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CREATING DOMAIN MAPPINGS *
KENDALL ATKINSONT AND OLAF HANSEN#

Abstract. Consider being given a mapping : S¢~1 1;:> 09, with 99 the (d — 1)-dimensional smooth

boundary surface for a bounded open simply-connected re@iam R?, d > 2. We consider the problem of
constructing an extensich : By =1 9 with B, the open unit ball irR%. The mapping is also required to be

onto

continuously differentiable with a non-singular Jacobimaatrix at all points. We discuss ways of obtaining initial
guesses for such a mappifigand of then improving it by an iteration method.
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1. Introduction. Consider the following problem. We are given
(1.1) ©: OBy % o0
with ¢ a continuously differentiable function. For notatiaBy is the open unit ball ifR¢

with boundaryS?—! = 9By, d > 2, andf is an open, bounded, simply-connected region in
R?. We want to construct a continuously differentiable exiems

(1.2) d: By 1;;’ Q,

such that

(1.3) Plgar =

(1.4) det (D® (z)) # 0, z € By.

J () = D® (z) denotes the x d Jacobian ofb (z),

P, —
(D® (2)), ; = ﬁ, z € By.
J

Without any loss of generality, we assunmiet .J (z) > 0 for all z € B,. The theoretical
existence of such an extensidris a difficult question in general, but it is certainly trueevh
the region( is starlike, as we demonstrate constructively in this paper

As a particular case, let = 2 and consider extending a smooth mapping,

@: St = 09,
onto
with  an open, bounded region ®? andy a smooth mapping. For planar regions with a
smooth boundary, a conformal mapping will give a desirakd@ping fromB, to  (although
it is probably not an extension of the given functigyy but finding the conformal mapping
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is often nontrivial. In addition, our eventual applicationeed the Jacobiab® (see [, 4,
5]), and obtaining explicitlyD® is difficult with most methods for constructing conformal
mappings. As an example, letdefine an ellipse,

@ (cosf,sinf) = (acosf,bsind), 0<6 <2,

with a,b > 0. The conformal mapping of the closed unit disk onto the aosgion with
this ellipse as its boundary in the complex pldhé&as a complicated construction requiring
elliptic functions; see, e.9.2[ §5]. In comparison, the much simpler mapping,

® (z1,22) = (aw1,bxs), = € Ba,

is sufficient for most applications. Also, far> 2, constructing a conformal mapping is no
longer an option.

As motivation for obtaining such an extensidnconsider the elliptic partial differential
equation,

(L5) fz ( 888(8))+7(8)U(3)—f(8), sCQCR,

,Jl

with © a bounded simply-connected regionRf with a smooth boundarg). The matrix
A (s) = [a;;(s)] is assumed to be symmetric and to satisfy

(1.6) ETA(S)E > cofTE,  s€Q, €eRY

with ¢y > 0. The boundanp is known, say by a mapping such as that in1). If the
extension?d satisfying (.3)-(1.4) is known explicitly, then the equatiof.6) can be converted
to an equivalent elliptic problem over the unit bal);; and the new formulation can then be
solved numerically using a ‘spectral method’ ovgy. Introduce

s=®(x), u@)=u(@@), [flz)=/,(2().
Then (.5 becomes

—Z

731

- (e (70 By 0) G ) et (7 (0)) 2 (0 )

=det (J(z)) f(z), € By

’L

The matrixA () = (@ ;(x)]¢,_, is defined by
Az)=J () VA@ (2)J ().

The matrixﬁ(a:) satisfies the same strong ellipticity property asir6), but over the unit
ball B, and with a different constamt. Transformations of partial differential equations are
common in the literature, although they are often used t@kiynthe equation. In our case,
we are using the transformation to simplify the region, obtay a region for which spectral
methods can be defined more easily.

Other than the quite large literature on constructing confd mappings for planar re-
gions, there is, surprisingly, not much literature aboutgoblem. The most useful appears
in the area of automatic grid generation for the solution aftigl differential equations, al-
though it differs from our desire to produce explicitly thepping functiond. We note in
particular the works of Castillog] and Liseikin [7].
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In Section2, we consider various methods that can be used to congrweith much of
our work considering regionQ that are ‘star-like’ with respect to the origin:

a.7) p(x)=p(z)=, re St

—1 1-1
p: St — Reo.
For convex regiong?, an integration based formula is given, analyzed, andtibitisd in
Section3. In Section4, we present an optimization based iteration method for avipg
‘initial guesses’ ford. Most of the presentation will be for the planar cage<( 2); the case
of d = 3 is presented in Sectidoh

2. Constructions of . Let Q2 be star-like with respect to the origin. We begin with an
illustration of an apparently simple construction that sloet work in most cases. Assume
that our initial mappingp is of the form (.7). Define

(2.2) O (z)=rp(0) (cosb,sinb), 0<r<l1,
(2.2) p(0)z,

with z = (rcos@,rsind), p(0) = p(cosf,sind) a periodic nonzero positive function over
[0,27]. This mapping® has differentiability problems at the origii, 0). To see this, we
need to find the derivatives gf6) with respect tar; andzs. Use

6 = tan—* (zo/x1), x9 >0, w1 #0,

and an appropriate modification for poinis;, z2) in the lower half-plane. We find the
derivatives ofp using

o) _ .\ 99 pl) _ .\ 99

o1, :P(Q)aixla Oy :P(G)Tm-
Then
90 w2 0
&rl_x%—o—:cg’ 8x2_x%+x§'
Using these,

1T —x2
= (0) - 370, 70)).

02 :< il 7(0), p(0) + 222 ﬁ(ﬂ))-

Oy

The functions
CU% T1X2 LL’%

b) ) b
:rf—l—:r% m%—kx% x%—i—x%

are not continuous at the origin. This concludes our dematish that the extensiof of
(2.1) does not work whef' () # 0.
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2.1. Harmonic mappings. As our first construction method fab, consider the more
general problem of extending to all &f, a real or complex valued functighdefined on the
boundary ofB;. Expandf in a Fourier series,

1 S :
(2.3) f0) = 50 + nzl ay, cos (nf) + by, sin (nh) .
Define F' on By using
1 N .
(2.9) F(x)= 500+ ,; r" [a, cos (nf) + by, sin (nh)],

with = (r cos 0, r sin §). Note that this is the solution to the Dirichlet problem faylace’s
equation on the unit disk, with the boundary data giverff), 0 < 6 < 2.

