3.5: Solving 2nd order linear non-homogeneous DE using method of undetermined coefficients.

Example: Solve $y^{\prime \prime}+4 y=12 t+8 \sin (2 t)$.
Step 1: Solve homogeneous system, $y^{\prime \prime}+4 y=0$
$r^{2}+4=0 \Rightarrow r^{2}=-4 \quad \Rightarrow \quad r= \pm \sqrt{-4}=0 \pm 2 i$
Hence homogeneous soln is $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)$

Step 2a: Find one solution to $y^{\prime \prime}+4 y=12 t$
Possible guess: $y=A t+B$. Then $y^{\prime}=A$ and $y^{\prime \prime}=0$.
Plug in: $0+4(A t+B)=12 t \Rightarrow 4 A t+4 B=12 t+0$
Thus $4 A=12$ and $4 B=0 \Rightarrow A=3$ and $B=0$
Thus $y=3 t$ is a solution to $y^{\prime \prime}+4 y=12 t$.
Simpler guess: since there is no y^{\prime} term, we didn't need the B term in our guess. We could have guessed $y=A t$ instead for this particular problem (and other analogous problems). If you make similar observations when you do your HW, you can save time when you do comparable problems.

Step 2b: Find one solution to $y^{\prime \prime}+4 y=8 \sin (2 t)$
Incorrect guess: $y=A \sin (2 t)$. Then $y^{\prime}=2 A \cos (2 t)$ and $y^{\prime \prime}=-4 A \sin (2 t)$.

Note: since no y^{\prime} term, did not include a $B \cos (2 t)$ term in guess.

Plug in: $-4 A \sin (2 t)+4 A \sin (2 t)=8 \sin (2 t)$.

$$
\text { Thus } 0=8 \sin (2 t) \text {. }
$$

Thus equation has no solution for A. Hence guess is wrong.

Note this guess is wrong because $y=\sin (2 t)$ is a homogeneous solution. This is why we always solve homogeneous equations first. If a function is a solution to a homogeneous equation, then no constant multiple of that function can be a solution to a nonhomogeneous solution since it is a homogeneous solution.

If your normal guess is a homogeneous solution:

$$
\text { Multiply it by } t
$$

until it is no longer a homogeneous solution.

Incorrect guess: $y=\operatorname{Atsin}(2 t)$.
Then $y^{\prime}=A \sin (2 t)+2 A t \cos (2 t)$ and
$y^{\prime \prime}=2 A \cos (2 t)+2 A \cos (2 t)-4 A t \sin (2 t)$

$$
=4 A \cos (2 t)-4 A t \sin (2 t)
$$

Plug into $y^{\prime \prime}+4 y=8 \sin (2 t)$:
$4 A \cos (2 t)-4 A t \sin (2 t)+4 A t \sin (2 t)=8 \sin (2 t)$
But this equation has no solution for A. Note we need to add a cosine term to our guess so that we can cancel out the cosine term on LHS:

Better guess: $y=t[A \sin (2 t)+B \cos (2 t)]$.

Best guess: $y=B t \cos (2 t)$
Then $y^{\prime}=B \cos (2 t)-2 B t \sin (2 t)$
and $y^{\prime \prime}=-2 B \sin (2 t)-2 B \sin (2 t)-4 B t \cos (2 t)$

$$
=-4 B \sin (2 t)-4 B t \cos (2 t)
$$

Plug into $y^{\prime \prime}+4 y=8 \sin (2 t)$
$-4 B \sin (2 t)-4 B t \cos (2 t)+4 B t \cos (2 t)=8 \sin (2 t)$
$-4 B \sin (2 t)=8 \sin (2 t) \Rightarrow-4 B=8 \Rightarrow B=-2$

Thus $y=-2 t \cos (2 t)$ is a solution to

$$
y^{\prime \prime}+4 y=8 \sin (2 t)
$$

Note: Guessing wrong is NOT a big deal. You can use your wrong guess to determine a correct guess (though guessing right the first time will save you time).

Recall you are looking for ONE solution to your NON-homogeneous equation.

- If you find an infinite number of solns, choose one.
- If your guess gives you one solution, use it.
- If your guess leads to no solutions, than make a different (improved) educated guess.

To find general solution to non-homogeneous LINEAR differential equation: combine all solutions

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+3 t-2 t \cos (2 t)
$$

