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A SPECTRAL METHOD FOR THE EIGENVALUE PROBLEM
FOR ELLIPTIC EQUATIONS *

KENDALL ATKINSONT AND OLAF HANSEN*

Abstract. Let ) be an open, simply connected, and bounded regid@®flini > 2, and assume its boundad{
is smooth. Consider solving the eigenvalue problem= M\u for an elliptic partial differential operatak over 2
with zero values for either Dirichlet or Neumann boundarpditions. We propose, analyze, and illustrate a ‘spectral
method’ for solving numerically such an eigenvalue probldrhis is an extension of the methods presented earlier
by Atkinson, Chien, and Hansen [Adv. Comput. Math, 33 (20pp) 169-189, and to appear].
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1. Introduction. We consider the numerical solution of the eigenvalue prmble

d

(1.1) Lu(s)=- Z 0 (a;C Z(S)Bu(s)) +(s)u(s) = Au(s), s€ QCRY
Pyt 0sy, ’ 0sy

with the Dirichlet boundary condition

(1.2) u(s) =0, s € 0Q,

or with Neumann boundary condition
(1.3) Nu(s) =0, s € 09,
where the conormal derivatii¥u(s) on the boundary is given by

d ou
Nu(s) := Z aj,k(S)gﬁk(S)a
- j

andi(s) is the inside normal to the boundad§? ats. Assumed > 2. Let(2 be an open,
simply-connected, and bounded regiofRify and assume that its boundal is smooth and
sufficiently differentiable. Similarly, assume the fumcts~y(s) anda; ;(s), 1 < i,j < d,
are several times continuously differentiable over As usual, assume the matrix
A(s) = [ai,j(s)] is symmetric and satisfies the strong ellipticity condition

(1.4) ETA(s)E > cotTE,  s€Q, €eRY

with ¢y > 0. For convenience and without loss of generality, we assufag> 0, s € Q; for
otherwise, we can add a multiple ofs) to both sides of1.1), shifting the eigenvalues by a
known constant.

In the earlier papers] and [6], we introduced a spectral method for the numerical
solution of elliptic problems ovef2 with Dirichlet and Neumann boundary conditions, re-
spectively. In the present work, this spectral method ismaéd to the numerical solution of
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the eigenvalue problem fol (1), (1.2) and (L.1), (1.3). We note, again, that our work applies
only to region¥) with a boundary2 that is smooth.

Thereis a large literature on spectral methods for solvilgtie partial differential equa-
tions; for example, see the book)[ 11, 12, 17, 26]. The methods presented in these books
use a decomposition and/or transformation of the region@ontllem so as to apply one-
variable approximation methods in each spatial variabtecdntrast, the present work and
that of our earlier paper$] 6] use multi-variable approximation methods. During thetpas
20 years, principally, there has been an active developofentlti-variable approximation
theory, and it is this which we are using in defining and anatyour spectral methods. It
is not clear as to how these new methods compare to the espketral methods, although
our approach is rapidly convergent; see Sectidhfor a numerical comparison. This paper
is intended to simply present and illustrate these new nustheith detailed numerical and
computational comparisons to earlier spectral methodsltow later.

The numerical method is presented in Secfipmcluding an error analysis. Implemen-
tation of the method is discussed in Sect®for problems in botiR? andR3. Numerical
examples are presented in Sectibn

2. The eigenvalue problem.Our spectral method is based on polynomial approxima-
tion on the unit ballB, in R¢. To transform a problem defined éhto an equivalent problem
defined onB,, we review some ideas frond,[ 6], modifying them as appropriate for this
paper.

Assume the existence of a function
(2.1) »:B,20

onto

with ® a twice—differentiable mapping, and &t= &~! : Q l;t% By. Forve L?(Q), let
(2.2) O(x) =v(®(x)), weBaCRY,

and conversely,

(2.3) v(s) =0 (¥ (s)), seQCRY

Assumingv € H! (), we can show that
Vol (z) = J (2) Vev(s), s=o(x),
with .J (z) the Jacobian matrix fob over the unit ballB,,

J(z) = (D®) (z) = [a‘g;(j )]_ . zeBa

To use our method for problems over a regfonit is necessary to know explicitly the func-
tions® and.J. We assume

det J(x) # 0, z € By.
Similarly,
Vou(s) = K(s)Vad(x), @ =U(s),
with K (s) the Jacobian matrix fob over(. By differentiating the identity
U (P (x)) ==, T € By,
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we obtain
K(®(x)=J()".

Assumptions about the differentiability @f(z) can be related back to assumptions on the
differentiability of v(s) and®(z).
LEMMA 2.1.1f @ € C* (B,) andv € C™ (Q2), thenv € CY (B,) with
g = min {k,m}.
Proof. A proofis straightforward using2(2). O
A converse statement can be made as regardsandW in (2.3).
Consider now the nonhomogeneous problem= f,

d
@4 Lu)=-) o <ak,e<s>8g§j’> Fa(suls) = f(s), s E€QCRY

k=1

Using the transformatior(1), it is shown in p, Thm 2] that @.4) is equivalent to

) _
By a% (ak,g(:c) det (J(x)) agij) ) + [3(x) det J ()] ()

kf=1

= f(z)det J(z), x € By,
with the matrixA (z) = [a; ;(x)] given by
(2.5) Ax)=J(x) " A@ (2) J (2) .

The matrixA satisfies the analogue df.@), but overB,. Thus the original eigenvalue prob-
lem (1.1) can be replaced by

d ~
=3 o (et et () ) 4 o) et (o) ()

k=1

(2.6)
= Au(x) det J(x), x € By.