It is straightforward to show that is infinitely differentiable forjz| < 1, a well-known
result. In particular,

F oo
37331 =a; + 7;:1 (m 4+ 1) 7™ [am11 cosmb + by, 1 sinmb] ,
oF =b + Oog (m+1)r"[—a sinm@ + by,1 cos mb|
Dy 2 m+1 mt1 .

Depending on the speed of convergencedl)( the partial derivatives of () are continuous
over B,. In particular, if we have

oo o0
Zn|an|<oo, Zn|bn|<oo7
n=1 n=1

thendF/0x1 anddF /0x, are continuous oveB,.
Given a boundary function

p(0) = (1 (0),2(0)),  0<0<2m,

we can expand each component to alBafusing the above construction ig.4), obtaining a
function ® defined onB, into R2. A similar construction can be used for higher dimensions
using an expansion with spherical harmonics. It is unknowetiver the mapping obtained
in this way is a one-to-one mapping froB} onto(2, even if2 is convex.
The method can be implemented as follows.
e Truncate the Fourier series for each of the functippg9), £ = 1, 2, say to trigono-
metric polynomials of degree.
e Approximate the Fourier coefficien{s:; } and{b;} for the truncated series.
e Define the extension®,, (x) in analogy with 2.4).
EXAMPLE 2.1. Choose

(2.5) p(0) = a+ cosf + 2sin 20

with a chosen greater than the maximum@fs 6 + 2 sin 20| for 0 < 6 < 27, approximately
2.2361. Note thap(f)cosf and p(f)sin @ are trig polynomials of degree 3. Begin by
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-4+

FiG. 2.1. Starlike region withp defined by Z.5) with a = 5.

FIG. 2.2. The Jacobian forZ.5) with 0.905 < |det (D® (x))| < 75.314.

choosinga = 5. Lettingn = 3, we obtain the graphs in Figuré&sl and2.2. Figure2.1
demonstrates the mapping by showing the imagékanthe circlesy = j/p, j =0,,...,p,
and the azimuthal line®, = =j/p, j = 1,...,2p, p = 15. For the numerical evaluation
of the Fourier coefficients, the trapezoidal rule with nodes was used. Figu&2 shows
|det (D® (z))| The figures illustrate that thi& is a satisfactory mapping. However, it is
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possible to improve on this mapping in the sense of redutiagatio

max |det (D® (z))]
r€Bso

min [det (D (2)]]
reB2

(2.6) A(®) =

For the present casd,(®) = 100.7. An iteration method for decreasing the size\of®) is
discussed in Sectioh As a side-note, in the planar graphics throughout this papdabel
the axes over the unit disk asandy, and over?, we label them as andt.

In contrast to this example, when choosing- 3 in (2.5) the mappingp derived in the
same manner is neither one-to-one nor onto. Another methoekded to generate a mapping
® which satisfies4.5), (1.2-(1.4).

2.2. UsingC*°-madification functions. Let z = (rcos,rsinf), 0 < r < 1. As
earlier in (L.7), consider? as star-like with respect to the origin. Introduce the fiort

T(r;n)exp(m<11)>, 0<r<i,
r

with £ > 0 and7'(0, x) = 0. Define® by
(2.7) s=®(@k,w) =[T(r;)p(0) + (1 =T (r;r))wlz, € By,

with z = r (cos 6,sinf), for0 < r < 1, 0 < 0 < 2w, with somew > 0. This is an attempt
to fix the lack of differentiability at (0,0) of the mapping.()-(2.2). Asr decreases t0, we
have® () ~ wz. Thus the Jacobian df is nonzero aroundo, 0). The constants, w are to
be used as additional design parameters.

The numberw should be chosen so as to also ensure the mappiiggl-1 and onto.
Begin by finding a disk centered &1, 0) that is entirely included in the open d@t and say
its radius isvg, or define

= min 5(6).
wo Oéreuggﬂp()

Then choose € (0,w). To see why this is satisfactory, write

@ (z; Kk, w) = f(r) (cosd,sinb) ,
fr)=r[T(r;r)p0) + (1 =T (r;x)) ],

fixing 6 € [0, 27]. Immediately,f (0) =0, f (1) = p(#). By a straightforward computation,

1 ~
fir) = AT (r8) [(p = w) (r+ 1)) + 10}
whereT = T (r; k) andp = p (6). The assumptiofi < w < wp then implies
f(r)>0, 0<r<l.

Thus the mapping : [0,1] — [0, ()] is 1-1 and onto, and from thi® : B, — Qs 1-1
and onto for the definition inX 7).

This definition of & satisfies {.2)-(1.4), but often leads to a large value for the ratio
A (®) of (2.6). It can be used as an initial choice foehat can be improved by the iteration
method defined in Sectioh
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FiG. 2.3. Starlike Cassini region witly defined in .8) witha = 1.5.

ExAMPLE 2.2. Consider the starlike region with

(2.8) p(0) = \/ cos (20) 4 y/a — sin? (26)

with a > 1. The region2 is called an oval of Cassini. We give an example with = 1.5,
(k,w) = (1.0,0.5). Figure2.3is the analog of Figur.1 For the Jacobian,

m<1{1 D®(z,y) = 0.0625,

max D®(z,y) = 4.0766.

The ratioA (®) = 65.2 is large and can be made smaller; see Exarifiie
A variation to €.7) begins by finding a closed disk about the origin that is coeth
wholly in the interior of(2. Say the closed disk is of radids0 < § < 1. Then define
(2.9)
T, 0<r<y,

O (25 5,0) = [T (71":§7,€>p(9)+ (1—T(::§,m>>:|x, §<r<i,

wherexz = r (cos6,sinf). Then the Jacobia®® around the origin is simply the identity
matrix, and this ensures thdtt D®(z) # 0 for € B,. Experimentation is recommended
on the use of eithei2(7) or (2.9), including how to choose, w, andJ.

