) is a precompact set, by the Arzela-Ascoli theorem.

The continuity of (, from L into C, is easily proven from (G1) and (G2). Thus
is completely continuous as an operator from L into C.
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1360 K.E. ATKINSON AND F. A. POTRA

(ii) Consider now the case yl >--1. Let x Ba, y (x). We can then show that
y C1, with

(3.9) y’(t)
OK(t,s,x(s))

ds, 0-< t_-<l.

The argument is, much the same as in (i). In fact, the argument in (i) when applied to
(3.9) will show that Y{ is completely continuous from L to C (with norm

The general case is obtained in a similar way, using

OK(t, s, x(s))
(3.10) y()(t) i ds, u=0, 1 ’’, Yl.

0

(iii) To prove (b), consider y_>--1, a >_-1. The possibility that y =-1 requires us
to modify (3.9). For x C f’)Ba, let y YC(x). Then we can show, much as in (i) or
(ii), that

OK(t’s’x(s))
ds+Kl(t, t,x(t))-KE(t, t,x(t)).(3.11) y’(t)

Ot

Using this formula, we can easily prove that Y{ is a continuous operator from C into C
If y=>-l,a->2,andxC,then

O2K(t, s, x(s)) OKl(t, t, x(t)) OK2(t, t, x(t))
y"(t)

Ot2
ds+2 -2

ot ot

(_1)
oKi(t, t,x(t))+ x’(t)

This shows Y{ is continuous from C into C2, and we have proven (b) for a-< 2. The
general case is obtained in a similar manner.

COROLLARY 3.2. Let K be of class Cgl(a y), and consider the Urysohn integral
operator Y{ of (3.1). Then if x* is a fixed point of Y{, we have x* C.

4. The approximating subspaces ,,a.. For the Urysohn integral operator of
(3.1), we intend to apply the results of 2, with = L and C. In this section,
we will define the approximating subspaces and will give some results on their
approximation properties. The analysis of Galerkin’s method will be given in the
following section.

Let A(") denote a partition of [0, 1]:

(4.1) 0= to")< t]") < < t")= 1.

Define r,(") to be the set of functions that are polynomials of degree _-< r on each of
the subintervals [,-1,’(") tl ")]. The space r,A(") is a subspace of L, but not of C. For the
partition A(), define

(4.2)
,) h")

q Max
h,).i,j <=

We choose P,"L,A’ to be the restriction to L of the orthogonal projection
of L onto ,-. We will assume that (2.1) and (2.3) (or equivalently (2.4)) are satisfied.
This will certainly be true if A") is quasiuniform, i.e.,

(4.3) Limit m,, , Sup q(") <
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PROJECTION AND ITERATED PROJECTION METHODS 1361

We note that (4.3) implies h (") --> 0 as n --> . For more general conditions, see Giismann
(1980).

In order to simplify notation, we will omit the index n in denoting the partition
and its elements. Thus we will write A A(") t tl ") rn m. h h() h h ("), q(")q
In addition, we will let Ai- Al) =[ti_l, t]. The dependence on n will be given by
retaining the notation P for the projection and x, for the projection solution in (2.5).

The subspace r,A is embedded in the space

CA ={y6 L: ylA, 6 C(A,), i- 1,"’, m}.

For y C, we will write y =y[Ai,

[[Y ,p,A, [[Yi[[.p, [[y[[p.A, [[Y[[O.p, l__--<p__--<

for _--<i_--< m, v_--> 0. It is easily seen that for z L,
(P,z) Ai Pn.,zi

where P,, is the orthogonal projection of L2(Ai) onto r,A,, the polynomials of degree
_-< r on A.

We generalize Theorem 3.1 to Y" acting on C.
THEOREM 4.1. Assume K(s, t, u) is of class c(a, y). Then the Urysohn operator

(3.1) is a continuous operator on CA into CA+2, v>=O, with y+2= Min {y+ v+2, a}.
(Note that Yl was defined in Theorem 3.1.)