As a consequence of this transformation, we can work withllgstie problem defined over
B, rather than over the original regidi. In the following we will use the notatioh , and
Ly when we like to emphasize the domain of the operatmso

Lp: H*(Q) N H(Q) — L?(Q)
Ly : H%(Q) — L3(Q)
are invertible operators; se2], 28). Here H% () is defined by
HZ(Q) = {u € H*(Q): Nu(s) =0, s € 0Q}.

2.1. The variational framework for the Dirichlet problem. To develop our numerical
method, we need a variational framework fé@r4) with the Dirichlet condition: = 0 on 9.
As usual, multiply both sides o02(4) by an arbitrary € Hg (Q2), integrate ovef2, and apply
integration by parts. This yields the problem of findimg H} (Q2) such that

(2.7) A(u,v) = (f,0) =L(v), forallv € H} (),
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with

(2.8) A(v,w) = /

d
o [Zak,m‘%(s) Ouls) | (syo(syu(s) | ds, v w e HE(Q).

) Osp  Osg

The right side of 2.7) uses the inner produgt, -) of L2 (). The operatord., and.A are
related by

(2.9) (Lpu,v) = A(u,v), ue H*(Q), veH)(Q)),

an identity we use later. The functiofis an inner product and it satisfies

(2.10) (A (,w)| < callolly wlly,  v,we Hy (),

(2.11) A(@v) > clvllf,  veH; (@),

for some positive constants, andc.. Here the norm| - ||; is given by
d 2

@12 fuli = | LZ (5) +u2<s>] ds.

Associated with the Dirichlet problem

(2.13) Lpu(s) = f(s), z€Q, felL?(Q),

(2.14) u(s) =0, x € 09,

is the Green’s function integral operator

(2.15) u(s) = Go f(s).

LEMMA 2.2. The operatoG, is a bounded and self-adjoint operator frai (£2) into
H? () N H (92). Moreover, it is a compact operator frof? (Q) into Ha (2), and more
particularly, it is a compact operator fron/} (2) into H} ().

Proof. A proof can be based ori}, Sec. 6.3, Thm. 5] together with the fact that the
embedding off/? (Q) N H}(Q) into Hi () is compact. The symmetry follows from the
self-adjointness of the original proble@ {3—(2.14). O

We convert2.9) to

(2.16) (f,v)=AGpf,v), veHy(Q), fel*(Q).

The problem2.13—(2.14) has the following variational reformulation: finde H} (Q)
such that

(2.17) A(u,v) = £(v), Yo € Hy ().

This problem can be shown to have a unique solutiday using the Lax—Milgram Theorem
to imply its existence; se8] Thm. 8.3.4]. In addition,

1
< |
lulls < i€l

with ||¢|| denoting the operator norm féregarded as a linear functional éf} ().
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2.2. The variational framework for the Neumann problem. Now we present the vari-
ational framework for 2.4) with the Neumann conditiodNu = 0 on 9f2. Assume that
u € H?(Q) is a solution to the problen2(4),(1.9. Again, multiply both sides of1.4) by
an arbitraryv € H' (Q), integrate ovef?, and apply integration by parts. This yields the
problem of findingu € H* () such that

(2.18) Au,v) = (f,v)=L(v), forallve H'(Q),

with A given by @.8).The right side of 2.18§ uses again the inner product bf (). The
operators.y and.A are now related by

(2.19) (Lyu,v) = A(u,v), ve  H (Q),

andu € H?(Q) which fulfills Nu = 0. The inner produc satisfies the propertie€.(0
and @.11) for functionsu,v € H(Q).
Associated with the Neumann problem

(2.20) Lyu(s)
(2.21) Nu(s)

f(s), w€Q, felL?(Q)),
0, x € 01,

is the Green'’s function integral operator

u(s) = Gn f(s).

LEMMA 2.3.The operatoGy is a bounded and self-adjoint operator fraid (£2) into
H? (). Moreover, it is a compact operator frofi¥ (2) into H' (£2), and more particularly,
it is a compact operator fron#/ ! () into H! (2).

Proof. The proof uses the same arguments as the proof of Letnal

We convert .19 to

(f,v) =AGnf,v), ve H'(Q), felL*(Q).

The problem2.20—(2.21) has the following variational reformulation: finde H*! (2)
such that

(2.22) A (u,v) = £(v), Yo e H' (Q).

This problem can be shown to have a unique solutidny using the Lax—Milgram Theorem
to imply its existence; se@] Thm. 8.3.4]. In addition,

1
< =
[ ]

with ||¢|| denoting the operator norm féregarded as a linear functional éft* (2).

2.3. The approximation scheme.Denote byi1,, the space of polynomials ihvariables
that are of degre& n: p € 11, if it has the form

_ i1 ,.02 id
p(x) = g axi Ty ... xy,
li|<n

with ¢ a multi—integer; = (i1,...,iq), and|i| = i1 + - - - + i4. Over By, our approximation
subspace for the Dirichlet problem is

Xom = { (1= l1all3) @) | p € L.}
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with ||a:|\§ =z} + -+ 2%. The approximation subspace for the Neumann problem is
Xy n =1I1,.

(We use heréV to make a distinction between the dimensionfwm; see below, and the
notation for the subspace.) The subspatgs, andXp ,, have dimension

n+d
N=N, = .

However our problemZ.7) is defined ovef?, and thus we use modifications ﬁfD_,n and
X/\/,ny

(2:23) Xp={0(s) =0 (¥ () : ¥ € Xp,u} S H (),
X ={0(s) = (¥ (5)): 6 € By} € H' (D).