The methods of this section generalize easily to the detetioin of an extension

d: Bs 1;} Q for the given boundary mapping,

¢ : 0Bs =5 90,

onto

Examples of such are illustrated later in Section
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3. An integration-based mapping formula. Before giving a formal construction of an
integration-based mappinb, we give some motivation. We present the method for regions
Q) C R2, although the method extends easily to regionBind > 2. Assume is a convex
region inR2. We need to defin@ (P) for P € By, | P| # 1. Take an arbitrary line througR
and note its two points of intersection with the boundsitycalling themP, andP_ (defined
more precisely below). Using the valuesof P, ) andy (P-), carry out linear interpolation
of these based on the distancefofrom P, and P_. Since all possible line directions are to
be considered as equally important, we average all suctpoitgory values by considering
all possible lines passing through This average is assigned @$ P). Experimentally the
construction also works for many regiofisthat do not depart too much from being convex.

Begin by considering a poin? = r(cos o, sina) € By, 7 € [0,1), a € [0,27). Given
an anglex < 6 < 7+ «, draw a lineL throughP at an angle o with respect to the positive
x1-axis. LetP, (0) and P_(0) denote the intersection of this line with the unit circle.€Bk
points will have the form

P (0)=P+ry(0)n,

(31) P.(6)=P -1 (6)n.
with
3.2) 1n = (cosf,sin ), a<f<7m+a.

We choose (0) andr_ (0) to be such that

PoO) = Py O)n] =1, [P_(0) =P —r_(0)n] =1,
and
re (0) =P~ P.(0)]. r_(0)=|P—P_(0).
Define
(3.3) oo (0) = 0 (Py (0)) — ry (02 L 0D =2 (P (0))

() +r_(0)

using linear interpolation along the line Here and in the following we always identify the
function ¢ on the boundary of the unit disk with2ar periodic function on the real number
line. Then define

a+m
(3.9) mm:l/l 0. (0) do.

We study the construction and propertiestoin the following two sections.

3.1. Constructing®. The most important construction is the calculationf(6) and
P_ (#). We want to find two points that are the intersection ofB> and the straight lin€.
through P in the directionn, || = 1. SinceP € int (Bz), we havelP| < 1. We want to
find

v =P +sn, vl =1,

with 1 denoting the direction fron® as noted earlier. With the assumptidhd) on n, we
have

0<P-n<|Pl, a<6<a+in,
0<—-P-n<|P|, a+%7r§9§a+7r.
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Using~y - vy =1,
P+rp>=P-P+2sP-n+s>=1,
s2+2sP-n+P-P—1=0,
——

<0

which implies that the roots are real and nonzero. Thus tiradta

ri= o PP 41— PP

=rcos(f —a) = \/1 —r2sin%(f — )
defines two real roots. Here we see that
|P-n| <[P,
(P-n)’+1-P-P<1,

and so

r,:P~n+\/(P~n)2+1—P-P

=rcos(f —a) + \/1 —r2sin?(0 — ),

r+:—P~n+\/(P-n)2+1—P-P

= —rcos(d —a) + \/1 —r2sin?(0 — ).

It is immediate that

r_+r+=2\/(P-17)2+1—P~P

= 2\/1 —r2sin?(0 — o),

and therefore the denominator in the formuta3 for .. (0) is zero if and only if |[P| = 1
andP 1 n, a case not allowed in our construction.

Using r— andr, in (3.1), we can construcp. (6) using @.3), and this is then used
in obtaining the mapping (P) of (3.4). This formula is approximated using numerical
integration with the trapezoidal rule. We illustrate thasdr in the section.

To further simplify the analysis of the mappidgof (3.4), we assume for a moment that
a = 0, so the pointP is located on the positive x—axis. Our next goal is to detaenthe
respective angles betweéh () and P_(0) and the positive x-axis. We denote these angles
by ¢t ande—, respectively. Using the law of cosines in the triangle gitg the origin,P,
and Pt we obtain

(ri)>=r2+1—2rcos(y™),
2rcos(¢) =12 +1 — (ry)?

2
=r?41- (—r cos(f) + V1 — r2sin? 0)

= 2r2sin? 0 + 2r cos(0)V'1 — r2sin? 0,
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which implies
(3.5) Yy =y (r,0) = arccos (r sin? @ + cos(0) V1 — r2 sin? 9) ,

where we use the functioirccos : [—1, 1] — [0, 71]. Similarly, we get

(3.6) Y- =1_(r,0) = arccos (r sin? @ — cos(0)V 1 — r2sin? 0) ,

where we use the functioirccos : [—1,1] — [, 27],

arccos(x) = 2w — arccos(x).
Using the functiong)_ and ., we can rewritep,. () (see 8.3)) in the following way:

%mm=;c+rww”>wmm@)

1—r2sin?6

+§G—T“W”>wwww>
1

—r2sin? 6

This allows us to write formula3(4) more explicitly in the following way:

¢uw—5;4”0+1fﬁfLw)¢WAnwme

1 (" r cos(0)
+ %/ (1 - 173“20) e (r,0))do

r cos( ) (4 (r,0))d8

—r2 sm2 0

( reos(6 — ) )wavﬁ—w»w

\/177’28111 (0 —m)

14 ol ) (b (r,0))d6

—r2 b1n2 0

<1 4 reosl > o(W_(r,0 — m))db

— 72 sm2 0
27
r cos(f

3.7) f—/ ”2 07, 0))db.

1"2 sin” 0
Here we used the variable transformatibn— 7 + 6 for the second equality and the new
definition
w+(7‘79)a OSQST(',
—(r,0—m), m™<0<2m,

where the functiong)_ and, are defined in3.5) and @.6). We remark that the function
Y. @ [0,1) x [0,27] — [0,27] is a continuous function which follows from its geometric
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FiG. 3.1.The mappingp for boundary 8.11) witha = 0.9.

construction. We further define

rcos(f)
V1 —r2sin? 0
a2r periodic continuous function off), 1) x [0, 2x]. If we now go back to the general case

P = r(cos(w),sin(a)), a € [0, 27), then we can rotate the given boundary functjoand
obtain

(3.9) k(r,0) =1+

310 E)P) = 8(P) = 5 [ K 0)o(0.0.6) + ).

Before we study the properties of the extension oper@tave present two numerical exam-
ples.