Proofi We first prove the case v 0. Let x Ca, and set y Y{(x). From Theorem
3.1, y Cv and

OK(t’
ds, 0 </d, ’)t

X(S))
(4.4) y()( t)

Ots’ <=

If a 3q, the proof is finished.
Suppose a > 3q, and let 0 < < 1, A. Let us calculate the limit as At-> 0 of

t+At

(4.5)
At ,-a Lot’

K(t, s, x(s)) ds.

Let At > 0. For At sufficiently small, (t At, t) and (t, + At) do not contain any element
from A. Then (4.5) can be written as

I’ [-- --0r’Kl(t’s’x(s))] ds
Or’

Kl(t + At, s, x(s)) -Otr,At t-at at r’

f [ Otr’Or’ K2(t,s,x(s))]ds"
,+at Or,

Kl(t+At, s,x(s))+At 0 r---
Taking the limit as At-> 0, we obtain the value

Kl(t, t, x(t))- K2(t, t, x(t)).
Ot

The same limit is obtained for At < 0, as At--> 0.
This result can be combined with a proof such as that given in Theorem 3.1, to

show that y e C,,+. More explicitly, if A, then

(4.6) y(r+l)(t 0

0trl+l K(t, s,x(s)) ds- (-1)
0r’

Ki(t, t,x(t)).
i=1 Ot r’

By our assumptions on K1 and K, the values y(r+l)(t+0) and yr’+l)(t-0) will exist,
using limits in (4.6), for all A. This completes the proof for the case u 0.
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1362 K.E. ATKINSON AND F. A. POTRA

The general case is obtained in a similar way. For example, if x C and if
y / 3 -< a, then for A, we have

3/1+2
y(V+2)(t) 0

K(t, s,x(s))ds-2 (-1)’
Ov’+l

0t y’1+2
i=, Ot,,+, K,(t, t, x(t))

(4.7)

,=, LOs at"
K,(t, t, x( t)) + au at’,

K,( t, t, x( t))x’( t) 1-1

In the remainder of this section, we give some approximating properties of ,,a
which will be used in the proof of our main theorem, in 5. First, we give a slight
improvement of Theorem 6 of Chatelin and Lebbar (1984). To obtain explicit estimates
of the constants appearing in the Lp error bounds of the remainder, we approximate
f C’[a, b] by its Taylor polynomial of degree/3-1,

3--1 f()(a)
.(4.8) [Srt(f)](t)= (t-a)

=o j!

where/3 := rain {a, r + 1 }.
For 1 <p<az and 0-<_j<fl, let q> 1 satisfy l/p+ l/q= 1. Then define

(4.9) c(fl’J’P)=P-1/P [ fl_j ]1/o(fl -j 1)q + 1

Also define

(4.10)
c(fl, fl, p)= l, l <--p <--_ ,
c(fl, j, 1) c(fl, j, ) 1,

Using this notation, we have the following proposition.
PROPOSITION 4.2. Iff C[a, b] and 1 <_p<=o, then

(4.11) IIf(J)- fft3(f)(J)llp<-C(fl, j, p)
(b-a)t-J

Proof Using the integral form of the remainder, for 0 <-j </3,

1 I] --f(sf(() -f(() ( -J s ds.

Let 1 < p < oo. Applying HSlder’s inequality, this gives

< Ilf()lJ" (t-s)(t--l)q ds dtIIf()- f()I1 ( _j_

Carry out the exact integration, and then simplify to get (4.11) and (4.9). The cases
p 1 and p= are straightforward; and moreover c(fl, j, p) approaches 1 as p 1 or. The case j fl is trivial, since then

Following Chatelin and Lebbar (1984), we obtain the following.
COROLLARY 4.3. Let {,} be a sequence ofprojections from Ca onto .a such that

Sup I111<
for some 1 p . en there is a constant cp such that for any g C,

(4.12) II(I- .)gll ch IIg()ll
where/3 Min {a, r + 1}.
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PROJECTION AND ITERATED PROJECTION METHODS 1363