In the following, we avoid the indek and V' if a statement applies to either of the subspaces
and write justX;, and similarlyX;,. This set of functionst’, is used in the initial definition
of our numerical scheme and for its convergence analysisthieusimpler space’, is used
in the actual implementation of the method. They are two espef the same numerical
method.

To solve @.17) or (2.22 approximately, we use the Galerkin method with trial spage
to findu,, € A, for which

A (u,v) = £(v), Yu € A,

For the eigenvalue problen (1), find u,, € X, for which

(2.24) A (U, v) = X (up,v), Yo e X,.
Write

N
(2.25) Un (s) =Y iy (s)

Jj=1

with {zpj};vzl a basis oft,,. Then @.24) becomes
N N

(2.26) > Al h) =A> aj (i), i=1,...,N.
j=1 j=1

The coefficients can be related back to a polynomial basistfoand to integrals over
By. Let {{/;J} denote the basis of’n corresponding to the bas{g);} for X,,. Using the
transformatiorns = ®(z),

(5,141) = /g 0y (901 (5) s

= | ¥ (2)¥; (x)|det J (2)| da,
By
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[ () 2202 99

A (Y, i) Ose s +v(8);(s)i(s)

I
S—

Lk t=1

(V.01 (90T A LV ()} + ()0 (s)uia(s) | ds

Il
:,\

I ~ T ~
= [ {x@@) V.5 @} 4@ @) (K@ @)V @)
+3(@); (2)0i(x)| [det T (@)] da
= [ [V @ @)V @)+ 30 () (@)] et T (@)

with the matrixﬁ(ac) given in (2.5. With these evaluations of the coefficients, it is straight
forward to show thatZ.26 is equivalent to a Galerkin method fa2.¢) using the standard
inner product ofZ.? ( B;) and the approximating subspatsg.

2.4. Convergence analysisln this section we will usg to refer to either of the Green
operatorgjp or Gy. In both case§ is a compact operator from a subspace L%() into
itself. We havey = H}(Q) in the Dirichlet case an = H!(Q) in the Neumann case. In
both caseg’ carries the norm| - || g1 (). On By we use notation) to denote either of the
subspace#l} (B,) or H'(B,) The scheme.26) is implicitly a numerical approximation of
the integral equation eigenvalue problem

(2.27) AGu = u.

LEMMA 2.4.The numerical method®(24) is equivalent to the Galerkin method approx-
imation of the integral equatior2(27), with the Galerkin method based on the inner product
A(-,-) for Y.

Proof. For the Galerkin solution ofX27) we seek a functiom,, in the form .25, and
we force the residual to be orthogonaltf. This leads to

N
(2.28) A0 AGE;, i) = Zag (45, 4)

Jj=1

fori=1,...,N. From @2.16, we haveA (Gv;, ;) = (v;,;), and thus

N
/\Z%(U)jﬂ/h ZO‘J (¥, 9i) -
j=1

This is exactly the same a8.6. 0
Let P,, be the orthogonal projection @f onto X,,, based on the inner produet (-, -).
Then .28 is the Galerkin approximation,

1

for the integral equation eigenvalue problethZ?). Much is known about such schemes,
as we discuss below. The conversion of the eigenvalue profite?4) into the equivalent
eigenvalue problen?(29 is motivated by a similar idea used in Osbo?4][

The numerical solution of eigenvalue problems for compaigigral operators has been
studied by many people for over a century. With Galerkin rodt) we note particularly the
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early work of Krasnoselskiif0, p. 178]. The book of Chatelirl[5] presents and summarizes
much of the literature on the numerical solution of such eigéue problems for compact
operators. For our work we use the results given2n3] for pointwise convergent operator
approximations that are collectively compact.

We begin with some preliminary lemmas.

LEMMA 2.5. For suitable positive constants andcs,

cillvll sy < vl ) < c2llvllai (B

for all functionsv € ), with v the corresponding function o2 (2). Thus, for a sequende,, }
inYy,

Uy — v INY = T, =0 inY,
with {,, } the corresponding sequenceh

Proof. Begin by noting that there is a 1-1 correspondence bet@eand) based on
using €.1)—(2.3. Next,

ol = [ (190 + (o)) s

= /B HW(:C)TJ(W1 J(x)"" va(a:)‘ 1 |5(a:)|2] \det J ()| dz

< bleagmeu(xﬂ] max{glea§||J(x)l ||2,1}/ [|W(a:)l2+ Ii(:c)lﬂ dz,

Ba

vl &) < c2llVllar By,

for a suitable constant, (©2). The reverse inequality, with the roles @§%| 51 (p,) and
lv]| 1 () reversed, follows by an analogous argument.

LEMMA 2.6.The setU,,>1 ), is dense iny.

Proof. The setunzl)?n is dense ir1)7, a result shown inq, see (15)]. We can then use
the correspondence betweBn(2) andH'! (By), given in Lemma2.5, to show thatJ,,>1 X,
is dense iny. O

LEMMA 2.7. The standard nornj - ||; on Y and the norm||jv||4 = /A (v,v) are
equivalent in the topology they generate. More precisely,

(2.30) Veellollh < flolla < veallolh,  ved,

with the constantg 4, c. taken from 2.10 and 2.11), respectively. Convergence of se-
quenceqv, } is equivalent in the two norms.

Proof. Itis immediate from2.11) and @.10. O

LEMMA 2.8. For the orthogonal projection operatd?,,,

(2.31) Pnv — v as n — oo, forallv e Y.

Proof. This follows from the definition of an orthogonal projectioperator and using
the result that,, > X, is dense iry. O

COROLLARY 2.9. For the integral operatog,

I(I—-P,)G|| —0 as n— oo,
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using the norm for operators frogi into ).