To obtain® (P), we apply the trapezoidal rule to approximate the integrgBi10 or
(3.4). The number of integration nodes should be chosen suffigitarge, although experi-
mentation is needed to determine an adequate choice.

ExaMPLE 3.1. Consider

. @ (cosf,sinf)) = (cosf —sinf + acos” 0,cosf +sinf), 0<0 <27,
(3.11) 0 0 0 0 2p 0 0 0

with 0 < a < 1. We choose: = 0.9 and apply the above with = 100 subdivisions for the
trapezoidal rule to evaluat&.@). Figure3.1 shows the mapping done in the same manner
as earlier with Figureg.1and2.3.

ExAMPLE 3.2. We consider again the ovals of Cassini region with baundiven in
(2.8) with « = 1.5. The mapping§.4) is illustrated in Figure3.2. However, fora somewhat
closer to 1, this integration formul& () no longer produces a satisfactaby

3.2. Properties of€p. To study the properties of the extension operé&gsee 8.10),
we have to study the behavior of the functiahsandk (see 8.8) and 3.9)) at the boundary
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0.8

-0.8+

FIG. 3.2. The mappingp for boundary 2.8) witha = 1.5.

r = 1. We start with the function), and define the values of this function foe= 1 first:

0, 0<60<in,
(3.12) Uy (1,0) := ¢ 20—, %77 <6< %7?7
27, %71’ <60 <2m.

Because of

liml1—7r2=0

r—1
and the boundedness of the sine function, the limit,

lim 1 — 72 sin®() = 1 — sin®(0),

r—1

is uniform forf € [0, %w] The uniform continuity of the square root function implibst

lim (005(9) V1 — 72 sin? 9) = cos()V1 —sin?§ = cos? @

r—1-

uniformly for 6 € [O, %w] Together with similar arguments for the functiesin® 6, we get

lim (r sin® @ + cos(#)V 1 — 72 sin? 9) =sin? 0 + cos® 0 = 1

r—1-

uniformly in 0. Finally we use the uniform continuity afrccos(-) to conclude that

lim . (r,0) = lim arccos (r sin? @ + cos(0) V1 — r2sin? 9)

r—1- r—1-
= arccos(1)

=0 =1v,(1,0)
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converges uniformly o0, £7|. Because

1 —sin?(8) = — cos(6), o€ [3m 7],
we see in a similar way that

Tl_i)r{l_ Yu(r,0) = TEI?_ arccos (7‘ sin @ + cos(0) V1 — r2 sin? 9)
= arccos(sin? @ + cos(0)(— cos(6)))
= arccos(— cos(260))
= arccos(cos(20 — 7))
=20—-7
=.(1,0)

uniformly for 6 € [$7,7|. Similar arguments apply fat € [r, 2] and we finally conclude
thati. (r, ) converges uniformly ta. (1, 8) asr approaches. This proves the next lemma.

LEmMMA 3.3. The functiory,, defined by %.8) and (3.12), is continuous or0, 1] x
[0, 27].

We remark that continuity on a closed interval implies unificcontinuity.

Now we turn to the functiort: defined in 8.9). Here we definé: for the valuer = 1 in
the following way.

2, 0<60<3m,
(3.13) k(1,0):=<¢ 0, ir <6< 3n,

2, Sm<f<om
Obviouslyk(1, -) cannot be the uniform limit ok (r, -) asr approaches, but the following
lemma holds.

LEMMA 3.4. The functionk : [0, 1] x [0,2x] — [0, 2], defined by%.9) and (3.13), is
bounded; and for every > 0, the functionk(r, #) approachesg:(1,6) uniformly onls asr
approached. Here

I=[02n\{(3r =6 ir+8)u(Br—4,3n+0)}.

Proof. Thatk is bounded by follows from

V1—12sin20 > V1 —sin2 6 = | cos(6)]

and the fact that € [0, 1]. The function1/,/z is uniformly continuous om < z < 1 for
everye > 0. From the proof of Lemma&.3we know that

lim 1 —7%sin?0 = cos? 0

r—1-—

uniformly for 6 € [0, 27]. Together with the uniform continuity af//z on [cos® (7 —4), 1],

this shows
lim 14 r cos(0) _ cos(6)
r—1- 1—r2sin?0 | cos(0)]
uniformly on I5. Remembering that

- cos(9), 0¢€[0,in]U[3m, 2r],
| cos(@)] = { —cos(), 6€ ]
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proves the lemma. O

Motivated by the properties af.. andk we now prove a more general result for integral
operators of the form3.10).

LEMMA 3.5.Letky, ko : [0,1] %[0, 27] — R be bounded functions which are continuous
on|0,1) x [0,2x]. Assume there is a finite sEt= {61, ..., 0,} such that

111{17 kl(T,G) :kz(lae)a =12,
uniformly onls := {0 € [0,2x] | |0 — 05| > 6, j = 1,...,n} for everys > 0. Then for a
periodic continuous function : [0, 27r] — R the function

D(r,a) := ; i k1 (r,0)p(ka(r,0) + ) db

is continuous on0, 1] x [0, 27r] and 27 periodic ina.

REMARK 3.6. The above lemma will apply to each component of the fancfy
defined in 8.10 with ky = k andky = ¢, andE = {%77, %77}. This shows the continuity of
Eep.

