5.3: Series solutions near an ordinary point, part II

A power series solution exists in a neighborhood of x_0 when the solution is analytic at x_0 . I.e., the solution is of the form $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ where this series has a nonzero radius of convergence about x_0 .

That is
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x - x_0)^n$$
 for x near x_0 .

Thus there are constants $a_n = \frac{f^{(n)}(x_0)}{n!}$ such that,

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

When do we know an analytic solution exists? I.e, when is this method guaranteed to work?

Special case:
$$P(x)y'' + Q(x)y' + R(x)y = 0$$

Then $y''(x) = -[\frac{Q}{P}y' + \frac{R}{P}y]$
 $y'''(x) = -[(\frac{Q}{P})'y' + \frac{Q}{P}y'' + \frac{R}{P}'y + \frac{R}{P}y']$
If $f(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n$ is a solution where $a_n = \frac{f^{(n)}(x_0)}{n!}$, then $a_0 = f(x_0), a_1 = f'(x_0)$
 $2!a_2 = f''(x_0) = -[\frac{Q}{P}f'(x_0) + \frac{R}{P}f(x_0)] = -[\frac{Q}{P}a_1 + \frac{R}{P}a_0]$
 $3!a_3 = f'''(x_0) = -[(\frac{Q}{P})'f'(x_0) + \frac{Q}{P}f''(x_0) + \frac{R}{P}f(x_0) + \frac{R}{P}f'(x_0)]$

To find a_n we could continue taking derivative including derivatives of $\frac{Q}{P}$ and $\frac{R}{P}$ (but much easier to plug series into equation – ie 5.2 method).

Definition: The point x_0 is an *ordinary point* of the ODE,

$$P(x)y'' + Q(x)y' + R(x)y = 0$$

if $\frac{Q}{P}$ and $\frac{R}{P}$ are analytic at x_0 . If x_0 is not an ordinary point, then it is a *singular point*.

Theorem 5.3.1: If x_0 is an ordinary point of the ODE P(x)y'' + Q(x)y' + R(x)y = 0, then the general solution to this ODE is $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 \phi_0(x) + a_1 \phi_1(x)$

where ϕ_i are power series solutions that are analytic at x_0 . The solutions ϕ_0, ϕ_1 form a fundamental set of solutions. The radius of convergence for each of these series solutions is at least as large as the minimum radii of convergence of the series for $\frac{Q}{P}$ and $\frac{R}{P}$.

Theorem: If P and Q are polynomial functions with no common factors, then y = Q(x)/P(x) is analytic at x_0 if and only if $P(x_0) \neq 0$. Moreover the radius of convergence of Q(x)/P(x) is $min\{||x_0 - x|| \mid x \in \mathbf{C}, P(x) = 0\}$

where $||x_0 - x|| = \text{distance from } x_0 \text{ to } x \text{ in the complex plane.}$

Ex:
$$x(x+1)y'' + \frac{x^2}{x^2+1}y' + \frac{x}{x-2}y = 0$$

 $y'' + \frac{x}{(x^2+1)(x+1)}y' + \frac{1}{(x-2)(x+1)}y = 0$

Then $x_0 = -1, 2$ are singular points. All other points are ordinary points.

The zeros of the denominators are $x = \pm i, -1, 2$

Radius of convergence for the series solution to this ODE about the point x_0 if $x_0 \neq -1, 2$ is at least as large as $\min \left\{ \sqrt{x_0^2 + (\pm 1)^2}, |x_0 - (-1)|, |x_0 - 2| \right\}$

If $x_0 = 0$, radius of convergence ≥ 1 If $x_0 = -3$, radius of convergence ≥ 2 If $x_0 = 3$, radius of convergence ≥ 1 If $x_0 = \frac{1}{3}$, radius of convergence $\geq \sqrt{(\frac{1}{3})^2 + (\pm 1)^2} = \frac{\sqrt{10}}{3}$ 5.4: Euler equation: $x^2y'' + \alpha xy' + \beta y = 0$

Let
$$L(y) = x^2 y'' + \alpha x y' + \beta y$$

Recall that L is a linear function and if f is a solution to the euler equation, then L(f) = 0.

Note that if $x \neq 0$, then x is an ordinary point and if x = 0, then x is a singular point.

Suppose x > 0. Claim $L(x^r) = 0$ for some value of r

$$y = x^{r}, y' = rx^{r-1}, y'' = r(r-1)x^{r-2}$$

$$x^{2}y'' + \alpha xy' + \beta y = 0$$

$$x^{2}r(r-1)x^{r-2} + \alpha xrx^{r-1} + \beta x^{r} = 0$$

$$(r^{2} - r)x^{r} + \alpha rx^{r} + \beta x^{r} = 0$$

$$x^{r}[r^{2} - r + \alpha r + \beta] = 0$$
Thus x^{r} is a solution iff $r^{2} + (\alpha - 1)r + \beta = 0$
Thus $r = \frac{-(\alpha - 1) \pm \sqrt{(\alpha - 1)^{2} - 4\beta}}{2}$
Suppose $x < 0$. Claim $L((-x)^{r}) = 0$ for some value of r

$$y = (-x)^{r}, y' = -r(-x)^{r-1}, y'' = r(r-1)(-x)^{r-2}$$

$$x^{2}y'' + \alpha xy' + \beta y = 0$$

$$x^{2}r(r-1)(-x)^{r-2} - \alpha xr(-x)^{r-1} + \beta(-x)^{r} = 0$$

 $(r^{2} - r)(-x)^{r} + \alpha r(-x)^{r} + \beta(-x)^{r} = 0$

 $(-x)^{r}[r^{2} - r + \alpha r + \beta] = 0$ $(-x)^{r}[r^{2} + (\alpha - 1)r + \beta] = 0$ Thus $(-x)^{r}$ is a solution iff $r^{2} + (\alpha - 1)r + \beta = 0$ Thus $r = \frac{-(\alpha - 1) \pm \sqrt{(\alpha - 1)^{2} - 4\beta}}{2}$ Recall $|x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$ Thus $|x|^{r} = \begin{cases} x^{r} & \text{if } x > 0 \\ (-x)^{r} & \text{if } x < 0 \end{cases}$ Thus if $r = \frac{-(\alpha - 1) \pm \sqrt{(\alpha - 1)^{2} - 4\beta}}{2}$, then $y = |x|^{r}$ is a solution to Euler's equation for $x \neq 0$.

Case 1. 2 real distinct roots, r_1, r_2 : General solution is $y = c_1 |x|^{r_1} + c_2 |x|^{r_2}$.

Case 2: 2 complex solutions $r_i = \lambda \pm i\mu$:

Convert solution to form without complex numbers.

Note
$$|x|^{\lambda \pm i\mu} = e^{ln(|x|^{\lambda \pm i\mu})} = e^{(\lambda \pm i\mu)ln|x|} = e^{\lambda ln|x|}e^{i(\pm \mu ln|x|)}$$
$$= |x|^{\lambda}[cos(\pm \mu ln|x|) + isin(\pm \mu ln|x|)]$$

$$= |x|^{\lambda} [\cos(\mu ln|x|) \pm i \sin(\mu ln|x|)]$$

Case 3: 1 repeated root: Find 2nd solution.