Proof. ConsiderG andP,, as operators opy into ). The result follows from the com-
pactness off and the pointwise convergence ih§1); see i, Lemma 3.1.2].0

LEMMA 2.10.{P,G} is collectively compact op .

Proof. This follows for all such familie{?,,G} with G compact on a Banach spaye
and{P, } pointwise convergent ol¥. To prove this requires showing

{Pugu | vl <1, n =1}

has compact closure {§. This can be done by showing that the set is totally boundesl. W
omit the details of the proofl]

Summarizing{P,,G} is a collectively compact family that is pointwise convergen
Y. With this, the results ing, 3] can be applied toZ.29 as a numerical approximation to the
eigenvalue problen?(27). We summarize the application of those resultsx@9.

THEOREM2.11. Let X be an eigenvalue for the problem Dirichlet probleini, (1.2)
or the Neumann probleni (1), (1.3). Assume\ has multiplicity~, and lety™, ... x®)
be a basis for the associated eigenfunction subspaces ket) be chosen such that there
are no other eigenvalues within a distancef \. Leto,, denote the eigenvalue solutions of
(2.24 that are withine of A. Then for all sufficiently large:, sayn > ng, the sum of the
multiplicities of the approximating eigenvalues withip equalsy. Moreover,

k

(2.32) max [A = An| < e max | (1= Pu)x™ .

An€on

Letu be an eigenfunction fok. LetW,, be the direct sum of the eigenfunction subspaces
associated with the eigenvalugs € o,,, and |et{u511), . ,u%”)} be a basis folV,,. Then

there is a sequence

v
Uy = Zanﬂku%k) e W,
k=1

for which

_ < _ (k)
(2.33) le = unlly < ¢ max | (I =Pn) x™ [l

for some constant > 0 dependent on.

Proof. . This is a direct consequence of resultsang], together with the compactness
of G on Y. It also uses the equivalence of norms giverrd(). O

The normg|| (I —P,,) x®||; can be bounded using results from RagoZf [ just as
was done in}]. We begin with the following result from25].

LEMMA 2.12.Assumev € C*+2 (By) for somek > 0, and assumev|, = 0. Then

there is a polynomiag,, € nyn for which

lw = gnll o < D (k,d)n" (n,l [l oo sz + @ (wmz), 1/n)) :
Here, we have

lwlapra= > 0wllo,  w(9,0)= suwp lg(z) gl

li|<k+2 |z—y|<o

w (w<k+2),5) = Z w ((“)iw,é) )

|i|=k-+2
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The corresponding result that is needed with the Neumanhblgmo can be obtained
from [9].

LEMMA 2.13. Assumew € C**2 (B,) for somek > 0. Then there is a polynomial
n € X, for which

= gulloe < D (ko)™ (07" o 0 (w52, 1/m)).

THEOREM 2.14. Recall the notation and assumptions of Theoil Assume the
eigenfunction basis functiong®) € C™*2(Q) and assumeb € C™*%(B,), for some
m > 1. Then

max [A—\,| =0 (n™"), lu = unll, = O (n7™).

An€on

Proof. Begin with €.32—(2.33. To obtain the bounds fdr(7 — P,,) u*)||; given above
using Lemma.120r 2.13, refer to the argument given i]. O

3. Implementation. In this section, we use again the notatitin if a statement applies
to both Xp ,, or X ,,; and similarly forXx,,. Consider the implementation of the Galerkin
method of £.24) for the eigenvalue problenmi (). We are to find the function,, € X,, sat-
isfying (2.26). To do so, we begin by selecting a basislpy that is orthonormal irl.2 (B,),
denotingitby{g:,...,¢n}, with N = N,, = dimII,,. Choosing such an orthonormal basis
is an attempt to have the matrix associated with the leftsfdie linear system in2(.26) be
better conditioned. Next, let

0i(x) = 3i(x), i=1,...,N,,

in the Neumann case and
(3.1) Git) = (1= IIXI3) @), =1, N,

in the Dirichlet case. These functions form a basis &gt As in (2.23, use as the corre-
sponding basis at,, the sef{¢1,...,¥n}.
We seek

N
un(s) =Y ajiby(s).
j=1
Then following the change of variabde= ¢ (x), (2.26 becomes

N
S [ [V 60T AV () + 3607, (5 (0] et T ()]

j=1 VB

(3.2) N
=3 [ 6 B et S 0 =L

We need to calculate the orthonormal polynomials and their fiartial derivatives; and we
also need to approximate the integrals in the linear systéon.an introduction to the topic
of multivariate orthogonal polynomials, see Dunkl and Xd][and Xu [29]. For multivariate
quadrature over the unit ball iR¢, see Stroud{7).
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3.1. The planar case.The dimension ofI,, is

Nn:%(n+1)(n+2)

For notation, we replacewith (z, y). How do we choose the orthonormal bais (, y)}évzl
for IL,,? Unlike the situation for the single variable case, theesnaany possible orthonormal
bases oveB = D, the unit disk inR2. We have chosen one that is particularly convenient for
our computations. These are the "ridge polynomials” introetl by Logan and Shepgd]
for solving an image reconstruction problem. We summarze lthe results needed for our
work.

Let

Vo={Pell,: (P,Q)=0 vYQeTIl,_1},

the polynomials of degreethat are orthogonal to all elementsldf,_,. Then the dimension
of V,, isn + 1; moreover,

(3.3) IL, =V V1B V,.

