
2.8: Approximating solution using
Method of Successive Approximation

(also called Picard’s iteration method).

IVP: y′ = f(t, y), y(t0) = y0.

Note: Can always translate IVP to move initial
value to the origin and translate back after solving:

Hence for simplicity in section 2.8, we will assume
initial value is at the origin: y′ = f(t, y), y(0) = 0.

Thm 2.4.2: Suppose the functions
z = f(t, y) and z = ∂f

∂y (t, y) are continuous on

(a, b)× (c, d) and the point (t0, y0) ∈ (a, b)× (c, d),

then there exists an interval (t0 − h, t0 + h) ⊂ (a, b)
such that there exists a unique function y = ϕ(t)
defined on (t0−h, t0+h) that satisfies the following
initial value problem:

y′ = f(t, y), y(t0) = y0.
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Thm 2.8.1 is translated to origin version of Thm 2.4.2:

Thm 2.8.1: Suppose the functions
z = f(t, y) and z = ∂f

∂y (t, y) are continuous for all t

in (−a, a)× (−c, c),
then there exists an interval (−h, h) ⊂ (−a, a) such
that there exists a unique function y = ϕ(t) defined
on (−h, h) that satisfies the following initial value
problem:

y′ = f(t, y), y(0) = 0.

Proof outline (note this is a constructive proof
and thus the proof is very useful).

Given: y′ = f(t, y), y(0) = 0 Eqn (*)
f , ∂f/∂y continuous ∀(t, y) ∈ (−a, a)× (−b, b).

Then y = ϕ(t) is a solution to (*) iff

ϕ′(t) = f(t, ϕ(t)), ϕ(0) = 0 iff∫ t

0
ϕ′(s)ds =

∫ t

0
f(s, ϕ(s))ds, ϕ(0) = 0 iff

ϕ(t) = ϕ(t)− ϕ(0) =
∫ t

0
f(s, ϕ(s))ds

Thus y = ϕ(t) is a solution to (*)

iff ϕ(t) =
∫ t

0
f(s, ϕ(s))ds
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Construct ϕ using method of successive approxim-
ation – also called Picard’s iteration method.

Let ϕ0(t) = 0 (or the function of your choice)

Let ϕ1(t) =
∫ t

0
f(s, ϕ0(s))ds

Let ϕ2(t) =
∫ t

0
f(s, ϕ1(s))ds

...

Let ϕn+1(t) =
∫ t

0
f(s, ϕn(s))ds

Let ϕ(t) = limn→∞ ϕn(t)

To finish the proof, need to answer the following
questions (see book or more advanced class):

1.) Does ϕn(t) exist for all n?

2.) Does sequence ϕn converge?

3.) Is ϕ(t) = limn→∞ ϕn(t) a solution to (*).

4.) Is the solution unique.
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Example: y′ = t+ 2y. That is f(t, y) = t+ 2y

Let ϕ0(t) = 0

Let ϕ1(t) =
∫ t

0
f(s, 0)ds =

∫ t

0
(s+ 2(0))ds

=
∫ t

0
sds = s2

2 |
t
0 = t2

2

Let ϕ2(t) =
∫ t

0
f(s, ϕ1(s))ds =

∫ t

0
f(s, s2

2 )ds

=
∫ t

0
(s+ 2( s

2

2 ))ds =
t2

2 + t3

3

Let ϕ3(t) =
∫ t

0
f(s, ϕ2(s))ds =

∫ t

0
f(s, s2

2 + s3

3 )ds

=
∫ t

0
(s+ 2( s

2

2 + s3

3 ))ds =
t2

2 + t3

3 + t4

6

Let ϕ4(t) =
∫ t

0
f(s, ϕ3(s))ds

=
∫ t

0
f(s, s2

2 + s3

3 + s4

6 )ds

=
∫ t

0
(s+ 2( s

2

2 + s3

3 + s4

6 ))ds

= t2

2 + t3

3 + t4

6 + t5

15...
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Determine formula for ϕn:

Note patterns:∫ t

0
sds = t2

2 =∫ t

0
s2

2 ds =
t3

3·2 =∫ t

0
s3

3·2ds =
t4

4·3·2 =∫ t

0
s4

4·3·2ds =
t5

5·4·3·2 =

Thus look for factorials.

ϕ0(t) = 0

ϕ1(t) =
t2

2

ϕ2(t) =
t2

2 + t3

3

ϕ3(t) =
t2

2 + t3

3 + t4

6

ϕ4(t) =
t2

2 + t3

3 + t4

6 + t5

15 = t2

2 + t3

3 + t4

3·2 + t5

5·3

Thus ϕn(t) =
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FYI (ie not on quizzes/exam):

Defn:
∞∑
k=0

akx
k = lim

n→∞

n∑
k=0

akx
k

= a0 + a1x+ a2x
2 + a3x

3 + ....

Taylor’s Theorem: If f is analytic at 0, then for
small x (i.e., x near 0),

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

= f(0) + f ′(0)x+ f ′′(0)
2 x2 + f ′′′(0)

6 x3 + ...

Example:

et =

∞∑
k=0

tk

k!
and thus ebt =

∞∑
k=0

bktk

k!
for t near 0.

ϕn(t) =
n∑

k=2

2k−2

k!
tk

Thus ϕ(t) = lim
n→∞

ϕn(t) =

∞∑
k=2

2k−2

k!
tk =

1

4

∞∑
k=2

2k

k!
tk

=
1

4
( − − )
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