Suppose the Urysohn kernel K(t, s, u) is of class l(a, 3’), and consider the
function

OK(t,s,x*(s))
(4.13) l.(t,s)=--l,(s)=

tgu

where x* is a fixed point of the Urysohn operator (3.1). Using Corollary 3.2, it follows
that l. belongs to the class (a, 3’) defined in Chatelin and Lebbar (1984)"

A function w’[0, 1Ix[0, 1]C is of class c(a, 3’) (with a > 3’, t_-__0, 3’->-1) if
and only if

w(t, s)= {wl(t, s), 0--<s<t=<l,
W2(t,S), O<-t<=s<--_l

with wl e C({0<- s <- t_< 1}), WEe C({0 <- t<-s<= 1}) and we Cv([0, 1] x [0, 1]) for 3’->
0. In case 3"--1, w may have a discontinuity of the first kind on {s t}.

Let us denote

/3 Min {a, r+ 1}, /31 Min {fl, 3’+ 1}= Min {a, r+ 1, 3’+ 1},
(4.14)

/32 Min {/3, 3’ + 2} Min {a, r + 1, 3’ + 2}.

Following Chatelin and Lebbar (1984), we have the following two results.
COROLLARY 4.4. Let we q(ct, 3") and set wt(s) w(t, s), 0_<- t, s_-< 1. Let {Trn} be

" such thata sequence ofprojections as in Corollary 4.3. Then there are constants cp, Cp

I1(I rn w tip < h for all e A,Cp

I1(I r.)w, ll, -<- cgh1 for all e [0, 1]\A.

PROPOSITION 4.5. Let w e fg(a, 3") and set wt(s)= w(t, s). Let Pn be the orthogonal
projection of Ca onto r,a, n > 1. Let x e Ca. Then there are constants c, such that

I((I- Pn)x, w--’)l-< c’h2, e A,

I((I- P,)x, tt)l--- c"h+2, e [0, 1]\A.

5. The order of convergence of the Galerkia method. In this section, we will establish
the order of convergence of the Galerkin and the iterated Galerkin methods for solving
x (x), where ’{ is the Urysohn integral operator (3.1). To this end, we will apply
the results of 2 with , , ,, P, defined as in the beginning of 4.

The Fr6chet derivative of ’" at x is given by

(5.1) r’(x)g(t) l(t, s, x(s))g(s) ds

with defined in (3.2). As before, we denote L= ff{’(x*), where x* is the fixed point
of ’c which we want to calculate. We have

(5.2) (Lg)(t)=(g,

where k, is defined in (4.13) and (.,.) denotes the inner product of L. As in 2, we
assume 1 is not an eigenvalue of L. Since L is compact, this means that (I- L)- exists
and is bounded on . Hence the operator

M:=(I-L)-L

is compact. In the proof of our main theorem, we will need the following result.
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1364 K.E. ATKINSON AND F. A. POTRA

LEMMA 5.1. There is a function m, (a, 3,) such that

(5.3) Mg(t) (g, nt), u L2

where

(5.4) mr(s) m,(t, s), 0_-<s_-< 1.

Proof. The existence of the function m, L2([0, 1] x [0, 1]) satisfying (5.3) follows
from Riesz and Sz.-Nagy (1955, p. 158). We must prove m,

For any x L2, let y- Mx. Then Lx--(I-L)y. This implies that for any x L,
Io’ fo [ fol,(t, s)x(s) ds= m,(t, s)- l,(t, v)m,(v, s) dv x(s) ds.

If we denote

(5.5) m,( t) m,( t, s), l,s( t) l,( t, s),

m, satisfies the equation m,- Lm, + 1,. It follows by a straightforward argument
that for any fixed s, 0-< s _-< 1,

(5.6) m,[[0, s] Ca[0, s], m,[[s, 1] Ca[s, 1], m,s CL

Similarly, for any u L2, let w M*u. Then L*u (I-L*)w can be written as

fo Io’[ Io ]l,(t, s)u(t) dt= r,(t, s)- l,(v, s)r,(t, v) dv u(t) dt.