It is standard to construct orthonormal bases of 8achnd to then combine them to form an
orthonormal basis dffl,, using the latter decomposition. As an orthonormal basig,ofve
use

Vs

(3.4) On.k(T,y) = \/LEU" (zcos(kh) +ysin(kh)), (z,y)e D, h= T

for k = 0,1,...,n. The functionU,, is the Chebyshev polynomial of the second kind of
degreen,

sin(n+1)46
sin

U,(t) = t=cosf, —-1<t<1, n=0,1,....

)

The family {an,k}Zzo is an orthonormal basis af,,. As a basis ofl,,, we order{®,, »}
lexicographically based on the ordering B14) and @.3),

{6@}?;1 = {9,50,07 @1,01 9,51717 @2,01 LR 9,577/,07 SRR s,bin,n} .
Returning to 8.1), we define
Uni(2,9) = (1= 2> = y°) Bu iz, y)
for the Dirichlet case and
Vn k(2 y) = Pnk(2, )

in the Neumann case. To calculate the first order partiavdtvies oh[n,k(x,y), we need
U, (t). The values of/,,(t) andU,, (t) are evaluated using the standard triple recursion rela-
tions,

Un+1(t) = 2tUn(t) — Up—1 (1),

Uy (1) = 2U,(t) + 2tU,, (t) — U, _, (t).
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For the numerical approximation of the integrals 814, which are overB being the
unit disk, we use the formula

q 2q
2rm 2
3.5 dr dy ~ .
(3.5) /Bg(way) €T ay E E g(rl,2q+1)wl2q+1ﬁ

=0 m=0

Here the numbers; are the weights of thg; + 1)-point Gauss-Legendre quadrature formula
on [0, 1]. Note that

1 q
| porie =3 sty

=0

for all single-variable polynomialg(z) with deg (p) < 2¢ + 1. The formula 8.5) uses the
trapezoidal rule wit2q + 1 subdivisions for the integration ovét in the azimuthal variable.
This quadratured.5) is exact for all polynomialg € Il,,. This formula is also the basis of
the hyperinterpolation formula discussed ird].

3.2. The three—dimensional caseln R?, the dimension ofl,, is

N, = <”‘£3) :%(n+1)(n+2)(n—|—3).

Here we choose orthonormal polynomials on the unit ball asiileed in [L4],
~ (0,m—2j+3) X
Pm,j,8(X) = Cm,jD; TP = 1)S8m2; (H)

m—2j (0,m—2j+1 X
(3.6) = eyl @A~ 1) S (H>

(3.7) j=0,....lm/2], B=0,1,...,2(m—2j), m=0,1,...,n.

mo . m—24i+1 . . .
Herec,,; = 2i+% 7 is a constant, and\"" **%), j ¢ Ny, are the normalized Jabobi
polynomials which are orthonormal da 1, 1] with respect to the inner product,

1
(v,w) = / (o) dr

see for examplel], 16]. The functionsSs ,,—2; are spherical harmonic functions and they
are given in spherical coordinates by
B VT (o
_ cos(5¢)T,2 (cosb), B even
Sp(9,0) = can ’ it
sin(%q&)TkT (cos®), [ odd

The constantg . is chosen in such a way that the functions are orthonormaherutit
sphereS? in R3,

‘/52 S@k(x) SE,E(X) ds = 557557%%'

The functionsT} are the associated Legendre polynomials; $8e73). According to @.1),
we define the basis for our space of trial functions by

Y jp (%) = (L= |1x)@m.j,5 (%)
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in the Dirichlet case and by

Vim,j,8(X) = Pm,j,8(x)
in the Neumann case We can order the basis lexicographidallgalculate all of the above
functions we can use recursive algorithms similar to theus®l for the Chebyshev polyno-
mials. These algorithms also allow the calculation of thevagéves of each of these func-
tions; see 16, 30].
For the numerical approximation of the integrals #14}, we use a quadrature formula
for the unit ballB,

1 27 T
/B g(x) dx = / / / 3(r,0,6) 12 sin(9) dé 40 dr ~ Q).
29 q g

Qqlg] = Z gwj Vg (gk ;‘ 1 ’ 7;_;, arccos(§j)) .

i=1 j=1 k=1

Hereg(r, 6, ¢) = g(x) is the representation gfin spherical coordinates. For théntegration
we use the trapezoidal rule, because the functi@aisperiodic ind. For ther direction we
use the transformation

1 1 2
t+1 t+1Y\ dt
r2vr)dr:/ (—) v(—)—
[ra= [ (5) (53
1

where thev; and(j, are the weights and the nodes of the Gauss quadratureywitides on
[—1, 1] with respect to the inner product

1

(v,w) = / (14 t)2v(t)w(t) dt.
—1

The weights and nodes also depend;diut we omit this index. For the direction we use

the transformation

™ 1 q
/0 sin(@)v(¢) dp = /_1 v(arccos(¢)) do ~ ; w;v(arccos(&;)),

where thev; and¢; are the nodes and weights for the Gauss—Legendre quadoatisé, 1].
For more information on this quadrature rule on the unit balR?, see p7).
Finally we need the gradientin Cartesian coordinates tocqimate the integral in3.2),
but the functiong,,, ; 5(x) in (3.6) is given in spherical coordinates. Here we simply use the
chain rule, withx = (z, v, 2),

0 0 . 0 sin(0)
&’U(T, 97 ¢) - Ev(ra 91 ¢) COS(G) Sln((b) - %U(T‘, 91 ¢) r SIH(QZS)
0 cos(f) cos(¢)
+ 8_¢U(T7 97 (b)fa

and similarly fora—y andg>.
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FIG. 4.1.The ‘limacon’ region ¢.3)-(4.4).

