5.1 Review of Power Series.

Definition: $\sum_{n=0}^{\infty} a_n (x - x_0)^n = \lim_{n \to \infty} \sum_{n=0}^k a_n (x - x_0)^n$

Taylor's Theorem

Suppose f has n + 1 continuous derivatives on an open interval containing a. Then for each x in the interval,

$$f(x) = \left[\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}\right] + R_{n+1}(x)$$

where the error term $R_{n+1}(x)$ satisfies $R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ for some c between a and x.

The *infinite* Taylor series converges to f,

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 if and only if $\lim_{n \to \infty} R_n(x) = 0$.

Defn: The function f is said to be **analytic** at a is its Taylor series expansion about x = a has a positive radius of convergence.

1.) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges at the point x if and only if $\lim_{n\to\infty} \sum_{n=0}^k a_n (x-x_0)^n$ exists at the point x.

2.) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges absolutely at the point x if and only if $\sum_{n=0}^{\infty} |a_n| |x-x_0|^n$ converges at the point x

If a series converges absolutely, then it also converges.

3.) Ratio test for absolute convergence:

Let
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| = |x - x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x - x_0| L$$

The power series converges at the value x if $|x - x_0| < \frac{1}{L}$ The power series diverges at the value x if $|x - x_0| > \frac{1}{L}$ The ratio test give no info at the value x if $|x - x_0| = \frac{1}{L}$ Note $\frac{1}{L}$ is the **radius of convergence**.