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Abstract Spherical harmonics in an arbitrary dimension are employed widely in
quantum theory. Spherical harmonics are also called hyperspherical harmonics when
the dimension is larger than 3. In this paper, we derive some integral identities involv-
ing spherical harmonics in an arbitrary dimension.
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1 Introduction

Spherical harmonics in an arbitrary dimension d, also called hyperspherical harmon-
ics when the dimension d ≥ 4, are employed widely in quantum theory, see e.g.,
[1,3,5,7,8,11,12], and also comprehensive presentations [4,6]. The purpose of this
paper is to present some integral identities involving spherical harmonics in an arbi-
trary dimension.
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First, we introduce some notation. The set

R
d :=

{
x = (x1, . . . , xd)d : x j ∈ R, 1 ≤ j ≤ d

}

is the d-dimensional Euclidean space, and

S
d−1 :=

{
ξ ∈ R

d : |ξ | = 1
}

is the unit sphere in R
d . Here ξ = (ξ1, . . . , ξd)T and

|ξ | =
(

d∑
i=1

|ξi |2
)1/2

is the Euclidean norm of ξ . Generic points in S
d−1 will be denoted by ξ , η. We use the

symbol Y
d
n for the spherical harmonic space of order n in d dimensions. Any function

in Y
d
n is called a spherical harmonic of order n in d dimensions, and is the restriction

to the unit sphere S
d−1 of a harmonic, homogeneous polynomial of degree n in the

variable x ∈ R
d . Introduce a weighted norm

‖ f ‖L1
(d−3)/2(−1,1) :=

∫ 1

−1
| f (t)|(1 − t2)(d−3)/2dt

for a measurable function f on (−1, 1), and then define L1
(d−3)/2(−1, 1) to be the

weighted L1 space of all measurable functions for which the norm ‖·‖L1
(d−3)/2(−1,1) is

finite. Note that for d ≥ 2, any continuous function on [−1, 1] belongs to the space
L1

(d−3)/2(−1, 1). Throughout the paper, we assume the dimension d ≥ 2.
Now we recall the Funk-Hecke formula which is useful in simplifying calculations

of certain integrals over S
d−1. A proof of this formula can be found in [10].

Theorem 1 (Funk-Hecke Formula) Let f ∈ L1
(d−3)/2(−1, 1), ξ ∈ S

d−1 and Yn ∈
Y

d
n . Then the Funk-Hecke formula holds:

∫

Sd−1

f (ξ ·η) Yn(η) d Sd−1(η) = λnYn(ξ) (1)

with the constant λn given by

λn = |Sd−2|
1∫

−1

Pn,d(t) f (t) (1 − t2)
d−3

2 dt. (2)

In (2), |Sd−2| denotes the surface area of the unit sphere in R
d−1:

|Sd−2| = 2 π
d−1

2

�
( d−1

2

) ,

123



1128 J Math Chem (2012) 50:1126–1135

where �(·) is the Gamma function. Moreover,

Pn,d(t) = n! �
(

d − 1

2

) [n/2]∑
k=0

(−1)k (1 − t2)k tn−2k

4kk! (n − 2k)! � (
k + d−1

2

)

is the Legendre polynomial of degree n in d dimensions. For a fixed dimension d,
the Legendre polynomials {Pn,d}n≥0 form an orthogonal basis in the weighted space
L2

(d−3)/2(−1, 1) with the inner product

( f, g)L2
(d−3)/2(−1,1) :=

∫ 1

−1
f (t) g(t) (1 − t2)(d−3)/2dt.

For d = 3, Pn,3(t) is the ordinary Legendre polynomial of degree n.
The Funk-Hecke formula is valid as long as the integral for λn exists, and this is

certainly the case if f ∈ C[−1, 1].
To apply the Funk-Hecke formula, we need the Rodrigues representation formula

for the Legendre polynomial

Pn,d(t) = (−1)n Rn,d(1 − t2)
3−d

2

(
d

dt

)n

(1 − t2)n+ d−3
2 for d ≥ 2, (3)

where the Rodrigues constant

Rn,d = �
( d−1

2

)

2n�
(
n + d−1

2

) . (4)

2 A family of integral identities for spherical harmonics

Throughout the paper, we denote by Yn ∈ Y
d
n an arbitrary spherical harmonic of order

n in d dimensions. Consider an integral of the form

I (g)(ξ) :=
∫

Sd−1

g(|ξ − η|) Yn(η) d Sd−1(η). (5)

We have the following result.

