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CREATING DOMAIN MAPPINGS ∗
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Abstract. Consider being given a mappingϕ : Sd−1 1−1
−→
onto

∂Ω, with ∂Ω the (d − 1)-dimensional smooth

boundary surface for a bounded open simply-connected regionΩ in Rd, d ≥ 2. We consider the problem of

constructing an extensionΦ : Bd

1−1
−→
onto

Ω with Bd the open unit ball inRd. The mapping is also required to be

continuously differentiable with a non-singular Jacobianmatrix at all points. We discuss ways of obtaining initial
guesses for such a mappingΦ and of then improving it by an iteration method.

Key words. domain mapping, multivariate polynomial, constrained minimization, nonlinear iteration

AMS subject classifications.65D99

1. Introduction. Consider the following problem. We are given

(1.1) ϕ : ∂Bd
1−1−→
onto

∂Ω

with ϕ a continuously differentiable function. For notation,Bd is the open unit ball inRd

with boundarySd−1 = ∂Bd, d ≥ 2, andΩ is an open, bounded, simply-connected region in
Rd. We want to construct a continuously differentiable extension,

(1.2) Φ : Bd
1−1−→
onto

Ω,

such that

Φ|Sd−1 = ϕ(1.3)

det (DΦ(x)) 6= 0, x ∈ Bd.(1.4)

J (x) ≡ DΦ(x) denotes thed× d Jacobian ofΦ(x),

(DΦ(x))i,j =
∂Φi(x)

∂xj
, x ∈ Bd.

Without any loss of generality, we assumedet J (x) > 0 for all x ∈ Bd. The theoretical
existence of such an extensionΦ is a difficult question in general, but it is certainly true when
the regionΩ is starlike, as we demonstrate constructively in this paper.

As a particular case, letd = 2 and consider extending a smooth mapping,

ϕ : S1 1−1−→
onto

∂Ω,

with Ω an open, bounded region inR2 andϕ a smooth mapping. For planar regions with a
smooth boundary, a conformal mapping will give a desirable mapping fromB2 toΩ (although
it is probably not an extension of the given functionϕ); but finding the conformal mapping
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is often nontrivial. In addition, our eventual applications need the JacobianDΦ (see [1, 4,
5]), and obtaining explicitlyDΦ is difficult with most methods for constructing conformal
mappings. As an example, letϕ define an ellipse,

ϕ (cos θ, sin θ) = (a cos θ, b sin θ) , 0 ≤ θ ≤ 2π,

with a, b > 0. The conformal mapping of the closed unit disk onto the closed region with
this ellipse as its boundary in the complex planeC has a complicated construction requiring
elliptic functions; see, e.g., [2, §5]. In comparison, the much simpler mapping,

Φ(x1, x2) = (ax1, bx2) , x ∈ B2,

is sufficient for most applications. Also, ford > 2, constructing a conformal mapping is no
longer an option.

As motivation for obtaining such an extensionΦ, consider the elliptic partial differential
equation,

(1.5) −
d∑

i,j=1

∂

∂si

(
ai,j(s)

∂u(s)

∂sj

)
+ γ(s)u(s) = f(s), s ∈ Ω ⊆ Rd,

with Ω a bounded simply-connected region inRd with a smooth boundary∂Ω. The matrix
A (s) = [ai,j(s)] is assumed to be symmetric and to satisfy

(1.6) ξTA(s)ξ ≥ c0ξ
Tξ, s ∈ Ω, ξ ∈ Rd,

with c0 > 0. The boundary∂Ω is known, say by a mapping such as that in (1.1). If the
extensionΦ satisfying (1.3)-(1.4) is known explicitly, then the equation (1.5) can be converted
to an equivalent elliptic problem over the unit ballBd; and the new formulation can then be
solved numerically using a ‘spectral method’ overBd. Introduce

s = Φ(x) , ũ (x) = u (Φ (x)) , f̃ (x) = f (Φ (x)) .

Then (1.5) becomes

−
d∑

i,j=1

∂

∂xi

(
det (J(x)) ãi,j(x)

∂ũ(x)

∂xj

)
+ det (J(x)) γ(Φ (x))ũ(x)

= det (J(x)) f̃ (x) , x ∈ Bd.

The matrixÃ (x) = [ãi,j(x)]
d
i,j=1 is defined by

Ã (x) = J (x)
−1
A(Φ (x))J (x)

−T
.

The matrixÃ (x) satisfies the same strong ellipticity property as in (1.6), but over the unit
ballBd and with a different constantc0. Transformations of partial differential equations are
common in the literature, although they are often used to simplify the equation. In our case,
we are using the transformation to simplify the region, obtaining a region for which spectral
methods can be defined more easily.

Other than the quite large literature on constructing conformal mappings for planar re-
gions, there is, surprisingly, not much literature about our problem. The most useful appears
in the area of automatic grid generation for the solution of partial differential equations, al-
though it differs from our desire to produce explicitly the mapping functionΦ. We note in
particular the works of Castillo [6] and Liseikin [7].
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In Section2, we consider various methods that can be used to constructΦ, with much of
our work considering regionsΩ that are ‘star-like’ with respect to the origin:

ϕ (x) = ρ (x)x, x ∈ Sd−1,(1.7)

ρ : Sd−1 1−1−→
onto

R>0.

For convex regionsΩ, an integration based formula is given, analyzed, and illustrated in
Section3. In Section4, we present an optimization based iteration method for improving
‘initial guesses’ forΦ. Most of the presentation will be for the planar case (d = 2); the case
of d = 3 is presented in Section5.

2. Constructions ofΦ. Let Ω be star-like with respect to the origin. We begin with an
illustration of an apparently simple construction that does not work in most cases. Assume
that our initial mappingϕ is of the form (1.7). Define

Φ(x) = rρ̂ (θ) (cos θ, sin θ) , 0 ≤ r ≤ 1,(2.1)

= ρ̂ (θ)x,(2.2)

with x = (r cos θ, r sin θ) , ρ̂ (θ) = ρ (cos θ, sin θ) a periodic nonzero positive function over
[0, 2π]. This mappingΦ has differentiability problems at the origin(0, 0). To see this, we
need to find the derivatives of̂ρ(θ) with respect tox1 andx2. Use

θ = tan−1 (x2/x1) , x2 > 0, x1 6= 0,

and an appropriate modification for points(x1, x2) in the lower half-plane. We find the
derivatives of̂ρ using

∂ρ̂(θ)

∂x1
= ρ̂′(θ)

∂θ

∂x1
,

∂ρ̂(θ)

∂x2
= ρ̂′(θ)

∂θ

∂x2
.

Then

∂θ

∂x1
=

−x2

x2
1 + x2

2

,
∂θ

∂x2
=

x1

x2
1 + x2

2

.

Using these,

∂Φ

∂x1
=

(
ρ̂(θ) − x1x2

x2
1 + x2

2

ρ̂′(θ),
−x2

2

x2
1 + x2

2

ρ̂′(θ)

)
,

∂Φ

∂x2
=

(
x2

1

x2
1 + x2

2

ρ̂′(θ), ρ(θ) +
x1x2

x2
1 + x2

2

ρ̂′(θ)

)
.