4. Numerical examples.Our programs are written in MrLAB. Some of the examples
we give are so chosen that we can invert explicitly the magpginto be able to better con-
struct our test examples. Having a knowledge of an expligitise ford is not needed when
applying the method; but it can simplify the constructiortedt cases. In other test cases,

we have started from a boundary mapping 0By 1;:> 09 and have generated a smooth
mapping® : By 1_—} Q.

The problem o(;‘ generating such a mappihgvhen given onlyp is often quite difficult.
In some cases, a suitable definition fiois straightforward. For example, the ellipse

¢ (cos,sinf) = (acosf,bsinb), 0<0<2m,
has the following simple extension to the unit diBk,
(4.1) ®(z,y) = (az,by),  (z,y) € Bo.

In general, however, the construction®fvhen given onlyp is non-trivial. For the plane, we
can always use a conformal mapping; but this is too oftentrigial to construct. In addition,
conformal mappings are often more complicated than areatkelor example, the simple
mapping ¢.1) is sufficient for our applications, whereas the conformabmping of the unit
disk onto the ellipse is much more complicated; sgéeSec. 5].

We have developed a variety of numerical methods to genarsiitable® when given
the boundary mapping. The topic is too complicated to consider in any significastiad
in this paper and it will be the subject of a forthcoming paptowever, to demonstrate that
our algorithms for generating such extensidndo exist, we give examples of sué¢hin the
following examples that illustrate our spectral method.

4.1. The planar Dirichlet problem. We begin by illustrating the numerical solution of
the eigenvalue problem,

Lu(s) = —Au = Au(s), s € QCRY

(4.2) u(s) =0, s € 012
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FIG. 4.2.Eigenfunction for the limacon boundary corresponding ® aipproximate eigenvalug(!) = 0.68442.

FiG. 4.3.Eigenfunction for the limacon boundary corresponding ® aipproximate eigenvalug(2) = 1.56598.

This corresponds to choosing = I in the framework presented earlier. Thus, we need to
calculate

For our variables, we replace a potate By with (z,y), and we replace a poiste
with (s,t). The boundary)) is a generalized limacon boundary defined by

(4.3) ¢ (cosf,sinf) = (ps + p1cosf + pasinf) (acosf,bsinf), 0<0<2r.
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O Eigenvalue A®
107 b & Eigenvalue A@ |4

FIG. 4.4.The values op\iﬂl — )\%k) for k = 1, 2 for increasing degree..
107 ; ‘
< o @
o o @

FIG. 4.5.The values oﬂuiﬂl — u55“>||oo for k = 1, 2 for increasing degree:.

The constants, b are positive numbers, and the constagnts (p1, p2, p3) must satisfy

p3 > \/pT + 3.

The mapping® : By — Q is given by(s,t) = ® (x,y) with both components and ¢
being polynomials inx, y). For our numerical example, each componendf:, y) is a
polynomial of degree 2 iz, y). We use the particular parameters

(4.4) (a,0) = (1,1), p=(1.0,2.0,2.5).
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O Residual for u®
O Residual for u®

14 15

16

FIG. 4.6.The values oﬂRSf) ||so for k = 1,2 for increasing degree:.

O Residual for u®
¢ Residual for u®

14 15

16

FIG. 4.7.The values oﬂR,(f) ||2 for k = 1, 2 for increasing degree.

In Figure4.1, we give the images if2 of the circles,r = j/10,j = 0,1,...,10, and the
azimuthal linesg = j= /10,7 = 1,...,20. Our generated mappin maps the origir(0, 0)

to a more centralized point inside the region.
As a sidenote, the straightforward generalizationdo8)

P (z,y) = (p3s + prx + pay) (az,by),

(Iay) € B27

does not work. It is neither 1-1 nor onto. Also, the mapping

® (rcosb,rsinf) = (ps + p1 cos O + pasinb) (ar cos b, brsin b)
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does not work because it is not differentiable at the originy) = (0,0).

Figures4.2 and4.3 give the approximate eigenfunctions for the two smallegerval-
ues of @.2) over our limacon region. Because the true eigenfunctionseagenvalues are
unknown for almost all cases (with the unit ball as an exceptiwe used other methods

for studying experimentally the rate of convergence. MY denote the value of thet"
eigenvalue based on the degrepolynomial approximation, with the eigenvalues taken in

increasing order. Let!” denote a corresponding eigenfunction,
Nn ~
=>_ o)
j=1

with o) = [agn), s a%l)}, the eigenvector of3.2) associated with the eigenvalue,”.
We normalize the eigenfunctions by requiriH‘rg,(f)||oo = 1. Define

Ao = N - e R e

Figures4.4and4.5 show the decrease, respectively,\of and D,, asn increases. In both
cases, we use a semi-log scale. Also, consider the residual,

R® — —Au®) By b,

with the Laplamanﬁun computed analytically. Figured.6and4.7 show the decrease of
||Rn Iloo and||Rn |2, respectively, again on a semi-log scale. Note that'th@orm of the

residual is significantly smaller than the maximum norm. Wtheoking at a graph oRSf),
it is small over most of the regiaf, but it is more badly behaved whén, y) is near to the
point on the boundary that is nearly an inverted corner.