Proposition 2 Assume

g(21/2(1 − t)1/2) ∈ L1
(d−3)/2(−1, 1). (6)

Then

I (g)(ξ) = μnYn(ξ), (7)
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where

μn = |Sd−2|
1∫

−1

g(21/2(1 − t)1/2) Pn,d(t) (1 − t2)
d−3

2 dt. (8)

Proof Since

|ξ − η| = [
2 (1 − ξ · η)

]1/2
, ξ , η ∈ S

d−1, (9)

we can write

I (g) =
∫

Sd−1

g(21/2(1 − ξ · η)1/2) Yn(η) d Sd−1(η).

Applying Theorem 1, we obtain the formula (7) with the coefficient μn given by (8).

Using the Rodrigues representation formula (3) for the Legendre polynomial
Pn,d(t), we can express μn from (8) in the form of

μn = (−1)n|Sd−2| Rn,d

1∫

−1

g(21/2(1 − t)1/2)

(
d

dt

)n

(1 − t2)n+ d−3
2 dt. (10)

Let us apply Proposition 2 to the following function

g(t) = tν, (11)

where ν ∈ R is a fixed number. The condition (6) requires

ν > 1 − d. (12)

In the following we assume (12) is satisfied. Then from (7) and (10), we have the
integral identity

∫

Sd−1

|ξ − η|νYn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (13)

where

μn = (−1)n2ν/2|Sd−2| Rn,d

1∫

−1

(1 − t)ν/2
(

d

dt

)n

(1 − t2)n+ d−3
2 dt. (14)

123



1130 J Math Chem (2012) 50:1126–1135

We can simplify the formula for μn through computing the integral

I (ν) =
1∫

−1

(1 − t)ν/2
(

d

dt

)n

(1 − t2)n+ d−3
2 dt. (15)

Recalling the condition (12), we can perform integration by parts repeated on I (ν)

and all the boundary value terms at t = ±1 vanish. After integrating by parts n times,
we have

I (ν) = ν

2

(ν

2
− 1

)
· · ·

(ν

2
− (n − 1)

)
J (ν), (16)

where

J (ν) :=
1∫

−1

(1 − t)ν/2−n(1 − t2)n+ d−3
2 dt.

Write

J (ν) =
1∫

−1

(1 − t)(ν+d−3)/2(1 + t)n+ d−3
2 dt

and introduce the change of variables t = 2 s − 1. Then

J (ν) = 2n+ ν
2 +d−2

1∫

0

(1 − s)
ν+d−1

2 −1sn+ d−1
2 −1ds

= 2n+ ν
2 +d−2 �

(
ν+d−1

2

)
�

(
n + d−1

2

)

�
(
n + ν

2 + d − 1
) .

Therefore, for μn of (14),

μn = (−1)n2ν+d−1π
d−1

2
ν

2

(ν

2
− 1

)
· · ·

(ν

2
− (n − 1)

) �
(

ν+d−1
2

)

�
(
n + ν

2 + d − 1
) . (17)

From the formula (17), we see that

μn = 0 if ν = 0, 2, 4, . . . , 2(n − 1).

Now consider some special cases for the formula (13) with (17).
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Special case 1: ν = 2 − d. Then,

μn = 2 π
d−1

2

(
n − 1 + d − 2

2

) (
n − 2 + d − 2

2

)
· · ·

(
1+ d − 2

2

)
d − 2

2

�
(1
2

)

�
(
n + d

2

)

= 2 π
d−1

2
�

(
n + d−2

2

)

�
( d−2

2

) π
1
2

�
(
n + d

2

) .

Use the relations

�

(
n + d

2

)
=

(
n + d

2
− 1

)
�

(
n + d − 2

2

)
, �

(
d − 2

2

)
= �

( d
2

)
d−2

2

.

Hence,

μn = 2 π
d
2

�
( d

2

) d − 2

2 n + d − 2
= (d − 2) |Sd−1|

2 n + d − 2
. (18)

So we have the integral identity

∫

Sd−1

Yn(η)

|ξ − η|d−2 d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (19)

where μn is given by (18).
Special case 2: ν = −1. Then,

μn = 2d−2π
d−1

2
1

2
· 3

2
· · · 2n − 1

2

�
( d−2

2

)

�
(
n + d − 3

2

) .

After some simplification,

μn = 2d−2π
d−1

2
(2n)!
22nn!