Proof. The uniform convergence afy, 6 > 0 arbitrary, shows that;(1,-),: = 1,2, are
piecewise continuous and bounded functions®Bar|, so all integrals exist. The continuity
of ®(r,«) on [0, 1) x [0, 27] follows easily from the continuity of the functiorts, i = 1, 2.
The periodicity follows from the periodicity op and the definition ofb. So we only need
to show the continuity ofp(r, o) on {1} x [0, 2x] for example at(1,@). Because of the
periodicity of ®(r, -) and the property€y)(a) = (£¢a)(0), wherep, () = p(a + 0) we
only need to prove the continuity for one valueaffor exampleax = 7. We estimate

2m
|¢(7‘,a)*‘1>(1,7f)|:/0 kl(raﬂ)w(kz(?“ﬁ)Jra)k1(1a9)¢(k2(179)+ﬂ)d9‘

27
<| [ R0 e0a(r.0) + ) = 1,0 +vr>>d9\
0

27
#7000 - 10, 0)e(k2(0,0) + ) a9
0

Now we know thatky, ko, andy are bounded functions. For example,
k1 (r, 0)|, k2 (r, 0)], [(0)| < M, M >0,

forall (r,0) € [0, 1] x [0, 27]. So we only have to show that

27
(3.14) dim [ lela(r, ) + ) = olha(1,6) + m] 8 =0
ra)—(1,7) Jo
and
27
(3.15) Jim / ey (1, 0) — Fr (1, 8] d6 = 0.
(rya)—(1,m) 0

We start with the first limit. Given aa > 0, we choos& > 0 small enough such that

(3.16) / oM df = =
[0,27]\ I 2
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Now we observe thap is uniformly continuous orfR because it is continuous and periodic.
So there is @ > 0 such that

9
3.17 — < =
(3.17) () =yl <
if |z — y| < w. We also know thak: (r, -) converges uniformly ord; to k2(1, -), so there is a
ro € (0, 1), such that

w
|ka(r,0) — ka(1,0)] < 5
forall » > ro andf € Is. If furthermore|a — | < w/2, we conclude that
|(Ra(r,0) + ) = (k2(1,0) + m)| < [k2(r,0) = k1(1,0)] + |a — 7| <w,
which by 3.17) implies
=
4

forall (r,a) € [ro,1] X [r — w/2,m + w/2] andf € I5. Combining 8.16 and 3.18), we
can estimate

(3.18) lp(k2(r,0) + a) — @(ka(1,0) + m)| <

/ " olha(r.0) + @) — p(ka(1,6) + )| d6
< / (9(ka(r,0) + ) — @(ka(1,0) + )] dO
[0,27]\ s

+ | |(p(k12(7“,9) + a) - @(k2(179) + 7T>| o

< / oM df + / £ a9
[0,27]\ s Is Ar

<€—|—2 ° €
= T — =
-2 47

forall (r,«) € [ro, 1] x [1 — w/2, 7™ + w/2], which proves §.14).

To prove (.15 we again choose an arbitraty> 0 and choosé > 0 such that 8.16)
is true. Now the uniform convergence bf(r, -) to k1(1,-) on Is proves the existence of a
r1 € (0,1) such that

3
(319) |]€1(T,9) _kl(150)| < E
forall (r,0) € [r1,1] x I5. Using 3.16 and @.19 we estimate
27
/ |k (7, 0) — k1(1, 6)] d0:/ |k1(r,0) — k1(1,0)] dO
0 [0,27]\ T

+/ |k (r, 6) — kq1(1,60)] do
Is

< / IM df + / =)
0,27\ I 1, 4T

€
<7 2-7:
_2+7T €
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for all » € [ry,1]. This proves 8.15. d

Now we state the results about the extension ope¢ator

THEOREM3.7. Lety : 0By — R? be a continuous function. Th@r P) = (£¢)(r, a),
P € B, (see 8.10) is a continuous function o, and

(I)|<9BQ = p.

Proof. In Lemma3.3and Lemma&s.4we have shown that the functiohsindi, in (3.10
satisfy the assumptions of Lemr&b. So the continuity ofb(P) follows from Lemma3.5.
For P € 0B, the polar coordinates a? are given by(r, o) = (1, @), a € [0, 27], SO we get
with (3.12 and @¢.13

1 27
o) =5 [ (L0)p(w.(1,6) + ) a8

2 0
1 /2 27

=— / 200+ «) df + / 2027 + «) do
2m 0 37/2
1

= o (mp(a) + mo(27 + a))
21

= p(a) = ¢(P)

because of ther periodicity of . a

COROLLARY 3.8. LetQ) ¢ R? be a domain with boundar§$) andy : 0B, — 0 be
a continuous parametrization of the boundary. Then thetfoan€ ¢, defined in 8.10, maps
B, onto Q.

Proof. Theorem3.7 implies that€y : By +— R? is continuous and&y)(0B;) =
09). We assume that the parametrizatipnmoves along the boundary 6f in the positive
direction. Fory € €2 we then have

deg(E¢,y) =1,
wheredeg is the mapping degree; se&2[ Chapter 12]. But this implies that there is at least
onex € By suchthat(fy)(z) = y. a

THEOREM 3.9. Let Q@ C R? be a convex domain with bounda@f? and let
¢ : OBy — 052 be a continuous parametrization of the boundary. Tf@p)(B,) C .

Proof. We have to show&yp)(P) < Q for every P € B,. We use the first equation in
formula 3.7)

1 [7 rcos(d)
O(P) = - 1+ ———F— | e(¢1.(1,0))
2m /0 ( 1—r2 sin2(€)) o

+ (1 ___reos®) ) (- (r,0)) df
2(9)

1 —17r2sin

1N (1 $(0;
:Nhi“oonZ_%(fz r cos(6) )w(m(r,@j))

1— 2 sin2(9j)

4 (1 _reosy) ) o (r,6;)),

) 24/1 —r2sin?(6;)
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whered; = 7j/N and we further assumed again ttfais on the positive real axis to simplify
the notation. Here we have used the fact that the integrhkisimit of Riemann sums. Each
term of the sum is a convex combination of two element& @nd therefore if2. But the
sum itself is a convex combination, so the sum is an elemeft dfinally Q2 is closed, so
P(P) € Q. 0

The two last results imply that for a convex domé&irwe get(£¢)(B;) = Q, but there
is still the possibility that () is not injective. Our numerical examples seem to indicate
that the function is injective for conve®?, but we have no proof. For non-convex regions, it
works for some but not others. It is another option in a taadkimethods for producing the
mapping®.

The integration-based formul&.¢) can be extended to three dimensions. Given

(V2R 833 —t> 89
define the interpolation formula, (6, w) as before in3.3), with (0, w) the spherical coordi-
nates of a direction vectay through a given poinP € Bs. Then define

27
/ / « (0, w) sinw dw db.
27‘(’

A proof of the generalization of Corollai8.8can be given along the same line as given above
for the diskBs.