This leads to

m,(s) l,(v, s)m,(v) dv+ l,(t, s).

By a similar argument to that for m,s, it follows that

(5.7) m,[[O, t] C[0, t], m,l[t, 1] Ca[t, 1], m, C v.
Combining (5.6) and (5.7) implies m, (a, 3’). l-i

In order to obtain convenient estimates for the numbers r, of (2.13), we want the
Fr6chet derivative of :)’{ in (3.1) to be Lipschitz continuous in a neighborhood V of
x*, i.e., to satisfy (2.15). There are rather general sufficient conditions to ensure (2.15).
However, in order to simplify the presentation, we will assume the stronger condition

02Ki C(xIti), i= 1 2.(5.8) u
This guarantees that (2.15) is satisfied, in both L and L norms, where V can be any
bounded subset of L. If K (a, y) and satisfies (5.8), we will say that K is of class
2(c, 3/). We now state our main result.

THEOREM 5.2. Assume K d2(a, y); and let x* be a fixed point of the Urysohn
operator 3/{ of (3.1), with 1 not an eigenvalue of{’(x*). Then for n sufficiently large, the
Galerkin solution x, of (1.3) and the iterated Galerkin solution of (1.4), corresponding
to x*, will satisfy

(5.9)

(5.10)

(5.11)

]]x,- x*l[o

Sup I;(t)-x*(t) O(h).
tA(n)

Recall fl Min {a, r + 1 }, f12 Min {a, r + 1, 2, + 2}.
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PROJECTION AND ITERATED PROJECTION METHODS 1365

Proof. From Corollaries 3.2 and 4.3, we have IIPx*-x*llo--O(h); and using
Theorem 2.2, we have (5.9).

Applying (I-L)-1 to (2.28), we get, x* [I + MP,][Y[(xn) Y[(x*) L(x, x*)]

M(I- P,)L(x, -x*)- M(I- P,)x*.

From (2.3) with = C, (2.13), (2.16), (5.9), (5.2) and (5.3), it follows that

,(t)-x*(t)=tpn(t)+qt,(t)+O(h2t), 0_<-t-<_l(5.13)

with

(5.14)

(5.15)

tp,,(t) -((I-P,)L(x,-x*), rht),

q, (t) -((I-P,)x*,fft,).

If we use Corollary 3.2 and Proposition 4.5, it follows that

(5.16) Sup Iq,(t)l- O(h/=), Sup IO(t)l O(h2).
Otl tA(n)

To bound .(t), begin with

I(t)l I((I-P,)L(x,-x*),
j=l

where the subscript j denotes that the inner product is over t_, t]. In the sum,
use the Cauchy-Schwarz inequality to obtain

I.(t)l I](I-n.)t(x.-x*)ll2,ll(I-P.),ll2..
j=l

In this sum,

(I P.)L(x. x*)ll, h/.. II(I-P.)t(x.-x*)ll,
h 1/2-.. III-e.)tll IIx.-x*ll
ch)/h,+.

The result II(I- P.)LII O(h,) follows as in the proof of Chatelin and Lebbar (1984,
Cor. 8). Also, using the proof in Lemma 9 of the same paper, if , then

O(h+/2), j # i,
(I- P,)m,[l. O(h,+,/) j i.