These numerical results all indicate an exponential ratafergence for the approxi-

mat|0ns{)\(k) n > 1} and{u k) > 1} as a function of the degree In Figure4.4, the

maximum accuracy foA(") appears to have been found with the degree 13, approxi-
mately. For larger degrees, rounding errors dominate. \&fe s¢e that the accuracy for the
first eigenvalue-eigenfunction pair is better than thattfa second such pair. This pattern
continues as the eigenvalues increase in size, althougindisant number of the leading
eigenvalues remain fairly accurate, enough for practicappses. For example,

AL A0 = 9 55 % 1077,

Hufgn — {10 ‘ =1.49 x 107,

We also give an example with a more badly behaved boundamgiya
(4.5) @ (cosb,sinf) = (54 sinf + sin 30 — cos 50) (cos @, sin ), 0<6<2m,

to which we refer as an ‘amoeba’ boundary. We create a fundtio 5 —> Q; the mapping

is pictured in Figuret.8in the manner analogous to that done in F|g4l,|r_Efor the limacon
boundary. Both components &f(z, y) are polynomials if(x, y) of degree 6. As discussed
earlier, we defer to a future paper a discussion of the coastm of ®; the method was
different than that used for the limacon boundary. In Figu& we give an approximation to
the eigenfunction corresponding to the eigenvali®, = 0.60086. The approximation uses
a polynomial approximation of degree= 30. For it, we have

IR oo = 0.730,  ||RZ)||2 = 0.0255.
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FIG. 4.8.An ‘amoeba’ region with boundary(5).

FIG. 4.9.Eigenfunction for the amoeba boundary corresponding tafioximate eigenvalud(?) = 0.60086.

4.2. Comparison using alternative trial functions. To ensure that our method does
not lead to poor convergence properties when compareddditnaal spectral methods, we
compare in this section our use of polynomials over the usk tb some standard trial func-
tions used with traditional spectral methods. We picked $&ts of trial functions that are
presented in]0, Sec. 18.5].

The first choice is the shifted Chebyshev polynomials witluadyatic argument,

i (9r2 — (r2 —
(4.6) { sin(m@)T;(2r* — 1), cos(m@)T;(2r* — 1), meven P01,

sin(m@)rT;(2r? — 1), cos(m@)rT;(2r*> — 1), m odd

wherem € Ny; the sine terms withn = 0 are omitted. These functions are not smooth on
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TABLE 4.1
Function enumerations.
n odd
cos(00) | T(r) (1) | TP(r) B) | T3 (r) (7) | TS (r) (13)
cos(10) | TP (r) (5) | T(r) (9) | T5(r) (15)
cos(20) | TE(r) (12) | TF(r) A7) | ...
cos(30) | TO(r) (19) | ..

n even
16) [ 100 @) 1900 @) | 190) ©) | I0(r) (14)
(26) | TE(r) (6) | TE(r) (10) | TE(r) (16)

sin(36) | TO(r) (12) | T9(r) (18)
(46) | TE(r) (20) | ...

the unit disk. Also, to ensure that the functions satisfylibandary condition for = 1, we
use

TJE (r)=1T; (2r2 — 1) -1 and Tjo (r) = rTj(2r2 —1) = ji=1,2,...,
instead of the radial functions given id.g). Because these functions are not polynomials,
the notion of degree does not make sense. To compare thes@hsto the ridge polyno-
mials we have to enumerate them so we can use the same numnthiet fifnctions in our
comparison. The result is a sequence of trial functigfisk € N. If k is even, we use a sine
term; and ifk is odd, we use a cosine term. Then we use a triangular scheemitnerate
the function according to Tablke 1 This Table implies, for example, that

5 (0,1) = cos(0) T2 (r),
5 (0,r) = sin(20)TE (r).

As a consequence of the triangular scheme, we use relathalg basis functions with lower
frequencies.
As a second set of trial functions, we chose the ‘one-sidedhlgolynomials’, given by

(4.7)

sin(m@)rmPJQ"m(%Q—l), m=1,2,..., j=0,1,...,
cos(m@)rijo’m(2r2—1), m=0,1,..., j=0,1,...,

where theP?™ are the Jacobi polynomials of degrgeThese trial functions are smooth on
the unit disk; and in order to satisfy the boundary condiabn = 1, we use

»0,m . pOm 2 .
P (r) =P (2rt = 1) — 1, i=1,2,...,

instead of the radial functions irt(7). We use an enumeration scheme analogous to that
given in Table4.1 The result is a sequence of trial functiop$, k£ € N. For example,

P10, 1) = cos(0) 7‘15??’1(7“),
3700, 7) = sin(20) 12 P2 (r).

When we compare the different trial functions in the follogiwe always label the horizontal
axis withn, and this implies thalv,, trial functions are used.
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—o&— Ridge
i —+&— Shifted Chebyshev
—*— One-sided Jacobi

Error for )\2

2)

FIG. 4.10.Errors ‘A@) - ASL for the three different sets of trial functions.

For our comparison, we used the same problérd) (vith the region shown in Figuré. 1.
We have chosen to look at the convergence for the secondveilgen (), and we plot er-

rors for the eigenvalue itself and the norms of the residuals Aul? — )\%Q)ug)ﬂz and

I = Aul? — )\%Q)ug)lloo; see Figured.104.11 All three figures show that for each set of
trial functions the rate of convergence is exponential fos £xample. Also in each figure
the ridge and the one-sided Jacobi polynomials show a fasterergence than the shifted
Chebyshev polynomials. For the convergence of the eigaavabproximation there seems
to be no clear difference between the ridge and the one-sideabi polynomials. For the
norm of the residual the one-sided Jacobi polynomials sedme slightly better for largen.
The same tendency was also visible 6P, but was not as clear. We conclude that the ridge
polynomials are a good choice.

Because of the requirement of using polar coordinates &afitional spectral methods
and the resulting changes to the partial differential eiguatve find that the implementation
is easier with our method. For a complete comparison, hokvewewould need to look at
the most efficient way to implement each method, includingaring operation counts for
the competing methods.

