7.6: Complex eigenvalue example: Solve $\mathbf{x}^{\prime}=\left[\begin{array}{cc}3 & -13 \\ 5 & 1\end{array}\right] \mathbf{x}$

Step 1 Find eigenvalues: $\operatorname{det}(A-r I)=0$
$\operatorname{det}(A-r I)=\left|\begin{array}{cc}3-r & -13 \\ 5 & 1-r\end{array}\right|=(3-r)(1-r)+65=r^{2}-4 r+68=0$
Thus $r=\frac{4 \pm \sqrt{4^{2}-4(68)}}{2}=\frac{4 \pm \sqrt{4(4-68)}}{2}=\frac{4 \pm 2 \sqrt{-64}}{2}=2 \pm 8 i$
Step 2 Find eigenvectors: Solve $(A-r I) \mathbf{x}=\mathbf{0}$
$A-(2 \pm 8 i) I=\left[\begin{array}{cc}3-(2 \pm 8 i) & -13 \\ 5 & 1-(2 \pm 8 i)\end{array}\right]=\left[\begin{array}{cc}1 \mp 8 i & -13 \\ 5 & -1 \mp 8 i\end{array}\right]$
Solve $\left[\begin{array}{cc}1 \mp 8 i & -13 \\ 5 & -1 \mp 8 i\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{cc}1 \mp 8 i & -13 \\ 5 & -1 \mp 8 i\end{array}\right]\left[\begin{array}{c}13 \\ 1 \mp 8 i\end{array}\right]=\left[\begin{array}{c}(1 \mp 8 i) 13-13(1 \mp 8 i) \\ 5(13)+(-1 \mp 8 i)(1 \mp 8 i)\end{array}\right]=\left[\begin{array}{c}0 \\ 65+\left(-1+64 i^{2}\right)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Thus any non-zero multiple of $\left[\begin{array}{c}13 \\ 1 \mp 8 i\end{array}\right]$ is an eigenvector of A with eigen value $2 \pm 8 i$.
Note: $\left[\begin{array}{c}1 \pm 8 i \\ 5\end{array}\right]$ is a multiple of $\left[\begin{array}{c}13 \\ 1 \mp 8 i\end{array}\right]$ since $\left[\begin{array}{cc}1 \mp 8 i & -13 \\ 5 & -1 \mp 8 i\end{array}\right]\left[\begin{array}{c}1 \pm 8 i \\ 5\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Thus we can use either $\left[\begin{array}{c}1 \pm 8 i \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 5\end{array}\right] \pm i\left[\begin{array}{l}8 \\ 0\end{array}\right] \quad$ or $\left[\begin{array}{c}13 \\ 1 \mp 8 i\end{array}\right] \quad$ or \quad any nonzero multiple.
General solution:
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=c_{1} e^{2 t}\left(\left[\begin{array}{l}1 \\ 5\end{array}\right] \cos (8 t)-\left[\begin{array}{l}8 \\ 0\end{array}\right] \sin (8 t)\right)+c_{2} e^{2 t}\left(\left[\begin{array}{l}1 \\ 5\end{array}\right] \sin (8 t)+\left[\begin{array}{l}8 \\ 0\end{array}\right] \cos (8 t)\right)$
Slope field for x_{2} vs $x_{1}: \quad \frac{d x_{2}}{d x_{1}}=\frac{\frac{d x_{2}}{d t}}{\frac{d x_{1}}{d t}}=\frac{x_{2}^{\prime}}{x_{1}^{\prime}}=\frac{5 x_{1}+x_{2}}{3 x_{1}-13 x_{2}}$
Note slope 0 's occur when $5 x_{1}+x_{2}=0$, ie, $x_{2}=-5 x_{1}$.
Note slope ∞ 's occur when $3 x_{1}-13 x_{2}=0$, ie, $x_{2}=\frac{3}{13} x_{1}$.
Determine where slopes are positive vs negative for regions between these lines:
For example, along the positive x_{1} axis slope is positive: $x_{2}=0$ and $\frac{d x_{2}}{d x_{1}}=\frac{5 x_{1}}{3 x_{1}}=\frac{ \pm}{+}, \quad x_{1}>0$
For example, along the positive x_{2} axis slope is negative: $x_{1}=0$ and $\frac{d x_{2}}{d x_{1}}=\frac{x_{2}}{-13 x_{2}}=\frac{ \pm}{-}, x_{2}>0$