4. Iteration methods. Some of the methods discussed in SecHdgad to a mapping
in whichdet (D® (z)) has a large variation asranges over the unit balt;, especially those
methods based on using tli&°-functionT (r, k) of (2.7). We seek a way to improve on
such a mapping, to obtain a mapping in whith (D® (z)) has a smaller variation ové?,,.
We continue to look at only the planar problem, while keepmgnind the need for a method
that generalizes to higher dimensions. In this section w@diice an iteration method to
produce a mapping with each component a multivariate polynomial ovsy.

Assume that we have an initial guess for our mapping, in thea fof a polynomial of
degreen,

(4.1) ON Z o\, () z € By.

We want to calculate an ‘improved’ value fdw%o), callit ®,,.

The coefficientsx\”) € R2. The functions{«y, ..., 1n, } are chosen to be a basis for
11,,, the polynomials of degre€ n. and we require them to be orthonormal with respect to the
inner product(-, -) associated witlL.? (Bs). Note thatlV,, = dim (II,,) = 3 (n + 1) (n + 2).

As basis functiong; } in our numerical examples, we use the ‘ridge polynomiald’ajan
and Shepp{], an easy basis to define and calculate; also 3g#l[3.1].

We use an iterative procedure to seek an approximation,

Np,
(42) o, (33) = Z O‘n,ﬂ/)]’(aj)
j=1

of degreen that is an improvement in some senseldf. The degree used in defmlngb(o)
and also in defining our improved valdg,, will need to be sufficiently large; and usually,
must be determined experimentally.
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The coefficients{ag.o)} are normally generated by numerical integration of the Fewur
coefficients{ al } ,
(4.3) ol = (®,4;),

where® is generated by one of the methods discussed in Sectiansl3. The quadrature
used is

/ ( ) dad 27 zpji =N 2rm
T xdy ~ wyr, T
Bzg Y Yy 2p+1 g la2p+1 )

=0 m=0

whereg (r,0) = g (rcosf,rsiné). Here the numberéw; } are the weights of thép + 1)-
point Gauss-Legendre quadrature formuld@ri], and the node$r; } are the corresponding
zeros of the degrep + 1 Legendre polynomial of0,1]. This formula is exact iy is a
polynomial of degree< 2p + 1; see [0, §2.6].

We need to require that our mapping will agree witlon S*, at least approximately. To
this end, choose a formutg, for the number of points o' at which to matchb,, with the
functiony and then choosgz, . .., z,, } on S*. Required,, to satisfy

(4.4) D, (25) = ¢ (%), i=1,...,qn,

which imposes implicitlyg, conditions on the coefficientsx,, ;}. If ¢ is a trigonomet-
ric polynomial of degreen, and ifn > m with ¢, = 2n + 1, then @.4) will imply that
®,|s1 = ¢ overdf2. Our numerical examples all use this latter choice,of

Next, choose a functiotF (o), & = [a,...,ay,]" and seek to calculate so as to
minimize F(«) subject to the above constraints4). How shouldF be chosen? To date, the
most successful choice experimentally has h&dn) = A (®,,) , defined earlier inZ.6).

4.1. The iteration algorithm. Using the constraintgi(4) leads to the system

(4.5) Aa = p,
Yi(z1) - YN, (21) o(z1)
A=1| : o=
V1(2q,) 0 N, (24,) ¢(2q,)
Becauseb, |4, is atrigonometric polynomial of degreg it is a bad idea to havg, > 2n+1.
The maximum row rank oft can be atmostn+1. Let{z, ..., z,} denotey, evenly spaced

points onS*. We want to minimizeF («) subject to the constraintg.§).

We turn our constrained minimization problem into an uné@ised problem. Letd =
UC'V be the singular value decomposition 4f U is an orthogonal matrix of ordey, V' is
an orthogonal matrix of ordeN = N,,, andC is a ‘diagonal matrix’ of order; x N. The
constraints4.5) can be written as

(4.6) CVa=U"yp

Introduce a new variablgé = Va, ora = V3. ThenC 3 = UTy and we can solve explicitly
fory = [B1,...,3,]". Implicitly this assumes that has full rank. Le¥ = 3,41, ..., On]",

B= [7T76T]T. Then introduce

4.7) G (6) = F (o)
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FIG. 4.2.The mappingp for Example4.1with a = 5, obtained using iteration.

usinga = VT3 and the known values of. We use our initial{a§0)} in (4.1) to generate the

initial value for G and thus fow.

The drawback to this iteration method is the needed stomghég x N matrix A and
the matrices produced in its singular value decompositiothe following numerical exam-
ples, we minimize& using the MaTLAB programfminuncfor unconstrained minimization
problems. N

EXAMPLE 4.1. Recall Exampl@.1with a = 5. Generate an initial mapping using
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FIG. 4.3.The boundary for the starlike region with= 3 + cos 6 + 2 sin 26.

(2.7) with x = .5, w = 1.0. Next, generate an initial polynomiat () of degreen = 3, using
numerical integration of the Fourier coefficien{syg.o)} of (4.3). We then use the above

iteration method to obtain an improved mapping. Figdireshows the initial mapping~>,
and Figure4.2 shows the final mapping,, obtained by the iteration method. With the final
mapping, we haveb, |, = ¢ to double precision rounding accuracy, and

A (D) = 6.21.

Compare the latter ta (®) = 100.7 for the mapping in Examplg.1

EXAMPLE 4.2. Consider again the starlike region usi@gs) of Example2.1, but now
with @ = 3. The harmonic mapping of Secti@hl failed in this case to produce a 1-1 map-
ping. In fact, the boundary is quite ill-behaved in the néigthood of(—0.2,0.2), being
almost a corner; see Figure3. In this case we needed = 7, with this smallest suffi-
cient degree determined experimentally. To generate ftialiguess®, we used 2.7) with

(k,w) = (0.5,0.1). For the initial guessA (@é‘”) = 840. We iterated first with the MT-

LAB programfminunc When it appeared to converge, we used the resulting minimagzan
initial guess with a call to the MrLAB routinefminsearchwhich is a Nelder-Mead search
method. When it converged, its minimizer was used again asifial iguess, returning to a
call onfminunc Figure4.4 shows the final mappin@; obtained with this repeated iteration.
For the Jacobian matrix, (®7) = 177.9, further illustrating the ill-behaviour associated with
this boundary. As beforep|,: = ¢ to double precision rounding accuracy.