IftA(") then

I1(I- P), I1=, 0(h+1/2),
When we combine these results,

(5.17)

Max I0.(t)l <- O(h2t+t’) + O(hZt’+t+’)<= O(ht+t’+t32),
O<__t__<l

Max I0,(t)l O(h2t+’).
tA(n)

Combining (5.13), (5.16) and (5.17) proves (5.10) and (5.11). l-]

The above theorem shows that the sequence {Y,} obtained via the iterated Galerkin
method converges faster to the solution of x (x) than does the sequence {x,}
obtained from the original Galerkin method. This is further illustrated, sometimes
dramatically, in the numerical examples of 7.
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1366 K.E. ATKINSON AND F. A. POTRA

In addition to the convergence of {x.} and {n}, it also turns out that the first
(see Theorem 4.1) derivatives of n converge to the corresponding derivatives of x*.
Before giving a precise statement of this fact, note that

(5.18) x\ c c?.
This follows from Theorems 3.1 and 4.1, the definition n ’tr(x.), and the fact that
x. C. Thus in general, (.v2)(t) may not exist at the grid points (i.e. tA")).
Nonetheless, we will be able to prove that

(5.19) Max l;(v2)(t)-x*2)(t)l O(ht3).
t[0,1]\Z

The other derivatives of . (i.o. ( with Y2 < ’ -< a) may not converge to the corre-
sponding derivative of x*.

TI-IEOREM 5.3. Assume the kernel of the Urysohn integral operator (3.1) is of class
d2(a, y). Then (5.19) holds for sufficiently large n. Moreover, for any 0<-_ ,<- y,

(5.0) Sup I((t)-x*(t)l O(h/.)
t[o,]

with

2,--- Min { r + 1, a-/, y + 2-/}.

Proof. (a) We first show (5.19). If Yl Y2, then use (4.4) to examine (.2(t)-
x*Y(t); and if Y2 Y + 1, use (4.6). In the latter case let x x* and x x. in (4.6),
and then use the mean-value theorem to prove

I:(,,v:(t)-x*V(t)l<= Cltx-x*lloo- O(h)
where

C -_< Sup + Sup
i=1 I.li(a) OU Olv’+ a,(a) Ou Ot v’

with a > Sup, ]]x,l]. In the case W rE, the proof is essentially the same.
(b) To show (5.20), fix a as above, let 0 Yl, and let denote the Urysohn

integral operator with kernel OK/t. From (4.4),

(5.21) -x*t=/(x.) (x*).
Since the kernel of if{ is in (, y), it follows that the kernel of is of class
2(- , y- ). In paicular, is Fr6chet differentiable and its Fr6chet derivative is
Lipschitz continuous in any bounded neighborhood of x* in L. It follows that

(5.22) -x* =/’(x*)(x x*) + z.
with

(5.23) z,, lloo <- c x. -x*ll O(h23 ).

Let us denote G ’(x*). By a simple manipulation,

(5.24) G(x.-x*)=GP.(.-x*)+G(P.-I)x*.
By TheOrem 5.2,

(5.25) IIGP,,(. -x*)llo-<- GP I1. -x*ll--< O(h+).
For.the last term in (5.24), use (5.16) with L replaced by G. Then

G(P. I)x* lifo--
Combining (5.22)-(5.25) proves (5.20).
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PROJECTION AND ITERATED PROJECTION METHODS 1367

6. The collocation method. In what follows, we make use ofthe notation introduced
in 3 and 4. On each subinterval Ai [ti_l, t], let the nodes {’},
(6.1) ti-, < Zo <’’" < .i, < ti

denote the Gauss-Legendre nodes relative to A. We define the projection operator

Q,, "ca-->
by having

Q,.,y =- Q,y)]A,, y Ca
be the polynomial of degree _-< r that interpolates y at the r+ 1 Gaussian points of
(6.1). We assume that the partitions A<") are such that

(6.2) Sup [1Q,[ Calloo <

Let us consider the nonlinear equations

(6.3) y (y),

(6.4) y Q,Yd(y),

(6.5) y yf( Q,y),

with Yf the Urysohn operator of (3.1). As before, we assume x* is a solution of (6.3),
with 1 not an eigenvalue of L= Yf’(x*). From (6.2) and Theorem 2.1, it follows that
for sufficiently large n, (6.4) has a solution y, that is unique within some fixed.
neighborhood of x* and for which Ily -x* II- 0. Further, )7, Y{(y,) is a solution of
(6.5), and it will converge to x* at least as rapidly as {y,}. The approximating equation
(6.4) is called the collocation method, and (6.5) is called the iterated collocation method.
The order of convergence of these methods is given by the following.

