Section 5.4 continued

Solve $x^2y'' - 2xy' = 0$ (*).

We could solve by letting v = y', but we will instead use 5.4 methods

Note x is an ordinary point iff $x \neq 0$ $(y'' - \frac{2}{x}y' = 0.)$ x = 0 is a singular point.

Note $x^2 x^{r-2} r(r-1) - 2x x^{r-1} r = 0$ implies $r^2 - r - 2r = 0$ and recall $y = (-x)^r$ gives same equation for r as $y = x^r$.

Thus $y = |x|^r$ implies $r^2 + (\alpha - 1)r + \beta = r^2 - 3r + 0 = r(r - 3) = 0$ Thus r = 0, 3. Thus $y = |x|^0 = 1$ and $y = |x|^3$ are solutions to (*) Since (*) is a linear equation, the general solution is $y = c_1 + c_2 |x|^3$.

Note an equivalent general solution is $y = k_1 + k_2 x^3$.

Both forms are valid for all x.

When is a unique solution to the following initial value problem guaranteed?

$$x^{2}y'' - 2xy' = 0, \quad y(t_{0}) = y_{0}, \quad y'(t_{0}) = y_{1} \quad (**)$$
$$y'' - \frac{2}{x}y' = 0, \quad y(t_{0}) = y_{0}, \quad y'(t_{0}) = y_{1}$$

Since $\frac{2}{x}$ and the zero constant function are continuous on $(-\infty,0) \cup (0,\infty),$

(**) has a unique solution for $t_0 < 0$ and this solution exists on $(-\infty, 0)$.

(**) has a unique solution for $t_0 > 0$ and this solution exists on $(0, \infty)$.

There are an infinite number of solutions for y(0) = a, y'(0) = 0.

How is x^r defined:

If n is a positive integer: $x^n = x \cdot x \cdot \ldots \cdot x$

If m is a positive integer: If $f(x) = x^m$, then $f^{-1}(x) = x^{\frac{1}{m}}$ and $x^{\frac{n}{m}} = (x^n)^{\frac{1}{m}}$

Let $r \ge 0$. Let r_n be any sequence consisting of positive rational numbers such that $\lim_{n\to\infty}r_n = r$. Then $x^r = \lim_{n\to\infty}x^{r_n}$.

See more advanced class for why the above is well-defined.

If r < 0, then $x^r = x^{-r}$.

If x is a real number, when is x^r a real number?

 $x^n = x \cdot x \cdot \ldots \cdot x$ is a real number when n is a positive integer.

If
$$f(x) = x^n$$
, then the image of $f = \begin{cases} \text{real numbers} & n \text{ odd} \\ [0, \infty) & n \text{ even} \end{cases}$

Thus if
$$f^{-1}(x) = x^{\frac{1}{n}}$$
 is real-valued, then
the domain of f^{-1} is
$$\begin{cases} \text{real numbers} & n \text{ odd} \\ [0,\infty) & n \text{ even} \end{cases}$$

In complex analysis, $\left(\frac{1+i\sqrt{3}}{2}\right)^3 = -1$, $(-1)^3 = -1$, $\left(\frac{1-i\sqrt{3}}{2}\right)^3 = -1$

Recall
$$\left(e^{\frac{i\pi}{3}}\right)^3 = (\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})^3 = -1$$

Complex numbers are also roots of unity:

$$\left(e^{\frac{2i\pi}{3}}\right)^3 = 1$$
 $\left(e^{\frac{-2i\pi}{3}}\right)^3 = 1$, $(1)^3 = 1$

Solve $x^2y'' + \alpha xy' + \beta y = 0$. Let $y = x^r$, $y' = rx^{r-1}, y'' = r(r-1)x^{r-2}$ (case when $y = (-x)^r$ is similar). $x^{2}x^{r-2}r(r-1) + \alpha xx^{r-1}r + \beta x^{r} = 0$ $x^{r}[r^{2}-r+\alpha r+\beta]=0$ for all x implies $r^{2}+(\alpha-1)r+\beta=0$ Thus x^r is a solution iff $r = \frac{-(\alpha-1)\pm\sqrt{(\alpha-1)^2-4\beta}}{2}$ **Case 1:** Two real roots, r_1, r_2 . General solution is $y = c_1 |x|^{r_1} + c_2 |x|^{r_2}$ **Case 2:** Two complex roots, $r_i = \lambda \pm i\mu$: Convert solution to form without complex numbers. Note $|x|^{\pm i\mu} = e^{ln(|x|^{\pm i\mu})} = e^{(\pm i\mu)ln|x|} = e^{i(\pm \mu ln|x|)}$ $= cos(\pm \mu ln|x|) + isin(\pm \mu ln|x|)$ $= cos(\mu ln|x|) \pm isin(\mu ln|x|)$ General solution is $y = c_1 |x|^{r_1} + c_2 |x|^{r_2} = c_1 |x|^{\lambda + i\mu} + c_2 |x|^{\lambda - i\mu}$ $= |x|^{\lambda} (c_1 |x|^{i\mu} + c_2 |x|^{-i\mu})$ $= |x|^{\lambda} (c_1 [\cos(\mu ln|x|) + i \sin(\mu ln|x|)] + c_2 [\cos(\mu ln|x|) - i \sin(\mu ln|x|)])$