4.3. The three-dimensional Neumann problemWe illustrate our method i3, doing
so for the Neumann problem. We use two different domains.Bsetlenote the closed unit
ballin R?. The domair2, = ®,(Bj3) is given by

T, — 3172

S = <I>1(x) = 2561 —+ X2 s
1+ 2o + 23

S0 Bs is transformed to an ellipsoid; ; see Figurel.13 The domair); is given by
p (1 —t(p))p + t(p)T(0,0)
(4.8) Do ¢ | = ¢
0 0
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10 ‘
—o&— Ridge
—+&— Shifted Chebyshev
10% 1 —*— One-sided Jacobi
g
10° + .
107+ .
107 :
[
10°H .
10_8 Il Il
5 10 15 20

FIG. 4.11.The residual|Au§3) + A;%S) ||so for the three different sets of trial functions.

—6— Ridge
i —8— Shifted Chebyshev
—%*— One-sided Jacobi

10°®

-10

FiG. 4.12.The residual| Au? + A2 u!? ||, for the three different sets of trial functions.

where we used spherical coordinatgse, 0) € [0, 1] x [0, 27] x [0, 7] to define the mapping
®,. Here the functiol : S? = B3 — (1, 00) is a function which determines the boundary
of a star shaped domalp,. The restrictioril’(¢, §) > 1 guarantees thak, is injective, and
this can always be assumed after a suitable scaliity oFor our numerical example, we use

T(0,¢9) =2+ %cos(2¢) sin(0)2(7 cos(0)* — 1).
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FIG. 4.13.The boundary of2; .

L0
Yagans
AT

FIG. 4.14.A view 0ofoQs.

Finally, the functiort is defined by

_ 0, 0<
t(P)—{ P(p— 1Ly, L<

where the exponeritimplies ®, € C*(B;(0)). See p] for a more detailed description of
d,; one perspective of the surfaf® is shown in Figuret.14

For each domain we calculate the approximate eigenva?lﬁfé,s)\%o) =0< )\511) <

IA IN

p< 3,
p<1,
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10 T T
‘ —6— Eigenvalue AW
-2 —<— Eigenvalue @ i

107 |

FIG. 4.15.Q4: errors ‘A&) - Agf) for the calculation of the first two eigenvaluas).

10° ;
—&— Eigenfunction for AQ
107 —&— Eigenfunction for A(®)

L

107}

10°

-4

10

10°
-6

10

107}

10" L L L L L L L L

FIG. 4.16. Q;: angles/ (ugf),ugi‘)) between the approximate eigenfunct'mff) and our most accurate

approximationug’? ~ uld,

/\512) < ...and eigenfunctionan), i =1,...,N,, for the degreess = 1,...,15 (here

we do not indicate dependence on the don§adinTo analyze the convergence we calculate
several numbers. First, we estimate the speed of convezdenthe first two eigenvalues by
calculating|)\§l5) — /\SZ)|,2' =1,2,n=1,...,14. Then to estimate the speed of convergence
of the eigenfunctions we calculate the angle [#(2)) between the current approximation
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10 T

-2 |

10

FIG. 4.17.Q1: errors ‘—Ausf) (s) = APu (5)].

and the most accurate approximatim(rugf),ug?), 1= 1,2, n = 1,...,14. Finally, an

independent estimate of the quality of our approximaticgiven by
R == Aufd(s) = A u(s)],

where we use only ong € €, given by®(1/10,1/10,1/10). We approximat&ugf) (s)
numerically as the analytic calculation of the second deirres ofugf)(s) is quite compli-
cated. To approximate the Laplace operator we use a secded difference scheme with
h = 0.0001 for Q; andh = 0.01 for Q5. The reason for the latter choice bfis that our
approximations for the eigenfunctions 63 are only accurate up three to four digits, so if
we divide byh? the discretization errors are magnified to the ordet.of

The graphs in Figured.154.17, seem to indicate exponential convergence. For the
graphs ofz(uﬁf),u%)), see Figuret.16 We remark that we use the functianccos(z) to
calculate the angle, and far ~ 9 the numerical calculations give = 1, so the calculated
angle becomes. For the approximation ok’ one has to remember that we use a difference
method of ordet)(h?) to approximate the Laplace operator, So we can not expeatesot
better thanl 0~ if we useh = 0.0001.

As we expect, the approximations fx with the transformatiorP, present a bigger
problem for our method. Still from the graphs in Figurd 8and4.19we might infer that the
convergence is exponential, but with a smaller exponemt thia2; . Becauseb, € C*4(Bs)
we know that the transformed eigenfunctionsBgare in general only’#, so we can only
expect a convergence 6f(n—*). The values of, which we use are too small to show what

we believe is the true behavior of th‘éf), although the values far = 10,...,14 seem to
indicate some convergence of the type we would expect.

The poorer convergence fé), as compared t€; illustrates a general problem. When
defining a surfacé) by giving it as the image of a 1-1 mappiggfrom the unit sphere
52 into R?, how does one extend it to a smooth mappingrom the unit ball to2? The
mapping in ¢.8) is smooth, but it has large changes in its derivatives, hiscaffects the rate
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10 T T
—&— Eigenvalue A
—<— Eigenvalue @
10t
10}
10°F
10_4 Il Il Il Il Il Il

FIG. 4.18.Q4: errors ‘A&) - Agf) for the calculation of the first two eigenvaluas).

10 T
—&— Eigenfunction for A
—— Eigenfunction for A®
10"
107
1073 L L L L L L

FIG. 4.19. Qq: angles/ (uSp,uE?) between the approximate eigenfunctimhi) and our most accurate

approximationu ¥ ~ u(9).

of convergence of our spectral method. As was discussee #&ethinning of this section, we
are developing a toolkit of numerical methods for generatinch functiong. This will be
developed in detail in a future paper.
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