The functions

x2
1

x2
1 + x2

2

,
x1x2

x2
1 + x2

2

,
x2

2

x2
1 + x2

2

,

are not continuous at the origin. This concludes our demonstration that the extensionΦ of
(2.1) does not work when̂ρ′(θ) 6= 0.
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2.1. Harmonic mappings. As our first construction method forΦ, consider the more
general problem of extending to all ofB2 a real or complex valued functionf defined on the
boundary ofB2. Expandf in a Fourier series,

(2.3) f(θ) =
1

2
a0 +

∞∑

n=1

an cos (nθ) + bn sin (nθ) .

DefineF onB2 using

(2.4) F (x) =
1

2
a0 +

∞∑

n=1

rn [an cos (nθ) + bn sin (nθ)] ,

with x = (r cos θ, r sin θ). Note that this is the solution to the Dirichlet problem for Laplace’s
equation on the unit disk, with the boundary data given byf(θ), 0 ≤ θ ≤ 2π.

It is straightforward to show thatF is infinitely differentiable for|x| < 1, a well-known
result. In particular,

∂F

∂x1
= a1 +

∞∑

m=1

(m+ 1) rm [am+1 cosmθ + bm+1 sinmθ] ,

∂F

∂x2
= b1 +

∞∑

m=1

(m+ 1) rm [−am+1 sinmθ + bm+1 cosmθ] .

Depending on the speed of convergence of (2.3), the partial derivatives ofF (x) are continuous
overB2. In particular, if we have

∞∑

n=1

n |an| <∞,
∞∑

n=1

n |bn| <∞,

then∂F/∂x1 and∂F/∂x2 are continuous overB2.
Given a boundary function

ϕ(θ) = (ϕ1 (θ) , ϕ2 (θ)) , 0 ≤ θ ≤ 2π,

we can expand each component to all ofB2 using the above construction in (2.4), obtaining a
functionΦ defined onB2 into R2. A similar construction can be used for higher dimensions
using an expansion with spherical harmonics. It is unknown whether the mappingΦ obtained
in this way is a one-to-one mapping fromB2 ontoΩ, even ifΩ is convex.

The method can be implemented as follows.
• Truncate the Fourier series for each of the functionsϕk (θ), k = 1, 2, say to trigono-

metric polynomials of degreen.
• Approximate the Fourier coefficients{aj} and{bj} for the truncated series.
• Define the extensionsΦk (x) in analogy with (2.4).

EXAMPLE 2.1. Choose

(2.5) ρ(θ) = a+ cos θ + 2 sin 2θ

with a chosen greater than the maximum of|cos θ + 2 sin 2θ| for 0 ≤ θ ≤ 2π, approximately
2.2361. Note thatρ(θ) cos θ and ρ(θ) sin θ are trig polynomials of degree 3. Begin by
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FIG. 2.1.Starlike region withbρ defined by (2.5) with a = 5.
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FIG. 2.2.The Jacobian for (2.5) with 0.905 ≤ |det (DΦ(x))| ≤ 75.314.

choosinga = 5. Letting n = 3, we obtain the graphs in Figures2.1 and2.2. Figure2.1
demonstrates the mapping by showing the images inΩ of the circles,r = j/p, j = 0, , . . . , p,
and the azimuthal lines,θ = πj/p, j = 1, . . . , 2p, p = 15. For the numerical evaluation
of the Fourier coefficients, the trapezoidal rule with10 nodes was used. Figure2.2 shows
|det (DΦ(x))| The figures illustrate that thisΦ is a satisfactory mapping. However, it is



ETNA
Kent State University 

http://etna.math.kent.edu

CREATING DOMAIN MAPPINGS 207

possible to improve on this mapping in the sense of reducing the ratio

(2.6) Λ (Φ) ≡
max
x∈B2

|det (DΦ(x))|

min
x∈B2

|det (DΦ(x))| .

For the present case,Λ (Φ) = 100.7. An iteration method for decreasing the size ofΛ (Φ) is
discussed in Section4. As a side-note, in the planar graphics throughout this paper we label
the axes over the unit disk asx andy, and overΩ, we label them ass andt.

In contrast to this example, when choosinga = 3 in (2.5) the mappingΦ derived in the
same manner is neither one-to-one nor onto. Another method is needed to generate a mapping
Φ which satisfies (2.5), (1.2)-(1.4).

2.2. UsingC∞-modification functions. Let x = (r cos θ, r sin θ), 0 ≤ r ≤ 1. As
earlier in (1.7), considerΩ as star-like with respect to the origin. Introduce the function,

T (r;κ) = exp

(
κ

(
1 − 1

r

))
, 0 < r ≤ 1,

with κ > 0 andT (0, κ) = 0. DefineΦ by

(2.7) s = Φ(x;κ, ω) = [T (r;κ) ρ̂ (θ) + (1 − T (r;κ))ω]x, x ∈ B2,

with x = r (cos θ, sin θ), for 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, with someω > 0. This is an attempt
to fix the lack of differentiability at (0,0) of the mapping (2.1)-(2.2). As r decreases to0, we
haveΦ(x) ≈ ωx. Thus the Jacobian ofΦ is nonzero around(0, 0). The constantsκ, ω are to
be used as additional design parameters.

The numberω should be chosen so as to also ensure the mappingΦ is 1-1 and onto.
Begin by finding a disk centered at(0, 0) that is entirely included in the open setΩ, and say
its radius isω0, or define

ω0 = min
0≤θ≤2π

ρ̂ (θ) .

Then chooseω ∈ (0, ω0). To see why this is satisfactory, write

Φ(x;κ, ω) = f(r) (cos θ, sin θ) ,

f(r) = r [T (r;κ) ρ̂ (θ) + (1 − T (r;κ))ω] ,

fixing θ ∈ [0, 2π]. Immediately,f (0) = 0, f (1) = ρ̂ (θ). By a straightforward computation,

f ′ (r) =
1

r
{T (r;κ) [(ρ̂− ω) (r + κ)] + rω} ,

whereT = T (r;κ) andρ̂ = ρ̂ (θ). The assumption0 < ω < ω0 then implies

f ′ (r) > 0, 0 < r ≤ 1.

Thus the mappingf : [0, 1] → [0, ρ̂ (θ)] is 1-1 and onto, and from thisΦ : B2 → Ω is 1-1
and onto for the definition in (2.7).

This definition ofΦ satisfies (1.2)-(1.4), but often leads to a large value for the ratio
Λ (Φ) of (2.6). It can be used as an initial choice for aΦ that can be improved by the iteration
method defined in Section4.
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FIG. 2.3.Starlike Cassini region withbρ defined in (2.8) with a = 1.5.

EXAMPLE 2.2. Consider the starlike region with

(2.8) ρ̂ (θ) =

√
cos (2θ) +

√
a− sin2 (2θ)

with a > 1. The regionΩ is called an ‘oval of Cassini’. We give an example witha = 1.5,
(κ, ω) = (1.0, 0.5). Figure2.3 is the analog of Figure2.1. For the Jacobian,

min
r≤1

DΦ(x, y) = 0.0625,

max
r≤1

DΦ(x, y) = 4.0766.

The ratioΛ (Φ) = 65.2 is large and can be made smaller; see Example4.3.
A variation to (2.7) begins by finding a closed disk about the origin that is contained

wholly in the interior ofΩ. Say the closed disk is of radiusδ, 0 < δ < 1. Then define
(2.9)

Φ(x;κ, ω) =





x, 0 ≤ r ≤ δ,
[
T

(
r − δ

1 − δ
, κ

)
ρ (θ) +

(
1 − T

(
r − δ

1 − δ
, κ

))]
x, δ < r ≤ 1,

wherex = r (cos θ, sin θ). Then the JacobianDΦ around the origin is simply the identity
matrix, and this ensures thatdetDΦ(x) 6= 0 for x ∈ Bd. Experimentation is recommended
on the use of either (2.7) or (2.9), including how to chooseκ, ω, andδ.