EXAMPLE 4.3. Consider again the ovals of Cassini region with boundasen in 2.6)
with @ = 1.5. As our initial mapping®, we use the interpolating integration-based mapping

of (3.4), illustrated in Figure3.2. We produce the initial guess for the coeﬁiciel{rag.o)}

of (4.3) by using numerical integration. Unlike the preceding ¢hexamples, the boundary
mappingyp is not a trigonometric polynomial, and thus the interpaigtconditions of 4.4)
will not force ®,, |4, to equaly overdf). For that reason, we use a higher degree than with
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FIG. 4.4.The boundary mapping for the starlike regionwittlp = 3 + cos 6 + 2 sin 26.

FIG. 4.5.The boundary mapping for the starlike region witlp from (2.8) witha = 1.5.

the preceding examples, choosing= 16. Figure4.5shows the resulting mapping. With
this mappingA (®) = 26.11. On the boundary,

max [P (z) — ¢ (v)| = 2.61F — 4,
zeSt

showing the mapping does not depart far from the reglon
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FIG. 4.6. The optimal mappin@~ for the starlike region witlp (§) = 5 + sin 6 + sin 36 — cos 56.

EXAMPLE 4.4. Consider the starlike domain with
p(0) =5+ sinf + sin 30 — cos 50, 0<6<2m,

in (2.9-(2.2). Using the degree = 7 and the inital mappin@ based onZ.7) with (k,w) =

(0.2, 1.4), we obtained the mapping illustrated in Figuré. The minimum value obtained
wasA (P7) = 6.63. As a side-note of interest, the iteration converged to aevaff A ()

that varied with the initial choice df<, w). We have no explanation for this, other than to say
that the objective functioi (®) appears to be ill-behaved in some sense that we do not yet
understand.

4.2. An energy method.In this section we present a second iteration method, orezlbas
on a different objective function. Instead &f see 2.6), we use

K Ky Ky 1 K1 L 1
4.8 P,) = .
@o)  AEI=D 2 @ - e G 2 2 o) - 5T

We again impose the interpolation conditions giveridl); and the free parameters are given
by ¢; see £.7). First we explain the definition of the poingsand(; appearing in4.8). The
points¢; are located inside the unit disk and are elements of a regtangrid

1
1

the density of the grid is determined By > 0. The points; are located on the unit circle
and distributed uniformly

{¢; |j1,...,L1}{(cos(?j),sin(?)) |j1,...,L1}
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L; € N. Furthermore the functiod contains the parameter > 0. So in addition to the
dimensiomn of the trial space fo,,, this method uses four parameteys; the number of
interpolation points along the boundaty;, which determines the grid density inside the unit
disk; L1, the number of points along the boundary; andhe exponent in formulad(8).

The motivation for the functior is the following. We start with an equally distributed
set of points in the unit disk{¢; | ¢ = 1,..., K3} and we try to force the mapping,,
to distribute these points as uniformly as possible in th& demain{). One can think of
charged particles which repel each other with a certainefolfcthis force is generated by the
potentialr— then the first term in formula4(8) is proportional to the energy of the charge
distribution{®,,(¢;) | ¢ = 1,..., K1}. When we go back to our original goal of creating
a mapping® which is injective, we see that this is included in this fuocal because the
energy becomes infinite if two particles are moved closer.

The second goal for our mapping is thiat (B>) C 2. To enforce this condition we use
a particle distribution along the boundary @fgiven by{®,,(¢;) | = 1,...,L1}. These
charges will repel the chargé®,,(¢;) | i = 1, ..., K1} away from the boundary. The energy
associated with the interaction between the interior oamtd the boundary points gives us
the second term in formula (8).

So we can consider the algorithm to minimize the functloas an attempt to minimize
the energy of a particle distribution fn. This should also guarantee that the mappbnchas
a small value for the function, because the original poin{s; | : = 1,..., K;} are equally
distributed.

In our numerical experiments we usad= 2, so the functiorﬁ(@n) is differentiable as
a function of the parametets Furthermore we adjust; € N in such a way thak(;, ~ N,
and we choosé., ~ k;. For the parametey,, we use the same value assif 1.

EXAMPLE 4.5. Consider the starlike domain defined g with o = 5 again. We
usen = 3, a = 2, Ky = 177, L; = 160. To minimize the functiom\ we use the BFGS
method, seeq]. Figures4.7 and4.8 show a rectangular grid in the unit disc and its image
under the mappin@.”’. For the initial guess we have(®{”)) ~ 11500 andA(®{") ~ 29.
For the final mappingpbs we obtain/~\(<I>3) ~ 7930 and A(®3) ~ 10. This shows that the
function A implicitly also minimizes the functior.. Figure4.9 shows the image of the final
mapping ®.

5. Mapping in three dimensions. In this section we describe an algorithm to construct
an extensiorp,, : Bz — ( for a given functiony : 52 — 9. We assume thad is starlike
with respect to the origin. The three dimensional case iffeom the algorithm described
in Section4 in several ways. The dimension bff, of the polynomials of maximal degree
n is given by N,, = (g) so any optimization algorithm has to deal with a larger namb
of degrees of freedom for a givenwhen compared to the two dimensional case. Whereas
in the two dimensional case a plot &, (B>) reveals any problems of the construci@g
with respect to injectivity o®,,(B2) C 2, a similar plot of®,,(B3) is not possible. For this
reason, at the end of each optimization we calculate two aneasvhich help us to decide if
the constructe@,, is injective and into.

On the other hand the principal approach to construckngs very similar to the algo-
rithm described in Sectiof. Again we are looking for a functiof®,, given in the following
form

Ny,
Q)n(x) = Zan,ﬂ/h(ﬂﬁ)» MRS B37
j=1
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FIG. 4.8.The image of the grid in Figuré.7 under the mappin@(so) for the domain given inA.5).

where {¢1,...,9¥n,} is an orthonormal basis ofl, and the vectorsw, ; € R3,
j=1,..., N, are determined by an optimization algorithm.