THEOREM 6.1. If the kernel of the Urysohn operator (3.1) is of class 2(a, y), then

(6.6)

In addition, if a >- r + 1, then

(6.7)

(6.8)

with

(6.9)

Ily- x* Iloo-- O(h).

lift.-x*llo-
Sup I:L(t)-x*(t)l O(h2)
tA(n)

w=Min{a, 2r+2, r+y+3}, to2 Min {a, 2r+2}.

In proof, we will use some results from the preceding sections, as well as the
following results of Chatelin and Lebbar (1984). Let

r/= a r- 1, / Min {r/, r + 1}, /2 Min {fl’, , + 2}.

Then also

to r+ 1 +/32, w2 r+ 1 +/3.

LEMMA 6.2. For f, g C (Ai),

(6.10) ((I- Qn,i)g, f)i ((I- Pn,i)ftr+ig, I)i)

where P, is the orthogonal projection of 5,

j=O
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1368 K.E. ATKINSON AND F. A. POTRA

tr/g(s) is the divided difference of g at (’io,..., .ir, s) and (.,.)i denotes the inner

product of LE(Ai).
COROLLARY 6.3. Let be a nonnegative integer. Iff C’(A) and g C(A), then

(6.11) ]((I--Q,,,)g,f),l<--Chr++Ellfll,,A, llgll+r+,o,A,, l

Proof of Theorem 6.1. From Corollaries 3.2 and 4.3,

(6.12) ]]x*-Q,x*[l= O(h), fl Min {a, r+ 1},

and then (6.6) follows from Theorem 2.2.
To examine ), x*, take Q,, y,, 3, in place of P,, x, , in the derivation of (5.13)"

(6.13)

with

(6.14) ,( t) (( Q, I)L(y, x*), rt),

If A, then apply Corollaries 3.2 and 6.3 to obtain

(6.15) I(( Q,,,- I)x*, nst),] <- ch"+2+,

where c is independent of and n. Using

(6.16) (x,y)=(x,y),,

we deduce that

,,( t) x*( t) .( t) + ,,( t) + O(h)

,( t) (( Q, I)x*, rt).

Using (6.16), we have

(6.20) I,.(t)l<ch+’+.

(6.17) Sup Iq,( t)l -< Yh r+’+g.

Now we want to bound q(t) over [0, 1]. Let 6-1 < < 6. For C j, the bound in (6.15)
is still valid. For =j, we must take account of the fact that m, c(A). By carefully
bounding the quantities in

I((I Qn,j)x*, t)j[ I((I- Pn,j)mtr+lx*, Vj)j[

we can show, using Chatelin and Lebbar (1984, Lemma 9), that

(6.18) ((I Q,,)x*, ,)l ch]+1+.
Combining (6.18) with (6.16) and (6.15), C j, we obtain

(6.19) sup I,(t)l ch r+’+=.
te[o,1]

We now consider the term ,(t) in (6.14). By Lemma 6.2,

I((I- Q,,)L(y, -x*), ,)] ]((I- P,,)m,+’L(y, -x*),

I1(I L(y. II(I
< _,_,+2 ch[+2+
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PROJECTION AND ITERATED PROJECTION METHODS 1369

Combining (6.13), (6.17) and (6.20) yields (6.8); and combining (6.13), (6.19) and
(6.20) yields (6.7). [3

Concerning the convergence of the derivatives of 37,, we have the following result.
THEOREM 6.4. Assume that the kernel of the Urysohn integral operator (3.1) is of

class %(a, y). Then C v, fq Cx, and

(6.21) IIX)-x*)ll O(h),

In addition, a r + 1, then

(6.22) I1
where

Min {a r- 1, y+ 1}, tol, r+ 1 +/3:,,

/3, Min {c r- 1 u, y- u + 2}.