The methods of this section generalize easily to the determination of an extension

Φ : B3
1−1−→
onto

Ω for the given boundary mapping,

ϕ : ∂B3
1−1−→
onto

∂Ω.

Examples of such are illustrated later in Section5.
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3. An integration-based mapping formula. Before giving a formal construction of an
integration-based mappingΦ, we give some motivation. We present the method for regions
Ω ⊆ R2, although the method extends easily to regions inRd, d ≥ 2. AssumeΩ is a convex
region inR2. We need to defineΦ(P ) for P ∈ B2, |P | 6= 1. Take an arbitrary line throughP
and note its two points of intersection with the boundaryS1, calling themP+ andP− (defined
more precisely below). Using the values ofϕ (P+) andϕ (P−), carry out linear interpolation
of these based on the distance ofP from P+ andP−. Since all possible line directions are to
be considered as equally important, we average all such interpolatory values by considering
all possible lines passing throughP . This average is assigned asΦ(P ). Experimentally the
construction also works for many regionsΩ that do not depart too much from being convex.

Begin by considering a pointP = r(cosα, sinα) ∈ B2, r ∈ [0, 1), α ∈ [0, 2π). Given
an angleα ≤ θ < π+α, draw a lineL throughP at an angle ofθ with respect to the positive
x1-axis. LetP+(θ) andP−(θ) denote the intersection of this line with the unit circle. These
points will have the form

(3.1)
P+ (θ) = P + r+ (θ)η,
P− (θ) = P − r− (θ) η,

with

(3.2) η = (cos θ, sin θ) , α ≤ θ < π + α.

We chooser+ (θ) andr− (θ) to be such that

|P+(θ)| = |P + r+ (θ)η| = 1, |P−(θ)| = |P − r− (θ)η| = 1,

and

r+ (θ) = |P − P+(θ)| , r− (θ) = |P − P−(θ)| .

Define

(3.3) ϕ∗ (θ) = ϕ (P+ (θ)) − r+(θ)
ϕ (P+ (θ)) − ϕ (P− (θ))

r+(θ) + r−(θ)

using linear interpolation along the lineL. Here and in the following we always identify the
functionϕ on the boundary of the unit disk with a2π periodic function on the real number
line. Then define

(3.4) Φ(P ) =
1

π

∫ α+π

α

ϕ∗ (θ) dθ.

We study the construction and properties ofΦ in the following two sections.

3.1. ConstructingΦ. The most important construction is the calculation ofP+ (θ) and
P− (θ). We want to find two pointsγ that are the intersection of∂B2 and the straight lineL
throughP in the directionη, |η| = 1. SinceP ∈ int (B2), we have|P | < 1. We want to
find

γ = P + sη, |γ| = 1,

with η denoting the direction fromP as noted earlier. With the assumption (3.2) on η, we
have

0 ≤ P · η ≤ |P | , α ≤ θ ≤ α+ 1
2π,

0 ≤ −P · η ≤ |P | , α+ 1
2π ≤ θ ≤ α+ π.
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Usingγ · γ = 1,

|P + rη|2 = P · P + 2sP · η + s2 = 1,

s2 + 2sP · η + P · P − 1︸ ︷︷ ︸
<0

= 0,

which implies that the roots are real and nonzero. Thus the formula

r± = −η · P ±
√

(P · η)
2

+ 1 − P · P

= r cos(θ − α) ±
√

1 − r2 sin2(θ − α)

defines two real roots. Here we see that

|P · η| ≤ |P | ,
(P · η)

2 − P · P ≤ 0,

(P · η)
2

+ 1 − P · P ≤ 1,

and so

r− = P · η +

√
(P · η)

2
+ 1 − P · P

= r cos(θ − α) +

√
1 − r2 sin2(θ − α),

r+ = −P · η +

√
(P · η)

2
+ 1 − P · P

= −r cos(θ − α) +

√
1 − r2 sin2(θ − α).

It is immediate that

r− + r+ = 2

√
(P · η)

2
+ 1 − P · P

= 2

√
1 − r2 sin2(θ − α),

and therefore the denominator in the formula (3.3) for ϕ∗ (θ) is zero if and only if |P | = 1
andP ⊥ η, a case not allowed in our construction.

Using r− and r+ in (3.1), we can constructϕ∗ (θ) using (3.3), and this is then used
in obtaining the mappingΦ(P ) of (3.4). This formula is approximated using numerical
integration with the trapezoidal rule. We illustrate this later in the section.

To further simplify the analysis of the mappingΦ of (3.4), we assume for a moment that
α = 0, so the pointP is located on the positive x–axis. Our next goal is to determine the
respective angles betweenP+(θ) andP−(θ) and the positive x-axis. We denote these angles
by ψ+ andψ−, respectively. Using the law of cosines in the triangle given by the origin,P ,
andP+ we obtain

(r+)2 = r2 + 1 − 2r cos(ψ+),

2r cos(ψ+) = r2 + 1 − (r+)2

= r2 + 1 −
(
−r cos(θ) +

√
1 − r2 sin2 θ

)2

= 2r2 sin2 θ + 2r cos(θ)
√

1 − r2 sin2 θ,
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which implies

(3.5) ψ+ = ψ+(r, θ) = arccos
(
r sin2 θ + cos(θ)

√
1 − r2 sin2 θ

)
,

where we use the functionarccos : [−1, 1] 7→ [0, π]. Similarly, we get

(3.6) ψ− ≡ ψ−(r, θ) = ãrccos
(
r sin2 θ − cos(θ)

√
1 − r2 sin2 θ

)
,

where we use the functioñarccos : [−1, 1] 7→ [π, 2π],

ãrccos(x) = 2π − arccos(x).

Using the functionsψ− andψ+, we can rewriteϕ∗(θ) (see (3.3)) in the following way:

ϕ∗(r, θ) =
1

2

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ+(r, θ))

+
1

2

(
1 − r cos(θ)√

1 − r2 sin2 θ

)
ϕ(ψ−(r, θ)).

This allows us to write formula (3.4) more explicitly in the following way:

Φ(P ) =
1

2π

∫ π

0

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ π

0

(
1 − r cos(θ)√

1 − r2 sin2 θ

)
ϕ(ψ−(r, θ))dθ

=
1

2π

∫ π

0

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ 2π

π


1 − r cos(θ − π)√

1 − r2 sin2(θ − π)


ϕ(ψ−(r, θ − π))dθ

=
1

2π

∫ π

0

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ 2π

π

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ−(r, θ − π))dθ

=
1

2π

∫ 2π

0

(
1 +

r cos(θ)√
1 − r2 sin2 θ

)
ϕ(ψ∗(r, θ))dθ.(3.7)

Here we used the variable transformationθ 7→ π + θ for the second equality and the new
definition

(3.8) ψ∗(r, θ) :=

{
ψ+(r, θ), 0 ≤ θ ≤ π,

ψ−(r, θ − π), π < θ ≤ 2π,

where the functionsψ− andψ+ are defined in (3.5) and (3.6). We remark that the function
ψ∗ : [0, 1) × [0, 2π] 7→ [0, 2π] is a continuous function which follows from its geometric
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FIG. 3.1.The mappingΦ for boundary (3.11) with a = 0.9.

construction. We further define

(3.9) k(r, θ) := 1 +
r cos(θ)√

1 − r2 sin2 θ
,

a 2π periodic continuous function on[0, 1) × [0, 2π]. If we now go back to the general case
P = r(cos(α), sin(α)), α ∈ [0, 2π), then we can rotate the given boundary functionϕ and
obtain

(3.10) (Eϕ)(P ) ≡ Φ(P ) =
1

2π

∫ 2π

0

k(r, θ)ϕ(ψ∗(r, θ) + α)dθ.

