
5.3: Series solutions near an ordinary point, part II

A power series solution exists in a neighborhood of x0 when the
solution is analytic at x0. I.e, the solution is of the form y =
Σ∞

n=0an(x − x0)
n where this series has a nonzero radius of con-

vergence about x0.

That is f(x) = Σ∞
n=0

f(n)(0)
n! (x− x0)

n for x near x0.

Thus there are constants an = f(n)(x0)
n! such that,

f(x) = Σ∞
n=0an(x− x0)

n.

When do we know an analytic solution exists? I.e, when is this
method guaranteed to work?

Special case: P (x)y′′ +Q(x)y′ +R(x)y = 0

Then y′′(x) = −[Q
P
y′ + R

P
y]

y′′′(x) = −[(Q
P
)′y′ + Q

P
y′′ + R

P

′
y + R

P
y′]

If f(x) = Σ∞
n=0an(x − x0)

n is a solution where an = f(n)(x0)
n! , then

a0 = f(x0), a1 = f ′(x0)

2!a2 = f ′′(x0) = −[Q
P
f ′(x0) +

R
P
f(x0)] = −[Q

P
a1 +

R
P
a0]

3!a3 = f ′′′(x0) = −[(Q
P
)′f ′(x0) +

Q
P
f ′′(x0) +

R
P

′
f(x0) +

R
P
f ′(x0)]

To find an we could continue taking derivative including derivatives
of Q

P
and R

P
(but much easier to plug series into equation – ie 5.2

method).

Definition: The point x0 is an ordinary point of the ODE,

P (x)y′′ +Q(x)y′ +R(x)y = 0

if Q
P

and R
P

are analytic at x0. If x0 is not an ordinary point, then
it is a singular point.

Theorem 5.3.1: If x0 is an ordinary point of the ODE
P (x)y′′+Q(x)y′+R(x)y = 0, then the general solution to this ODE
is

y = Σ∞
n=0an(x− x0)

n = a0φ0(x) + a1φ1(x)

where φi are power series solutions that are analytic at x0. The
solutions φ0, φ1 form a fundamental set of solutions. The radius of
convergence for each of these series solutions is at least as large as
the minimum radii of convergence of the series for Q

P
and R

P
.

Theorem: If P and Q are polynomial functions with no common
factors, then y = Q(x)/P (x) is analytic at x0 if and only if
P (x0) 6= 0. Moreover the radius of convergence of Q(x)/P (x) is

min{||x0 − x|| | x ∈ C, P (x) = 0}
where ||x0 − x|| = distance from x0 to x in the complex plane.

Ex: x(x+ 1)y′′ + x2

x2+1y
′ + x

x−2y = 0

y′′ + x
(x2+1)(x+1)y

′ + 1
(x−2)(x+1)y = 0

Then x0 = −1, 2 are singular points. All other points are ordinary
points.

The zeros of the denominators are x = ±i,−1, 2

Radius of convergence for the series solution to this ODE about the
point x0 if x0 6= −1, 2 is at least as large as
minimum{

√

x2
0 + (±1)2, |x0 − (−1)|, |x0 − 2|}

If x0 = 0, radius of convergence ≥ 1

If x0 = −3, radius of convergence ≥ 2

If x0 = 3, radius of convergence ≥ 1

If x0 = 1
3 , radius of convergence ≥

√

( 13 )
2 + (±1)2 =

√
10
3



5.4: Euler equation: x2y′′ + αxy′ + βy = 0

Let L(y) = x2y′′ + αxy′ + βy

Recall that L is a linear function and if f is a solution to the euler
equation, then L(f) = 0.

Note that if x 6= 0, then x is an ordinary point and if x = 0, then x
is a singular point.

Suppose x > 0. Claim L(xr) = 0 for some value of r

y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2

x2y′′ + αxy′ + βy = 0

x2r(r − 1)xr−2 + αxrxr−1 + βxr = 0

(r2 − r)xr + αrxr + βxr = 0

xr[r2 − r + αr + β] = 0

xr[r2 + (α− 1)r + β] = 0

Thus xr is a solution iff r2 + (α− 1)r + β = 0

Thus r =
−(α−1)±

√
(α−1)2−4β

2

Suppose x < 0. Claim L((−x)r) = 0 for some value of r

y = (−x)r, y′ = −r(−x)r−1, y′′ = r(r − 1)(−x)r−2

x2y′′ + αxy′ + βy = 0

x2r(r − 1)(−x)r−2 − αxr(−x)r−1 + β(−x)r = 0

(r2 − r)(−x)r + αr(−x)r + β(−x)r = 0

(−x)r[r2 − r + αr + β] = 0

(−x)r[r2 + (α− 1)r + β] = 0

Thus (−x)r is a solution iff r2 + (α− 1)r + β = 0

Thus r =
−(α−1)±

√
(α−1)2−4β

2

Recall |x| =
{

x if x > 0
−x if x < 0

Thus |x|r =

{

xr if x > 0
(−x)r if x < 0

Thus if r =
−(α−1)±

√
(α−1)2−4β

2 , then y = |x|r is a solution to
Euler’s equation for x 6= 0.

Case 1. 2 real distinct roots, r1, r2:
General solution is y = c1|x|r1 + c2|x|r2 .

Case 2: 2 complex solutions ri = λ± iµ :

Convert solution to form without complex numbers.

Note |x|λ±iµ = eln(|x|
λ±iµ) = e(λ±iµ)ln|x| = eλln|x|ei(±µln|x|)

= |x|λ[cos(±µln|x|) + isin(±µln|x|)]

= |x|λ[cos(µln|x|)± isin(µln|x|)]

Case 3: 1 repeated root: Find 2nd solution.