Proofi The proof of (6.21) is exactly the same as that given for (5.19) in Theorem
5.3. To prove (6.22), we also follow the proof of Theorem 5.3. Use (5.22)-(5.24), with
x,, ,, P, replaced by y,, y’,, Q,, respectively. Then

(6.23)

(6.24)

(6.25)

From (6.7),

(6.26)

37)- x*()= G(y. x*) + z., G aC’(x*),

IIz. I1 clly-x*ll = O(h2),

G(y. x*) GQ.(fi. x*) + G( Q. I)x*.

Q.(3L- x*)ll O(h’’).

The linear integral operator G ;’(x*) has the kernel function

Ol(t,s,x*(s))
g(t,s)=

Ot

From the assumptions on K, it follows that g(t, s) is the Chatelin and Lebbar class
(ce-u, y-u). For the last term in (6.25), we have

IIG(Q.-I)x*lloo Sup [((Q.-I)x*,g,)[.
0Nt<l

From the derivation used to obtain (6.19), we have

a(o. Z)x* I1o-< ch+’+&(6.27)

with

(6.28) 2,=Min{a-v-r-l,r+l, y- v+2}.

Combine (6.23)-(6.28) to conclude the proof of (6.22).

7. Numerical examples. We illustrate the convergence results that were given in
Theorem 5.2 for the Galerkin and iterated Galerkin methods. We give results for two
integral equations.

Our first equation is

Io(7.1) x(t)= /y(t), 0_--<t--<_l
t+s+x(s)
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1370 K.E. ATKINSON AND F. A. POTRA

where y is so chosen that

1
(7.2) x*(t)-t+c, c>0

is a solution of (7.1). The function K is given by

1
K(t,s,u)=+y(t).

t+s+u

In this case, the constants a and y can be chosen as large as desired. Therefore the
constants of (4.14) are given by

===r+l.
From Theorem 5.2,

(7.3) IIx*-x.ll - O(hr+l), IIx*-ll- 0(h2+2)
The results for c= 1 are given in Tables 1 and 2, for degrees r= 1 and r=2. The
analogous results for c .1 are given in Tables 3 and 4. The latter are worse because
x* becomes more ill behaved as c->0. In both cases, the rates predicted by (7.3) are
confirmed approximately by the numerical results. Of special note is the great improve-
ment in accuracy given by the iterated Galerkin solution , over that of the Gaierkin
solution x,. We will let n denote the number of (equal) subdivisions of [0, 1], as given
in (4.1). The number of equations used in solving for x, is denoted by ne and h 1/n.

TABLE
x*= l/(t+ l); r=

rl tl

2 4
4 8
8 16

16 32

2.51E-2
7.92E-3
2.26E 3
6.05E 4

Ratio

3.17
3.50
3.74

t[x*- . ][ Ratio

4.02E-6
5.13

7.83E-7
13.3

5.88E 8
15.4

3.82E-9

TABLE 2
x*=l/(t+l)" r-2.

2
4
8

16

6
12
24
48

3.03E-3
5.28E-4
7.96E- 5
1.10E-5

Ratio

5.74
6.63
7.24

IIx* ;. !1oo Ratio

1.05E-6
56.5

1.86E 8
64.1

2.90E- 10
63.3

4.58E- 12

TABLE 3
x*=l/(t+.l)" r=l

2
4
8

16

4
8
16
32

3.36
1.93
.910
.353

Ratio

1.74
2.12
2.58

IIx*-lt Ratio

1.12E-2
9.41

1.19E-3
13.3

8.95E-5
14.9

5.99E-6
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PROJECTION AND ITERATED PROJECTION METHODS 1371

TABLE 4
x*=l/(t+.l); r=2.