Before we study the properties of the extension operatorE , we present two numerical exam-
ples.

To obtainΦ(P ), we apply the trapezoidal rule to approximate the integral in (3.10) or
(3.4). The number of integration nodes should be chosen sufficiently large, although experi-
mentation is needed to determine an adequate choice.

EXAMPLE 3.1. Consider

(3.11) ϕ (cos θ, sin θ) =
(
cos θ − sin θ + a cos2 θ, cos θ + sin θ

)
, 0 ≤ θ ≤ 2π,

with 0 < a < 1. We choosea = 0.9 and apply the above withn = 100 subdivisions for the
trapezoidal rule to evaluate (3.4). Figure3.1shows the mappingΦ done in the same manner
as earlier with Figures2.1and2.3.

EXAMPLE 3.2. We consider again the ovals of Cassini region with boundary given in
(2.8) with a = 1.5. The mapping (3.4) is illustrated in Figure3.2. However, fora somewhat
closer to 1, this integration formula (3.4) no longer produces a satisfactoryΦ.

3.2. Properties ofEϕ. To study the properties of the extension operatorE (see (3.10)),
we have to study the behavior of the functionsψ∗ andk (see (3.8) and (3.9)) at the boundary
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FIG. 3.2.The mappingΦ for boundary (2.8) with a = 1.5.

r = 1. We start with the functionψ∗ and define the values of this function forr = 1 first:

(3.12) ψ∗(1, θ) :=





0, 0 ≤ θ ≤ 1
2π,

2θ − π, 1
2π ≤ θ ≤ 3

2π,

2π, 3
2π ≤ θ ≤ 2π.

Because of

lim
r→1

1 − r2 = 0

and the boundedness of the sine function, the limit,

lim
r→1

1 − r2 sin2(θ) = 1 − sin2(θ),

is uniform forθ ∈
[
0, 1

2π
]
. The uniform continuity of the square root function impliesthat

lim
r→1−

(
cos(θ)

√
1 − r2 sin2 θ

)
= cos(θ)

√
1 − sin2 θ = cos2 θ

uniformly for θ ∈
[
0, 1

2π
]
. Together with similar arguments for the functionr sin2 θ, we get

lim
r→1−

(
r sin2 θ + cos(θ)

√
1 − r2 sin2 θ

)
= sin2 θ + cos2 θ = 1

uniformly in θ. Finally we use the uniform continuity ofarccos(·) to conclude that

lim
r→1−

ψ∗(r, θ) = lim
r→1−

arccos
(
r sin2 θ + cos(θ)

√
1 − r2 sin2 θ

)

= arccos(1)

= 0 = ψ∗(1, θ)
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converges uniformly on
[
0, 1

2π
]
. Because

√
1 − sin2(θ) = − cos(θ), θ ∈

[
1
2π, π

]
,

we see in a similar way that

lim
r→1−

ψ∗(r, θ) = lim
r→1−

arccos
(
r sin2 θ + cos(θ)

√
1 − r2 sin2 θ

)

= arccos(sin2 θ + cos(θ)(− cos(θ)))

= arccos(− cos(2θ))

= arccos(cos(2θ − π))

= 2θ − π

= ψ∗(1, θ)

uniformly for θ ∈
[
1
2π, π

]
. Similar arguments apply forθ ∈ [π, 2π] and we finally conclude

thatψ∗(r, θ) converges uniformly toψ∗(1, θ) asr approaches1. This proves the next lemma.
LEMMA 3.3. The functionψ∗, defined by (3.8) and (3.12), is continuous on[0, 1] ×

[0, 2π].
We remark that continuity on a closed interval implies uniform continuity.
Now we turn to the functionk defined in (3.9). Here we definek for the valuer = 1 in

the following way.

(3.13) k(1, θ) :=





2, 0 ≤ θ < 1
2π,

0, 1
2π ≤ θ ≤ 3

2π,

2, 3
2π < θ ≤ 2π.

Obviouslyk(1, ·) cannot be the uniform limit ofk(r, ·) asr approaches1, but the following
lemma holds.

LEMMA 3.4. The functionk : [0, 1] × [0, 2π] 7→ [0, 2], defined by (3.9) and (3.13), is
bounded; and for everyδ > 0, the functionk(r, θ) approachesk(1, θ) uniformly onIδ asr
approaches1. Here

Iδ := [0, 2π] \
{(

1
2π − δ, 1

2π + δ
)
∪
(

3
2π − δ, 3

2π + δ
)}
.

Proof. Thatk is bounded by2 follows from
√

1 − r2 sin2 θ ≥
√

1 − sin2 θ = | cos(θ)|

and the fact thatr ∈ [0, 1]. The function1/
√
z is uniformly continuous onε ≤ z ≤ 1 for

everyε > 0. From the proof of Lemma3.3we know that

lim
r→1−

1 − r2 sin2 θ = cos2 θ

uniformly for θ ∈ [0, 2π]. Together with the uniform continuity of1/
√
z on [cos2( 1

2π−δ), 1],
this shows

lim
r→1−

1 +
r cos(θ)√

1 − r2 sin2 θ
= 1 +

cos(θ)

| cos(θ)|

uniformly onIδ. Remembering that

| cos(θ)| =

{
cos(θ), θ ∈

[
0, 1

2π
]
∪
[
3
2π, 2π

]
,

− cos(θ), θ ∈
[
1
2π,

3
2π
]
,
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proves the lemma.
Motivated by the properties ofψ∗ andk we now prove a more general result for integral

operators of the form (3.10).
LEMMA 3.5. Letk1, k2 : [0, 1]×[0, 2π] 7→ R be bounded functions which are continuous

on [0, 1) × [0, 2π]. Assume there is a finite setE = {θ1, . . . , θn} such that

lim
r→1−

ki(r, θ) = ki(1, θ), i = 1, 2,

uniformly onIδ := {θ ∈ [0, 2π] | |θ − θj | ≥ δ, j = 1, . . . , n} for everyδ > 0. Then for a
periodic continuous functionϕ : [0, 2π] 7→ R the function

Φ(r, α) :=

∫ 2π

0

k1(r, θ)ϕ(k2(r, θ) + α) dθ

is continuous on[0, 1] × [0, 2π] and2π periodic inα.
REMARK 3.6. The above lemma will apply to each component of the function Eϕ

defined in (3.10) with k1 = k andk2 = ψ∗ andE = { 1
2π,

3
2π}. This shows the continuity of

Eϕ.
Proof. The uniform convergence onIδ, δ > 0 arbitrary, shows thatki(1, ·), i = 1, 2, are

piecewise continuous and bounded functions on[0, 2π], so all integrals exist. The continuity
of Φ(r, α) on [0, 1) × [0, 2π] follows easily from the continuity of the functionski, i = 1, 2.
The periodicity follows from the periodicity ofϕ and the definition ofΦ. So we only need
to show the continuity ofΦ(r, α) on {1} × [0, 2π] for example at(1, α). Because of the
periodicity ofΦ(r, ·) and the property(Eϕ)(α) = (Eϕα)(0), whereϕα(θ) = ϕ(α + θ) we
only need to prove the continuity for one value ofα, for exampleα = π. We estimate

|Φ(r, α) − Φ(1, π)| =

∣∣∣∣
∫ 2π

0

k1(r, θ)ϕ(k2(r, θ) + α) − k1(1, θ)ϕ(k2(1, θ) + π) dθ

∣∣∣∣

≤
∣∣∣∣
∫ 2π

0

k1(r, θ)(ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)) dθ

∣∣∣∣

+

∣∣∣∣
∫ 2π

0

(k1(r, θ) − k1(1, θ))ϕ(k2(1, θ) + π)) dθ

∣∣∣∣ .

