2.8: Approximating solution using Method of Successive Approximation (also called Picard's iteration method).

IVF: $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$.
Note: Can always translate IVP to move initial value to the origin and translate back after solving:

Hence for simplicity in section 2.8, we will assume initial value is at the origin: $y^{\prime}=f(t, y), y(0)=0$.

The 2.4.2: Suppose the functions
$z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in(a, b) \times(c, d)$, then there exists an interval $\left(t_{0}-h, t_{0}+h\right) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Thm 2.8.1 is translated to origin version of Chm 2.4.2:
Chm 2.8.1: Suppose the functions
$z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous for all t in $(-a, a) \times(-c, c)$,
then there exists an interval $(-h, h) \subset(-a, a)$ such that there exists a unique function $y=\phi(t)$ defined on $(-h, h)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y(0)=0
$$

Proof outline (note this is a constructive proof and thus the proof is very useful).

Given: $y^{\prime}=f(t, y), y(0)=0 \quad$ Eqn $(*)$
$f, \partial f / \partial y$ continuous $\forall(t, y) \in(-a, a) \times(-b, b)$.
Then $y=\phi(t)$ is a solution to $\left({ }^{*}\right)$ eff
$\phi^{\prime}(t)=f(t, \phi(t)), \quad \phi(0)=0 \mathrm{iff}$
$\int_{0}^{t} \phi^{\prime}(s) d s=\int_{0}^{t} f(s, \phi(s)) d s, \quad \phi(0)=0$ eff
$\phi(t)=\phi(t)-\phi(0)=\int_{0}^{t} f(s, \phi(s)) d s$
Thus $y=\phi(t)$ is a solution to $\left({ }^{*}\right)$

$$
\text { iff } \phi(t)=\int_{0}^{t} f(s, \phi(s)) d s
$$

Construct ϕ using method of successive approximation - also called Picard's iteration method.

Let $\phi_{0}(t)=0$ (or the function of your choice)
Let $\phi_{1}(t)=\int_{0}^{t} f\left(s, \phi_{0}(s)\right) d s$
Let $\phi_{2}(t)=\int_{0}^{t} f\left(s, \phi_{1}(s)\right) d s$

Let $\phi_{n+1}(t)=\int_{0}^{t} f\left(s, \phi_{n}(s)\right) d s$
Let $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$
To finish the proof, need to answer the following questions (see book or more advanced class):
1.) Does $\phi_{n}(t)$ exist for all n ?
2.) Does sequence ϕ_{n} converge?
3.) Is $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$ a solution to (*).
4.) Is the solution unique.

Example: $y^{\prime}=t+2 y . \quad$ That is $f(t, y)=t+2 y$
Let $\phi_{0}(t)=0$
Let $\phi_{1}(t)=\int_{0}^{t} f(s, 0) d s=\int_{0}^{t}(s+2(0)) d s$

$$
=\int_{0}^{t} s d s=\left.\frac{s^{2}}{2}\right|_{0} ^{t}=\frac{t^{2}}{2}
$$

Let $\phi_{2}(t)=\int_{0}^{t} f\left(s, \phi_{1}(s)\right) d s=\int_{0}^{t} f\left(s, \frac{s^{2}}{2}\right) d s$

$$
=\int_{0}^{t}\left(s+2\left(\frac{s^{2}}{2}\right)\right) d s=\frac{t^{2}}{2}+\frac{t^{3}}{3}
$$

Let $\phi_{3}(t)=\int_{0}^{t} f\left(s, \phi_{2}(s)\right) d s=\int_{0}^{t} f\left(s, \frac{s^{2}}{2}+\frac{s^{3}}{3}\right) d s$

$$
=\int_{0}^{t}\left(s+2\left(\frac{s^{2}}{2}+\frac{s^{3}}{3}\right)\right) d s=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}
$$

Let $\phi_{4}(t)=\int_{0}^{t} f\left(s, \phi_{3}(s)\right) d s$

$$
\begin{aligned}
& =\int_{0}^{t} f\left(s, \frac{s^{2}}{2}+\frac{s^{3}}{3}+\frac{s^{4}}{6}\right) d s \\
& =\int_{0}^{t}\left(s+2\left(\frac{s^{2}}{2}+\frac{s^{3}}{3}+\frac{s^{4}}{6}\right)\right) d s \\
& =\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}+\frac{t^{5}}{15}
\end{aligned}
$$

Determine formula for ϕ_{n} :
Note patterns:
$\int_{0}^{t} s d s=\frac{t^{2}}{2}=$
$\int_{0}^{t} \frac{s^{2}}{2} d s=\frac{t^{3}}{3 \cdot 2}=$
$\int_{0}^{t} \frac{s^{3}}{3 \cdot 2} d s=\frac{t^{4}}{4 \cdot 3 \cdot 2}=$
$\int_{0}^{t} \frac{s^{4}}{4 \cdot 3 \cdot 2} d s=\frac{t^{5}}{5 \cdot 4 \cdot 3 \cdot 2}=$
Thus look for factorials.
$\phi_{0}(t)=0$
$\phi_{1}(t)=\frac{t^{2}}{2}$
$\phi_{2}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3}$
$\phi_{3}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}$
$\phi_{4}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}+\frac{t^{5}}{15}=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{3 \cdot 2}+\frac{t^{5}}{5 \cdot 3}$

Thus $\phi_{n}(t)=$

FYI (ie not on quizzes/exam):
Defn: $\sum_{k=0}^{\infty} a_{k} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} x^{k}$

$$
=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Taylor's Theorem: If f is analytic at 0 , then for small x (i.e., x near 0),

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} \\
& =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\ldots
\end{aligned}
$$

Example:
$e^{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}$ and thus $e^{b t}=\sum_{k=0}^{\infty} \frac{b^{k} t^{k}}{k!}$ for t near 0 .
$\phi_{n}(t)=\sum_{k=2}^{n} \frac{2^{k-2}}{k!} t^{k}$
Thus $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)=\sum_{k=2}^{\infty} \frac{2^{k-2}}{k!} t^{k}=\frac{1}{4} \sum_{k=2}^{\infty} \frac{2^{k}}{k!} t^{k}$

$$
=\frac{1}{4}(
$$