For a givenn € N we use the extremal points of Womersleyi] on the spheres?.

We will denote these points by, = {2\, ... ,z((:jzrl)z}. These points guarantee that the
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-2r

-4+

FIG. 4.9.The image of the grid in Figuré.7 under the final mappin@s.

smallest singular value of the interpolation matrix

G2y e, (M)
An =
wl(zgfﬁll)z) —e YN, (Z((erl)?)

stays above for all n which we have used for our numerical examples. The nuroiberl)?
is also the largest possible number of interpolation paimtghe sphere which we can use,
becauselim(I1,|s2) = (n+1)?; see B, Corollary 2.20 and formula (2.9)]. Again we enforce

8, =p(z"),  j=1..,(n+1)>

for the mapping functio®,,; see also4.5). To define the initial function

Ny,

(5.1) 30 (x) =Y alDwi(x),  weBs,
j=1

we choose

(5.2) ol = (@B, J=1o, Ny

(v, ") B, isthe usual inner product orBs. The polynomiallbg)) is the orthogonal projection
of @ into II,. The function® is some continuous extension ofto Bs, obtained by the
generalization to three dimensions of one of the methoawidsed in Sectiohand3. Having
determined®”, we convert the constrained optimization of the objectiuectionA(-) into

an unconstrained minimization, as discussed earliet.i)«(4.7).
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Once the MTLAB programfminuncreturns a local minimum foh (®,,) and an associ-
ated minimizer®,,, we need to determine #,, satisfies

(5.3) ®,(z) # ®u(y), z,y€Bs, z#y, (injective)
(5.4) ®,(B3) C Q, (into).

For this reason we calculate two measures of our mapg@ing
Given K € N we define a grid on the unit sphere,

S2 = sin J cos i sin 2l sin i coS ™ |
K K K)’ K K)’ K
j=0,....,K, i=0,...,2K—-1 }.

For L € N, we define a cubic grid i,

1
BS7L = (LZ3> mBg,

So every element if3s 7, is given by
16, 4.k),  iL4keL
P2+ 52+ k2 < L2

To measure the minimum of the magnitude of the gradient ofrer 52, we define an ap-
proximation by

mK(SO) -— min H(,O(x) — W(y)H )
eyesy  [lz—yll
zFy

This number is used to calculate

. Hq’n(x) - q)n(y)H
By k() = / .
LK( ) I,yré:%r;,L, ||(E — y” mK(QO)
TFY

Because ofP,,|s2 ~ ¢ we expectE; x < 1. We use the occurrence of a very small value
for £y x (®,,) to indicate that$.3) may be violated. The resulf; x (®,,) ~ 1 is the best we
can achieve, for example, withand®,, the identity mapping.

If (5.4) is violated, then there is a poimte B; and a pointy € S? with ®,,(x) = ¢(y).
This shows that the following measure would be close to zero,

EQ’K’L(‘I)n) = min W/m[((@

IGB;;,L,yGSi ||

Again we expecEs; i 1 (®,) < 1, and a very small value df; x . (®,,) indicates thatg.4)
might be violated. For eacf®,, which we calculate we will always repoH; x(®,) and
Es k.1.(®,). ForlargerK and L we will get a more accurate test of the conditioBs3(
and 6.4), but the cost of calculation is rising, the complexity tdccdate Es 1 (®,,) for
example isO(n® K2 L?). For our numerical results we will us€ = 40 and L = 10.

We consider only starlike examples far with 92 given as

(x)x, re S

p(x) =p
p(0,6) (sinf cos ¢, sin 0 sin ¢, cos ) ,

(5.5)
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TABLE 5.1
Measures of approximation stability fo5.6).

A(®g) Eq ,40(P6) E5 40,10(P6)
3.0575574308  0.7485506872  0.6626332145

TABLE 5.2
Measures of approximation stability fo5.(7/).

Function | A() Eq 40(-) Es40.10(+)
@éo) 394.3717406299  0.2088413520 0.5926402745
dg 43.8782117161  0.2018029407  0.5175844592

p(0,¢) = p(sinf cos ¢, sin 0 sin ¢, cos 0) .

To create an initial guess, we begin with the generalizatig2.1)-(2.2) to three dimensions,
defined in the following way:

® () = rp (0, ¢) (sin 6 cos ¢, sin O sin ¢, cos ) = p (6, @) «

for x = r(sinfcos¢,sinfsingp,cos0),0 < § <7, 0 < ¢ <27, 0 <r < 1. We
assume : S? — 9N is a given smooth positive function. The initial gu@@ is obtained
using 6.1)-(5.2), the orthogonal projection ab into IT,,. Even thoug@ is not continuously
differentiable overBs, its orthogonal projectio@f) is continuously differentiable, and it

turns out to be a suitable initial guess wik") ‘52 ~ .
ExAMPLE 5.1. In our first example we choose

(5.6) 50, ¢) =2+ (cos ).

Usingn = 6 yields the results given in Tabke 1 for the mapping®s obtained using the
optimization procedure described above. See Figutdor an illustration of the images of
the various sphere}f,S?. In this example the initial mappin@ﬁlo) turned out to be a local
optimum, so after the first iteration the optimization ste@pThe measurel; and F, seem
to indicate that the functio®") is into 2 and injective. The error o, on the boundary is
zero.

ExAMPLE 5.2. Again the boundar§f? is given by 6.5), but this time we choose

1
(5.7 p(0,p) :== 2+ cosb + 3 sin @ sin ¢.

Usingn = 6 gives us the results shown in Talde2. We Iet<I><(50> denote our initial guess
for the iteration, derived as discussed earlier. See Figwréor an illustration of the images
of the various sphere§52. In this example the\(-) value of the initial mappingbéo) is
significantly improved by the optimization. During the apization the measurds, and Es
do not approach zero, which indicates tkgtis a mapping fromBs3 into Q and is injective.
The errors oiIJéO) and®¢ on the boundary are zero.
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Image of 1/4 52 Image of 172 52

Image of 3/4 52 Image of S

FIG. 5.1.Images of: S2,i = 1,2, 3,4.
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FIG. 5.2.The imagesb (¥ (£52) i =1,2,3,4.