Now we know thatk1, k2, andϕ are bounded functions. For example,

|k1(r, θ)|, |k2(r, θ)|, |ϕ(θ)| ≤M, M > 0,

for all (r, θ) ∈ [0, 1] × [0, 2π]. So we only have to show that

(3.14) lim
(r,α)→(1,π)

∫ 2π

0

|ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)| dθ = 0

and

(3.15) lim
(r,α)→(1,π)

∫ 2π

0

|k1(r, θ) − k1(1, θ)| dθ = 0.

We start with the first limit. Given anε > 0, we chooseδ > 0 small enough such that

(3.16)
∫

[0,2π]\Iδ

2M dθ =
ε

2
.
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Now we observe thatϕ is uniformly continuous onR because it is continuous and periodic.
So there is aω > 0 such that

(3.17) |ϕ(x) − ϕ(y)| ≤ ε

4π

if |x− y| ≤ ω. We also know thatk2(r, ·) converges uniformly onIδ to k2(1, ·), so there is a
r0 ∈ (0, 1), such that

|k2(r, θ) − k2(1, θ)| ≤
ω

2

for all r ≥ r0 andθ ∈ Iδ. If furthermore|α− π| ≤ ω/2, we conclude that

|(k2(r, θ) + α) − (k2(1, θ) + π)| ≤ |k2(r, θ) − k1(1, θ)| + |α− π| ≤ ω,

which by (3.17) implies

(3.18) |ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)| ≤ ε

4π

for all (r, α) ∈ [r0, 1] × [π − ω/2, π + ω/2] andθ ∈ Iδ. Combining (3.16) and (3.18), we
can estimate

∫ 2π

0

|ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)| dθ

≤
∫

[0,2π]\Iδ

|ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)| dθ

+

∫

Iδ

|ϕ(k2(r, θ) + α) − ϕ(k2(1, θ) + π)| dθ

≤
∫

[0,2π]\Iδ

2M dθ +

∫

Iδ

ε

4π
dθ

≤ ε

2
+ 2π · ε

4π
= ε

for all (r, α) ∈ [r0, 1] × [π − ω/2, π + ω/2], which proves (3.14).
To prove (3.15) we again choose an arbitraryε > 0 and chooseδ > 0 such that (3.16)

is true. Now the uniform convergence ofk1(r, ·) to k1(1, ·) on Iδ proves the existence of a
r1 ∈ (0, 1) such that

(3.19) |k1(r, θ) − k1(1, θ)| ≤
ε

4π

for all (r, θ) ∈ [r1, 1] × Iδ. Using (3.16) and (3.19) we estimate

∫ 2π

0

|k1(r, θ) − k1(1, θ)| dθ =

∫

[0,2π]\Iδ

|k1(r, θ) − k1(1, θ)| dθ

+

∫

Iδ

|k1(r, θ) − k1(1, θ)| dθ

≤
∫

[0,2π]\Iδ

2M dθ +

∫

Iδ

ε

4π
dθ

≤ ε

2
+ 2π · ε

4π
= ε
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for all r ∈ [r1, 1]. This proves (3.15).
Now we state the results about the extension operatorE .
THEOREM 3.7. Letϕ : ∂B2 7→ R2 be a continuous function. ThenΦ(P ) = (Eϕ)(r, α),

P ∈ B2 (see (3.10)) is a continuous function onB2 and

Φ|∂B2
= ϕ.

Proof. In Lemma3.3and Lemma3.4we have shown that the functionsk andψ∗ in (3.10)
satisfy the assumptions of Lemma3.5. So the continuity ofΦ(P ) follows from Lemma3.5.
ForP ∈ ∂B2 the polar coordinates ofP are given by(r, α) = (1, α), α ∈ [0, 2π], so we get
with (3.12) and (3.13)

Φ(P ) =
1

2π

∫ 2π

0

k(1, θ)ϕ(ψ∗(1, θ) + α) dθ

=
1

2π

(∫ π/2

0

2ϕ(0 + α) dθ +

∫ 2π

3π/2

2ϕ(2π + α) dθ

)

=
1

2π
(πϕ(α) + πϕ(2π + α))

= ϕ(α) = ϕ(P )

because of the2π periodicity ofϕ.
COROLLARY 3.8. Let Ω ⊂ R2 be a domain with boundary∂Ω andϕ : ∂B2 7→ ∂Ω be

a continuous parametrization of the boundary. Then the function Eϕ, defined in (3.10), maps
B2 ontoΩ.

Proof. Theorem3.7 implies thatEϕ : B2 7→ R2 is continuous and(Eϕ)(∂B2) =
∂Ω. We assume that the parametrizationϕ moves along the boundary ofΩ in the positive
direction. Fory ∈ Ω we then have

deg(Eϕ, y) = 1,

wheredeg is the mapping degree; see [12, Chapter 12]. But this implies that there is at least
onex ∈ B2 such that(Eϕ)(x) = y.

THEOREM 3.9. Let Ω ⊂ R2 be a convex domain with boundary∂Ω and let
ϕ : ∂B2 7→ ∂Ω be a continuous parametrization of the boundary. Then(Eϕ)(B2) ⊂ Ω.

Proof. We have to show(Eϕ)(P ) ∈ Ω for everyP ∈ B2. We use the first equation in
formula (3.7)

Φ(P ) =
1

2π

∫ π

0


1 +

r cos(θ)√
1 − r2 sin2(θ)


ϕ(ψ+(r, θ))

+


1 − r cos(θ)√

1 − r2 sin2(θ)


ϕ(ψ−(r, θ)) dθ

= lim
N→∞

1

N

N∑

j=0


1

2
+

r cos(θj)

2
√

1 − r2 sin2(θj)


ϕ(ψ+(r, θj))

+


1

2
− r cos(θj)

2
√

1 − r2 sin2(θj)


ϕ(ψ−(r, θj)),
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whereθj = πj/N and we further assumed again thatP is on the positive real axis to simplify
the notation. Here we have used the fact that the integral is the limit of Riemann sums. Each
term of the sum is a convex combination of two elements ofΩ and therefore inΩ. But the
sum itself is a convex combination, so the sum is an element ofΩ. Finally Ω is closed, so
Φ(P ) ∈ Ω.

The two last results imply that for a convex domainΩ we get(Eϕ)(B2) = Ω, but there
is still the possibility thatE(ϕ) is not injective. Our numerical examples seem to indicate
that the function is injective for convexΩ, but we have no proof. For non-convex regions, it
works for some but not others. It is another option in a toolkit of methods for producing the
mappingΦ.