2 6
4 12
8 24

16 48

x* x Ratio

1.65
2.40

.688
3.19

.216
4.24

.0509

Ilx* ;,ll Ratio

1.69E-3
21.3

7.94E 5
36.4

2.18E-6
49.7

4.39E-8

There are integrals in setting up the nonlinear system for x, PnK(x,) and in
evaluating 5n. These integrals were evaluated numerically to high accuracy, to imitate
exact integration. In a later paper, we will consider the effects of approximate
integration.

Our second example is

(7.4) x(t) G(t, s)[f(s, x(s))+ z(s)] ds,

-(1- t)s, s<--t,
(7.5) G(t,s)=

-(1 -s)t, t<-s

with z(s) so chosen that

t(1- t)
(7.6) x*(t)=, c>0.

t+c

The integral equation (7.4) is a reformulation of the boundary value problem

x"(t) =f( t, x(t)) + z(t),
(7.7)

x(0) x(1) 0.

0<t<l,

We consider the particular example

(7.8) f(t,u)=
l+t+u

For this equation, 3’--0 and a can be chosen as large as desired. From (4.14), for r => 1,

fl=r+l, 31--1, /3 2.

From Theorem 5.2,

(7.9)
IIx*- xollo- O(hr+), IIx*- 11oo- O(hr+3),

E-- Max ]x*(t)-o(t)] O(h2r+2).
tEA(n)

The set A<") is given by {i/n’O<=i<=n}.
The results for c 2 are given in Tables 5 and 6 for degrees r 1 and r 2; and

the analogous results for c .4 are given in Tables 7 and 8. The rates (7.9) are confirmed
approximately by the numerical results; and again, the iterate n is a great improvement
over
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1372 K.E. ATKINSON AND F. A. POTRA

TABLE 5
x*=t(1-t)/(t+2); r=l.

2
4
8

16

Ix* x Ratio

2.37E-2
3.50

6.77E-3
3.74

1.81E-3
3.85

4.70E -4

x* . 1oo Ratio

1.13E-4
10.8

1.05E-5
13.2

7.98E -7
14.6

5.47E 8

En Ratio

2.76E 5
11.0

2.52E-6
14.2

1.78E -7
15.3

1.16E-8

TABLE 6
x*=t(1-t)/(t+2); r=2.

2
4
8

16

IIx* x. Ratio

1.58E-3
6.61

2.39E-4
7.24

3.30E 5
7.60

4.34E -6

IIx*-;ll Ratio

2.91E -6
23.7

1.23E 7
27.8

4.43E 9
29.9

1.48E- 10

E Ratio

4.11E-7
34.3

1.20E- 8
54.1

2.22E- 10
60.7

3.66E- 12

TABLE 7
X* t(1 t)/(t + .4); 1.

2
4
8

16
32

x* xn Ratio

1.27E-
2.57

4.95E -2
3.04

1.63E 2
3.42

4.77E-3
3.67

1.30E-3

3.91E-4
5.77E 5
6.17E-6
5.17E-7
3.75E-8

Ratio

6.78
9.35

11.9
13.8

E. Ratio

1.10E-4
5.42

2.03E 5
10.3

1.98E-6
13.0

1.52E-7
15.2

1.00E 8

TABLE 8
X*=t(1--t)/(t+.4); r=2.

2
4
8

16
32

Ilx* x. Ratio

3.02E 2
4.24

7.12E-3
5.39

1.32E-3
6.38

2.07E 4
7.06

2.93E 5

IIx* ;. Ratio

3.84E 5
12.7

3.03E-6
18.6

1.63E 7
23.9

6.82E -9
27.6

2.47E- 10

En Ratio

8.40E 6
12.1

6.92E-7
28.8

2.40E 8
45.5

5.57E- 10
56.2

9.32E- 12

These examples were computed on a PRIME 850 (in double precision) and on
the CRAY X-MP (in single precision). The PRIME is located at the University of
Iowa, and the CRAY X-MP at the University of Illinois.
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