�
( d−2

2

)

�
(
n + d − 3

2

) . (20)

So we have the integral identity

∫

Sd−1

Yn(η)

|ξ − η| d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (21)

where μn is given by (20). Note that for d = 3,

μn = 4 π

2n + 1
. (22)
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Special case 3: ν = 1. Then,

μn = (−1)n2dπ
d−1

2
1

2

(
−1

2

) (
−3

2

)
· · ·

(
−

(
n − 3

2

))
�

( d
2

)

�
(
n + d − 1

2

) .

Since

�

(
n + d − 1

2

)
=

(
n + d − 3

2

) (
n + d − 5

2

)
· · · 1

2
�

(
1

2

)
,

we have

μn = −22d−1π
d−2

2
�( d

2 )

(2n − 1) (2n + 1) · · · (2n + 2d − 3)
. (23)

So we have the integral identity
∫

Sd−1

|ξ − η| Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (24)

where μn is given by (23). Note that for d = 3,

μn = − 16 π

(2n − 1) (2n + 1) (2n + 3)
. (25)

We may also choose g as a log function in applying Proposition 2:

g(t) = log t.

Then we obtain the formula

∫

Sd−1

log |ξ − η| Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (26)

where

μn = |Sd−2|
2

1∫

−1

log(2 (1 − t)) Pn,d(t) (1 − t2)
d−3

2 dt. (27)

Using the orthogonality of the Legendre polynomials, for n ≥ 1, we can simplify (27)
to

μn = |Sd−2|
2

1∫

−1

log(1 − t) Pn,d(t) (1 − t2)
d−3

2 dt, n ≥ 1. (28)
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3 Some extensions

Proposition 2 can be extended straightforward to some other similar integrals.
Let a and b be non-zero real numbers. Then similar to (9),

|a ξ + b η| =
(

a2 + b2 + 2 a b ξ · η
)1/2

, ξ , η ∈ S
d−1. (29)

Then for a function g satisfying

g
(
(a2 + b2 + 2 a b t)1/2

)
∈ L1

(d−3)/2(−1, 1),

we can apply Theorem 1 to get

∫

Sd−1

g(|a ξ + b η|) Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (30)

where

μn = (−1)n|Sd−2| Rn,d

1∫

−1

g
(
(a2 + b2 + 2 a b t)1/2

) (
d

dt

)n

(1 − t2)n+ d−3
2 dt. (31)

This formula includes Proposition 2 as a special case where a = 1, b = −1. Choosing
a = b = 1, we obtain another special case formula:

∫

Sd−1

g(|ξ + η|) Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (32)

where

μn = (−1)n|Sd−2| Rn,d

1∫

−1

g(21/2(1 + t)1/2)

(
d

dt

)n

(1 − t2)n+ d−3
2 dt. (33)

More generally, let g(t1, . . . , tL) be a function of L real variables, and let al , bl ,
1 ≤ l ≤ L , be 2L non-zero real numbers. Assume

g
(
(a2

1 + b2
1 + 2 a1b1t)1/2, · · · , (a2

L + b2
L + 2 aLbL t)1/2

)
∈ L1

(d−3)/2(−1, 1).

Then
∫

Sd−1

g(|a1ξ + b1η|, . . . , |aLξ + bLη|) Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1,

(34)
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where

μn = (−1)n|Sd−2| Rn,d

1∫

−1

g
(
(a2

1 + b2
1 + 2 a1b1t)1/2, . . . , (a2

L + b2
L + 2 aLbL t)1/2

)

(
d

dt

)n

(1 − t2)n+ d−3
2 dt. (35)

As a particular example, for ν1 > 1 − d and ν2 > 1 − d,

∫

Sd−1

|ξ − η|ν1 |ξ + η|ν2 Yn(η) d Sd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (36)

where

μn = (−1)n2(ν1+ν2)/2|Sd−2| Rn,d

1∫

−1

(1 − t)ν1/2(1 + t)ν2/2
(

d

dt

)n

(1 − t2)n+ d−3
2 dt.

(37)

4 Conclusion

Applying the Funk-Hecke formula, we have derived identities for some integrals
involving spherical harmonics over the unit sphere in an arbitrary dimension. Inte-
gral identities of the forms (13) and (26) are useful in numerical approximations of
boundary integral equations ([2]). Note that direct derivation of such identities as (19),
(21), and (24) are quite involved, often using some form of Green’s integral identities
(see, e.g., [9]).
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