The integration-based formula (3.4) can be extended to three dimensions. Given

ϕ : ∂B3
1−1−→
onto

∂Ω,

define the interpolation formulaϕ∗ (θ, ω) as before in (3.3), with (θ, ω) the spherical coordi-
nates of a direction vectorη through a given pointP ∈ B3. Then define

Φ(P ) =
1

2π

∫ 2π

0

∫ π/2

0

ϕ∗ (θ, ω) sinω dω dθ.

A proof of the generalization of Corollary3.8can be given along the same line as given above
for the diskB2.

4. Iteration methods. Some of the methods discussed in Section2 lead to a mappingΦ
in whichdet (DΦ(x)) has a large variation asx ranges over the unit ballBd, especially those
methods based on using theC∞-functionT (r, κ) of (2.7). We seek a way to improve on
such a mapping, to obtain a mapping in whichdet (DΦ(x)) has a smaller variation overBd.
We continue to look at only the planar problem, while keepingin mind the need for a method
that generalizes to higher dimensions. In this section we introduce an iteration method to
produce a mappingΦ with each component a multivariate polynomial overB2.

Assume that we have an initial guess for our mapping, in the form of a polynomial of
degreen,

(4.1) Φ(0)
n (x) ≡

Nn∑

j=1

α
(0)
j ψj(x), x ∈ B2.

We want to calculate an ‘improved’ value forΦ
(0)
n , call it Φn.

The coefficientsα(0)
j ∈ R2. The functions{ψ1, . . . , ψNn

} are chosen to be a basis for
Πn, the polynomials of degree≤ n. and we require them to be orthonormal with respect to the
inner product(·, ·) associated withL2 (B2). Note thatNn = dim (Πn) = 1

2 (n+ 1) (n+ 2).
As basis functions{ψj} in our numerical examples, we use the ‘ridge polynomials’ ofLogan
and Shepp [8], an easy basis to define and calculate; also see [3, §4.3.1].

We use an iterative procedure to seek an approximation,

(4.2) Φn (x) =

Nn∑

j=1

αn,jψj(x),

of degreen that is an improvement in some sense onΦ
(0)
n . The degreen used in definingΦ(0)

n ,
and also in defining our improved valueΦn, will need to be sufficiently large; and usually,n
must be determined experimentally.
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The coefficients
{
α

(0)
j

}
are normally generated by numerical integration of the Fourier

coefficients
{
α

(0)
j

}
,

(4.3) α
(0)
j =

(
Φ̃, ψj

)
,

whereΦ̃ is generated by one of the methods discussed in Sections2 and3. The quadrature
used is

∫

B2

g(x, y) dx dy ≈ 2π

2p+ 1

p∑

l=0

2p∑

m=0

ωlrlĝ

(
rl,

2πm

2p+ 1

)
,

whereĝ (r, θ) ≡ g (r cos θ, r sin θ). Here the numbers{ωl} are the weights of the(p+ 1)-
point Gauss-Legendre quadrature formula on[0, 1], and the nodes{rl} are the corresponding
zeros of the degreep + 1 Legendre polynomial on[0, 1]. This formula is exact ifg is a
polynomial of degree≤ 2p+ 1; see [10, §2.6].

We need to require that our mapping will agree withϕ onS1, at least approximately. To
this end, choose a formulaqn for the number of points onS1 at which to matchΦn with the
functionϕ and then choose{z1, . . . , zqn

} onS1. RequireΦn to satisfy

(4.4) Φn (zj) = ϕ (zj) , j = 1, . . . , qn,

which imposes implicitlyqn conditions on the coefficients{αn,j}. If ϕ is a trigonomet-
ric polynomial of degreem, and if n ≥ m with qn = 2n + 1, then (4.4) will imply that
Φn|S1 = ϕ over∂Ω. Our numerical examples all use this latter choice ofqn.

Next, choose a functionF (α), α = [α1, . . . , αNn
]
T and seek to calculateα so as to

minimizeF(α) subject to the above constraints (4.4). How shouldF be chosen? To date, the
most successful choice experimentally has beenF (α) = Λ (Φn) , defined earlier in (2.6).

4.1. The iteration algorithm. Using the constraints (4.4) leads to the system

(4.5) Aα = ϕ,

A =




ψ1(z1) · · · ψNn
(z1)

...
...

ψ1(zqn
) · · · ψNn

(zqn
)


 , ϕ =




ϕ(z1)
...

ϕ(zqn
)


 .

BecauseΦn|S1 is a trigonometric polynomial of degreen, it is a bad idea to haveqn > 2n+1.
The maximum row rank ofA can be at most2n+1. Let{z1, . . . , zq} denoteqn evenly spaced
points onS1. We want to minimizeF (α) subject to the constraints (4.5).

We turn our constrained minimization problem into an unconstrained problem. LetA =
UCV be the singular value decomposition ofA; U is an orthogonal matrix of orderq, V is
an orthogonal matrix of orderN ≡ Nn, andC is a ‘diagonal matrix’ of orderq × N . The
constraints (4.5) can be written as

(4.6) CV α = UTϕ

Introduce a new variableβ = V α, orα = V Tβ. ThenCβ = UTϕ and we can solve explicitly
for γ = [β1, . . . , βq]

T. Implicitly this assumes thatA has full rank. Letδ = [βq+1, . . . , βN ]T,

β =
[
γT, δT

]T
. Then introduce

(4.7) G (δ) = F (α)
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FIG. 4.1.The initial mappingeΦ for Example4.1with a = 5, based on (2.7).
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FIG. 4.2.The mappingΦ for Example4.1with a = 5, obtained using iteration.

usingα = V Tβ and the known values ofγ. We use our initial
{
α

(0)
j

}
in (4.1) to generate the

initial value forβ and thus forδ.
The drawback to this iteration method is the needed storage for theq ×N matrixA and

the matrices produced in its singular value decomposition.In the following numerical exam-
ples, we minimizeG using the MATLAB programfminuncfor unconstrained minimization
problems.

EXAMPLE 4.1. Recall Example2.1 with a = 5. Generate an initial mapping̃Φ using
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FIG. 4.3.The boundary for the starlike region withρ = 3 + cos θ + 2 sin 2θ.

(2.7) with κ = .5, ω = 1.0. Next, generate an initial polynomial (4.1) of degreen = 3, using

numerical integration of the Fourier coefficients
{
α

(0)
j

}
of (4.3). We then use the above

iteration method to obtain an improved mapping. Figure4.1 shows the initial mapping̃Φ,
and Figure4.2shows the final mappingΦn obtained by the iteration method. With the final
mapping, we haveΦn|S1 = ϕ to double precision rounding accuracy, and

Λ (Φ) = 6.21.

