5.5 Series Solutions Near a Regular Singular Point, Part I

Theorem 5.3.1: If $p(x)$ and $q(x)$ are analytic at x_{0} (i.e., x_{0} is an ordinary point of the ODE $\left.y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0\right)$, then the general solution to this ODE is

$$
y=\Sigma_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} \phi_{0}(x)+a_{1} \phi_{1}(x)
$$

where ϕ_{i} are power series solutions that are analytic at x_{0}. The solutions ϕ_{0}, ϕ_{1} form a fundamental set of solutions. The radius of convergence for each of these series solutions is at least as large as the minimum radii of convergence of the series for $\frac{Q}{P}$ and $\frac{R}{P}$.

If you prefer a power series expansion about 0 , use u-substitution: let $u=x-x_{0}$. Then $p\left(u+x_{0}\right)$ and $q\left(u+x_{0}\right)$ are analytic at 0
(Semi-failed) attempt to transform 5.5 problem into 5.4 problem:
5.5: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
$x^{2} y^{\prime \prime}+x^{2} p(x) y^{\prime}+x^{2} q(x) y=0$
$x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y=0$ where $x p(x)$ and $x^{2} q(x)$ are functions of x.

5.4: $x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0$ where α, β are constants.

Combine 5.3/5.4 methods.
Defn: x_{0} is a regular singular value if x_{0} is a singular value and $x p(x)$ and $x^{2} q(x)$ are analytic at x_{0}. A singular value which is not regular is called irregular.

Examples:
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$, regular singular value: $x=0$.
$y^{\prime \prime}+\frac{y^{\prime}}{x^{2}}+\frac{y}{x}=0$, irregular singular value: $x=0$.
$y^{\prime \prime}+y^{\prime}+\frac{y}{x^{3}}=0$, irregular singular value: $x=0$.

If $p(x)$ and $q(x)$ are rational functions, then $x p(x)$ and $x^{2} q(x)$ are analytic iff $\lim _{x \rightarrow 0} x p(x)$ and iff $\lim _{x \rightarrow 0} x^{2} q(x)$ are finite. (i.e., after reducing fractions, x is not in the denominator.
Ex: $p(x)=\frac{1}{x}$ implies $x p(x)=\frac{x}{x}=1$
Ex: $p(x)=\frac{1}{x^{2}}$ implies $x p(x)=\frac{x}{x^{2}}=\frac{1}{x}$
If $x_{0}=0$ is a regular singular value of the linear homogeneous DE , $x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+x^{2} q(x) y=0\left(^{*}\right)$, then
$x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}$ and $x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}$ for constants p_{n}, q_{n}.

If $y=x^{r} \Sigma_{n=0}^{\infty} a_{n} x^{n}=\Sigma_{n=0}^{\infty} a_{n} x^{n+r}$ is a solution to $\left(^{*}\right)$ where $r \neq 0$.
$y^{\prime}=\Sigma_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}$ and $y^{\prime \prime}=\Sigma_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}$

$$
\begin{array}{r}
x^{2} \Sigma_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}+x[x p(x)] \Sigma_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
+\left[x^{2} q(x)\right] \Sigma_{n=0}^{\infty} a_{n} x^{n+r} \\
\Sigma_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r}+[x p(x)] \Sigma_{n=0}^{\infty}(n+r) a_{n} x^{n+r} \\
+\left[x^{2} q(x)\right] \Sigma_{n=0}^{\infty} a_{n} x^{n+r} \\
\Sigma_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r}+\left(\Sigma_{n=0}^{\infty} p_{n} x^{n}\right)\left(\Sigma_{n=0}^{\infty}(n+r) a_{n} x^{n+r}\right) \\
+\left(\Sigma_{n=0}^{\infty} q_{n} x^{n}\right)\left(\Sigma_{n=0}^{\infty} a_{n} x^{n+r}\right)
\end{array}
$$

Thus the coefficient of x^{r} is $r(r-1) a_{0}+p_{0} r a_{0}+q_{0} a_{0}=0$
We can take $a_{0} \neq 0$. Thus $r(r-1)+p_{0} r+q_{0}=0$
Thus we can solve for r using the quadratic formula.
Case 1: $r_{1}>r_{2}$ both real and $r_{1}-r_{2}$ is not an integer.
Case 2: $r_{1}>r_{2}$ both real and $r_{1}-r_{2}=p, p$ an integer.
Case 3: one repeated root.
Case 4: two complex roots.