$$= |x|^{\lambda} ([c_1 + c_2] cos(\mu ln |x|) + i[c_1 - c_2] sin(\mu ln |x|))$$

$$= |x|^{\lambda} (k_1 \cos(\mu \ln |x|) + k_2 \sin(\mu \ln |x|))$$

$$= k_1 |x|^{\lambda} \cos(\mu \ln |x|) + k_2 |x|^{\lambda} \sin(\mu \ln |x|)$$

Case 3: one repeated root, $r_1 = \frac{-(\alpha - 1)}{2}$. (i.e., $\sqrt{(\alpha - 1)^2 - 4\beta} = 0$):

Thus $|x|^{r_1}$ is a solution. Find 2nd solution.

Method 1. Reduction of order: Suppose $y = u(x)|x|^{r_1}$ is a solution to $x^2y'' + \alpha xy' + \beta y = 0$. Plug in and determine u(x)

Method 2: Let
$$L(y) = x^2 y'' + \alpha x y' + \beta y$$
 where $y' = \frac{dy}{dx}$.
 $L(|x|^r) = |x|^r (r - r_1)^2$
 $\frac{\partial}{\partial r} [L(|x|^r)] = \frac{\partial}{\partial r} [|x|^r (r - r_1)^2] = (|x|^r)' (r - r_1)^2 + 2|x|^r (r - r_1) = 0$
if $r = r_1$.

Suppose x is constant with respect to r and all the partial derivatives are continuous. Then

$$\begin{split} \frac{\partial}{\partial r}[L(y)] &= \frac{\partial}{\partial r}[x^2y'' + \alpha xy' + \beta y] = x^2 \frac{\partial y''}{\partial r} + \alpha x \frac{\partial y'}{\partial r} + \beta \frac{\partial y}{\partial r} \\ &= x^2 \frac{\partial}{\partial r}[\frac{\partial^2 y}{\partial x^2}] + \alpha x \frac{\partial}{\partial r}[\frac{\partial y}{\partial x}] + \beta \frac{\partial y}{\partial r} \\ &= x^2 \frac{\partial^2}{\partial x^2}[\frac{\partial y}{\partial r}] + \alpha x \frac{\partial}{\partial x}[\frac{\partial y}{\partial r}] + \beta \frac{\partial y}{\partial r} \\ &= L(\frac{\partial y}{\partial r}) \text{ for all } r \end{split}$$

$$L(\frac{\partial |x|^r}{\partial r}) = \frac{\partial}{\partial r} [L(|x|^r)] = 0 \text{ for } r = r_1.$$

$$\frac{\partial |x|^r}{\partial r} = \frac{\partial e^{ln|x|^r}}{\partial r} \frac{\partial e^{rln|x|}}{\partial r} = (e^{rln|x|})ln|x| = |x|^r ln|x|$$

Thus $|x|^{r_1} ln |x|$ is a solution.

Thus general solution is $y = c_1 |x|^{r_1} + c_2 |x|^{r_1} ln |x|$

since by the Wronskian, $|x|^{r_1}$ and $|x|^{r_1} ln |x|$ are linearly independent. Suppose x > 0 and $r_1 \neq 0$.

$$\begin{aligned} x^{r_1} & x^{r_1} ln |x| \\ r_1 x^{r_1 - 1} & r_1 x^{r_1 - 1} ln |x| + x^{r_1 - 1} \\ &= x^{r_1} (r_1 x^{r_1 - 1} ln |x| + x^{r_1 - 1}) - x^{r_1} ln |x| r_1 x^{r_1 - 1} \\ &= x^{2r_1 - 1} [r_1 ln |x| + 1 - ln |x| r_1] = x^{2r_1 - 1} \neq 0 \text{ for } x \neq 0 \end{aligned}$$

Other cases for Wronskian are similar.