Compare the latter toΛ (Φ) = 100.7 for the mapping in Example2.1.
EXAMPLE 4.2. Consider again the starlike region using (2.5) of Example2.1, but now

with a = 3. The harmonic mapping of Section2.1 failed in this case to produce a 1-1 map-
ping. In fact, the boundary is quite ill-behaved in the neighborhood of(−0.2, 0.2), being
almost a corner; see Figure4.3. In this case we neededn = 7, with this smallest suffi-
cient degree determined experimentally. To generate the initial guessΦ̃, we used (2.7) with

(κ, ω) = (0.5, 0.1). For the initial guess,Λ
(
Φ

(0)
7

)
.
= 840. We iterated first with the MAT-

LAB programfminunc. When it appeared to converge, we used the resulting minimizer as an
initial guess with a call to the MATLAB routinefminsearch, which is a Nelder-Mead search
method. When it converged, its minimizer was used again as an initial guess, returning to a
call onfminunc. Figure4.4shows the final mappingΦ7 obtained with this repeated iteration.
For the Jacobian matrix,Λ (Φ7)

.
= 177.9, further illustrating the ill-behaviour associated with

this boundary. As before,Φ|S1 = ϕ to double precision rounding accuracy.
EXAMPLE 4.3. Consider again the ovals of Cassini region with boundary given in (2.8)

with a = 1.5. As our initial mapping̃Φ, we use the interpolating integration-based mapping

of (3.4), illustrated in Figure3.2. We produce the initial guess for the coefficients
{
α

(0)
j

}

of (4.3) by using numerical integration. Unlike the preceding three examples, the boundary
mappingϕ is not a trigonometric polynomial, and thus the interpolating conditions of (4.4)
will not force Φn|S1 to equalϕ over∂Ω. For that reason, we use a higher degree than with
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FIG. 4.4.The boundary mappingΦ for the starlike regionwithρ = 3 + cos θ + 2 sin 2θ.
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FIG. 4.5.The boundary mappingΦ for the starlike region withρ from (2.8) with a = 1.5.

the preceding examples, choosingn = 16. Figure4.5shows the resulting mappingΦ. With
this mapping,Λ (Φ) = 26.11. On the boundary,

max
x∈S1

|Φ(x) − ϕ (x)| = 2.61E − 4,

showing the mapping does not depart far from the regionΩ.
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FIG. 4.6.The optimal mappingΦ7 for the starlike region withbρ (θ) = 5 + sin θ + sin 3θ − cos 5θ.

EXAMPLE 4.4. Consider the starlike domain with

ρ̂ (θ) = 5 + sin θ + sin 3θ − cos 5θ, 0 ≤ θ ≤ 2π,

in (2.1)-(2.2). Using the degreen = 7 and the inital mapping̃Φ based on (2.7) with (κ, ω) =
(0.2, 1.4), we obtained the mapping illustrated in Figure4.6. The minimum value obtained
wasΛ (Φ7)

.
= 6.63. As a side-note of interest, the iteration converged to a value ofΛ (Φ)

that varied with the initial choice of(κ, ω). We have no explanation for this, other than to say
that the objective functionΛ (Φ) appears to be ill-behaved in some sense that we do not yet
understand.

4.2. An energy method.In this section we present a second iteration method, one based
on a different objective function. Instead ofΛ, see (2.6), we use

(4.8) Λ̃(Φn) ≡
K1∑

i=1

K1∑

j=1i6=j

1

‖Φn(ξi) − Φn(ξj)‖α
2

+

K1∑

i=1

L1∑

j=1

1

‖Φn(ξi) − Φn(ζj)‖α
2

.

We again impose the interpolation conditions given in (4.4); and the free parameters are given
by δ; see (4.7). First we explain the definition of the pointsξi andζj appearing in (4.8). The
pointsξi are located inside the unit disk and are elements of a rectangular grid

{ξi | i = 1, . . . ,K1} =

(
1

k1
Z2

)
∩B2;

the density of the grid is determined byk1 > 0. The pointsζj are located on the unit circle
and distributed uniformly

{ζj | j = 1, . . . , L1} =

{(
cos

(
2πj

L1

)
, sin

(
2πj

L1

))
| j = 1, . . . , L1

}
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L1 ∈ N. Furthermore the functioñΛ contains the parameterα > 0. So in addition to the
dimensionn of the trial space forΦn, this method uses four parameters:qn, the number of
interpolation points along the boundary;k1, which determines the grid density inside the unit
disk;L1, the number of points along the boundary; andα, the exponent in formula (4.8).

The motivation for the functioñΛ is the following. We start with an equally distributed
set of points in the unit disk,{ξi | i = 1, . . . ,K1} and we try to force the mappingΦn

to distribute these points as uniformly as possible in the new domainΩ. One can think of
charged particles which repel each other with a certain force. If this force is generated by the
potentialr−α then the first term in formula (4.8) is proportional to the energy of the charge
distribution{Φn(ξi) | i = 1, . . . ,K1}. When we go back to our original goal of creating
a mappingΦ which is injective, we see that this is included in this functional because the
energy becomes infinite if two particles are moved closer.

The second goal for our mapping is thatΦn(B2) ⊂ Ω. To enforce this condition we use
a particle distribution along the boundary ofΩ given by{Φn(ζj) | j = 1, . . . , L1}. These
charges will repel the charges{Φn(ξi) | i = 1, . . . ,K1} away from the boundary. The energy
associated with the interaction between the interior points and the boundary points gives us
the second term in formula (4.8).

So we can consider the algorithm to minimize the functionΛ̃ as an attempt to minimize
the energy of a particle distribution inΩ. This should also guarantee that the mappingΦn has
a small value for the functionΛ, because the original points{ξi | i = 1, . . . ,K1} are equally
distributed.

In our numerical experiments we usedα = 2, so the functioñΛ(Φn) is differentiable as
a function of the parametersδ. Furthermore we adjustk1 ∈ N in such a way thatK1 ≈ Nn

and we chooseL1 ∼ k1. For the parameterqn we use the same value as in§4.1.
EXAMPLE 4.5. Consider the starlike domain defined in (2.5) with a = 5 again. We

usen = 3, α = 2, K1 = 177, L1 = 160. To minimize the functioñΛ we use the BFGS
method, see [9]. Figures4.7 and4.8 show a rectangular grid in the unit disc and its image
under the mappingΦ(0)

3 . For the initial guess we havẽΛ(Φ
(0)
3 ) ≈ 11500 andΛ(Φ

(0)
3 ) ≈ 29.

For the final mappingΦ3 we obtainΛ̃(Φ3) ≈ 7930 andΛ(Φ3) ≈ 10. This shows that the
functionΛ̃ implicitly also minimizes the functionΛ. Figure4.9shows the image of the final
mapping Φ.

5. Mapping in three dimensions. In this section we describe an algorithm to construct
an extensionΦn : B3 7→ Ω for a given functionϕ : S2 7→ ∂Ω. We assume thatΩ is starlike
with respect to the origin. The three dimensional case differs from the algorithm described
in Section4 in several ways. The dimension ofΠn of the polynomials of maximal degree
n is given byNn =

(
n
3

)
, so any optimization algorithm has to deal with a larger number

of degrees of freedom for a givenn when compared to the two dimensional case. Whereas
in the two dimensional case a plot ofΦn(B2) reveals any problems of the constructedΦn

with respect to injectivity orΦn(B2) ⊂ Ω, a similar plot ofΦn(B3) is not possible. For this
reason, at the end of each optimization we calculate two measures which help us to decide if
the constructedΦn is injective and into.

On the other hand the principal approach to constructingΦn is very similar to the algo-
rithm described in Section4. Again we are looking for a functionΦn given in the following
form

Φn(x) =

Nn∑

j=1

αn,jψj(x), x ∈ B3,
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FIG. 4.7.A grid on the unit disk.
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FIG. 4.8.The image of the grid in Figure4.7under the mappingΦ(0)
3 for the domain given in (2.5).

where {ψ1, . . . , ψNn
} is an orthonormal basis ofΠn and the vectorsαn,j ∈ R3,

j = 1, . . . , Nn are determined by an optimization algorithm.

For a givenn ∈ N we use the extremal points of Womersley [11] on the sphereS2.
We will denote these points byWn = {z(n)

1 , . . . , z
(n)
(n+1)2}. These points guarantee that the
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FIG. 4.9.The image of the grid in Figure4.7under the final mappingΦ3.

smallest singular value of the interpolation matrix

An :=:




ψ1(z
(n)
1 ) . . . ψNn

(z
(n)
1 )

...
...

ψ1(z
(n)
(n+1)2) . . . ψNn

(z
(n)
(n+1)2)




stays above1 for all n which we have used for our numerical examples. The number(n+1)2

is also the largest possible number of interpolation pointson the sphere which we can use,
becausedim(Πn|S2) = (n+1)2; see [3, Corollary 2.20 and formula (2.9)]. Again we enforce

Φn(z
(n)
j ) = ϕ(z

(n)
j ), j = 1, . . . , (n+ 1)2,

for the mapping functionΦn; see also (4.5). To define the initial function

(5.1) Φ
(0)
n (x) =

Nn∑

j=1

α
(0)
n,jψj(x), x ∈ B3,

we choose

(5.2) α
(0)
n,j = (Φ̃, ψj)B3

, j = 1 . . . , Nn.

(·, ·)B3
is the usualL2 inner product onB3. The polynomialΦ(0)

n is the orthogonal projection
of Φ̃ into Πn. The functionΦ̃ is some continuous extension ofϕ to B3, obtained by the
generalization to three dimensions of one of the methods discussed in Section2 and3. Having
determinedΦ(0)

n , we convert the constrained optimization of the objective functionΛ(·) into
an unconstrained minimization, as discussed earlier in (4.5)-(4.7).
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Once the MATLAB programfminuncreturns a local minimum forΛ (Φn) and an associ-
ated minimizerΦn, we need to determine ifΦn satisfies

Φn(x) 6= Φn(y), x, y ∈ B3, x 6= y, (injective)(5.3)

Φn(B3) ⊂ Ω, (into).(5.4)

For this reason we calculate two measures of our mappingΦn.
GivenK ∈ N we define a grid on the unit sphere,

S2
K :=

{(
sin

(
πj

K

)
cos

(
iπ

K

)
, sin

(
πj

K

)
sin

(
iπ

K

)
, cos

(
πj

K

))
|

j = 0, . . . ,K, i = 0, . . . , 2K − 1 } .

ForL ∈ N, we define a cubic grid inB3,

B3,L :=

(
1

L
Z3

)
∩B3,

so every element inB3,L is given by

1
L (i, j, k), i, j, k ∈ Z,

i2 + j2 + k2 ≤ L2.

To measure the minimum of the magnitude of the gradient ofϕ overS2, we define an ap-
proximation by

mK(ϕ) := min
x,y∈S2

K

x6=y

‖ϕ(x) − ϕ(y)‖
‖x− y‖ .

This number is used to calculate

E1,K(Φn) := min
x,y∈B3,L,

x6=y

‖Φn(x) − Φn(y)‖
‖x− y‖

/
mK(ϕ).

Because ofΦn|S2 ≈ ϕ we expectE1,K ≤ 1. We use the occurrence of a very small value
for E1,K(Φn) to indicate that (5.3) may be violated. The resultE1,K(Φn) ≈ 1 is the best we
can achieve, for example, withϕ andΦn the identity mapping.

If (5.4) is violated, then there is a pointx ∈ B3 and a pointy ∈ S2 with Φn(x) = ϕ(y).
This shows that the following measure would be close to zero,

E2,K,L(Φn) := min
x∈B3,L, y∈S2

K

‖Φn(x) − ϕ(y)‖
‖x− y‖

/
mK(ϕ).

Again we expectE2,K,L(Φn) ≤ 1, and a very small value ofE2,K,L(Φn) indicates that (5.4)
might be violated. For eachΦn which we calculate we will always reportE1,K(Φn) and
E2,K,L(Φn). For largerK andL we will get a more accurate test of the conditions (5.3)
and (5.4), but the cost of calculation is rising, the complexity to calculateE2,K,L(Φn) for
example isO(n3K2L3). For our numerical results we will useK = 40 andL = 10.

We consider only starlike examples forΩ, with ∂Ω given as

ϕ (x) = ρ (x)x, x ∈ S2

= ρ̂ (θ, φ) (sin θ cosφ, sin θ sinφ, cos θ) ,(5.5)
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TABLE 5.1
Measures of approximation stability for (5.6).

Λ(Φ6) E1,40(Φ6) E2,40,10(Φ6)
3.0575574308 0.7485506872 0.6626332145

TABLE 5.2
Measures of approximation stability for (5.7).

Function Λ(·) E1,40(·) E2,40,10(·)
Φ

(0)
6 394.3717406299 0.2088413520 0.5926402745

Φ6 43.8782117161 0.2018029407 0.5175844592

ρ̂ (θ, φ) = ρ (sin θ cosφ, sin θ sinφ, cos θ) .

To create an initial guess, we begin with the generalizationof (2.1)-(2.2) to three dimensions,
defined in the following way:

Φ̃ (x) = rρ̂ (θ, φ) (sin θ cosφ, sin θ sinφ, cos θ) = ρ̂ (θ, φ)x

for x = r (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ r ≤ 1. We
assumeρ : S2 → ∂Ω is a given smooth positive function. The initial guessΦ

(0)
n is obtained

using (5.1)-(5.2), the orthogonal projection of̃Φ into Πn. Even though̃Φ is not continuously
differentiable overB3, its orthogonal projectionΦ(0)

n is continuously differentiable, and it

turns out to be a suitable initial guess withΦ(0)
n

∣∣∣
S2

≈ ϕ.

EXAMPLE 5.1. In our first example we choose

(5.6) ρ̂(θ, φ) := 2 + (cos θ)
2
.

Using n = 6 yields the results given in Table5.1 for the mappingΦ6 obtained using the
optimization procedure described above. See Figure5.1 for an illustration of the images of
the various spheresi4S

2. In this example the initial mappingΦ(0)
n turned out to be a local

optimum, so after the first iteration the optimization stopped. The measuresE1 andE2 seem
to indicate that the functionΦ(0)

n is into Ω and injective. The error ofΦ6 on the boundary is
zero.

EXAMPLE 5.2. Again the boundary∂Ω is given by (5.5), but this time we choose

(5.7) ρ̂(θ, φ) := 2 + cos θ +
1

2
sin θ sinφ.

Usingn = 6 gives us the results shown in Table5.2. We letΦ(0)
6 denote our initial guess

for the iteration, derived as discussed earlier. See Figure5.2 for an illustration of the images
of the various spheresi4S

2. In this example theΛ(·) value of the initial mappingΦ(0)
6 is

significantly improved by the optimization. During the optimization the measuresE1 andE2

do not approach zero, which indicates thatΦ6 is a mapping fromB3 into Ω and is injective.
The errors ofΦ(0)

6 andΦ6 on the boundary are zero.
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FIG. 5.1. Images ofi
4
S2, i = 1, 2, 3, 4.
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FIG. 5.2.The imagesΦ(34)
`

i

4
S2

´
, i = 1, 2, 3, 4.


