
Math 3600 Differential Equations Exam #1
Sept 30, 2016 SHOW ALL WORK

[10] 1a.) Draw the direction field for the following differential equation:

y′ = (y − 2)(y + 1)2

[4] 1b.) On the direction field above, draw the solution to the above differential equation
that satisfies the initial condition y(1) = 0.

[6] 1c.) Does the differential equation whose direction field is given above have any
equilibrium solutions? If so, state whether they are stable, semi-stable or unstable.

Equilibrium solution = constant solution, y = c and thus y′ = 0

(y − 2)(y + 1)2 = 0 implies y = 2,−1

y = 2 is unstable, while y = −1 is semi-stable.



[15] 2.) Solve the initial value problem for y: y′ + 3x
y−4 = 0, y(1) = −2.

dy
dx = − 3x

y−4∫
(y − 4)dy =

∫
−3xdx

y2

2 − 4y = − 3
2x

2

y2 − 8y = −3x2 + C

y2 − 8y + 3x2 + C = 0

y =
8±
√

64−4(3x2+C)

2 = 4±
√

16− 3x2 + C = y

y(1) = −2: −2 = 4±
√

16− 3(1)2 + C implies −6 = −
√

16− 3 + C

Note initial value determines sign of ±. In this case, IVP only has a solution when we
choose the negative sign. The the IVP in this case means y = 4−

√
16− 3x2 + C where

we determine C below:

36 = 13 + C. Thus C = 36− 13 = 23 and y = 4−
√

16− 3x2 + 23 = 4−
√

39− 3x2

Answer: y = 4−
√

39− 3x2



3.) Suppose y′ = y − t+ 1, y(0) = 0.

Let φ0(t) = 0 and define {φn(t)} by the method of successive approximation (i.e, Picards
iteration method). Determine the following:

y′ = f(t, y)

φ1(t) =
∫ t

0
f(s, φ0(s))ds =

∫ t

0
f(s, 0)ds =

∫ t

0
(0− s+ 1)ds =

(− s2

2 + s)|t0 = − t2

2 + t− 0

[3] 3a) φ1(t) = − t2

2 + t

φ2(t) =
∫ t

0
f(s, φ1(s))ds =

∫ t

0
f(s,− s2

2 + s)ds =
∫ t

0
(− s2

2 + s− s+ 1)ds

=
∫ t

0
(− s2

2 + 1)ds = (− s3

6 + s)|t0 = − t3

6 + t− 0

[3] 3b) φ2(t) = − t3

6 + t

φ3(t) =
∫ t

0
f(s, φ2(s))ds =

∫ t

0
f(s,− s3

6 + s)ds =
∫ t

0
(− s3

6 + s− s+ 1)ds

=
∫ t

0
(− s3

6 + 1)ds = (− s4

24 + s)|t0 = − t3

24 + t− 0

[3] 3c) φ3(t) = − t4

24 + t

[4] 3d) φn(t) = − tn+1

(n+1)! + t

[3] 3e) limn→∞φn(t) = t

[2] 3f) Is φ(t) = limn→∞φn(t) a solution to y′ = y − t+ 1, y(0) = 0? yes

[2] 3g) Is φ(t) = limn→∞φn(t) the unique solution to y′ = y − t+ 1, y(0) = 0? yes



[15] 4a.) Solve y′′ − 8y′ + 16y = 0

Educated guess: y = ert. Then y′ = rert and y′′ = r2ert

Plugging in the guess into our equation:

r2ert − 8rert + 16ert = 0

Since ert > 0, we can divide both sides of the above equation by rert without loosing
any solutions:

r2 − 8r + 16 = 0 implies (r − 4)2 = 0 and thus r = 4.

Thus y = e4t is a solution. We can check by plugging in (as we did in class for a different
example) that y = te4t is also a solution.

Sidenote: {e4t, te4t} is a linear independent set and thus a basis for our solution. We can
check linear independence by calculating the Wronskian.

Answer: y = c1e
4t + c2te

4t

[15] 4b.) Solve y′′ − y′ + 3y = 0

Educated guess: y = ert. Then y′ = rert and y′′ = r2ert

Plugging in the guess into our equation:

r2ert − rert + 3ert = 0

Since ert > 0, we can divide both sides of the above equation by rert without loosing
any solutions:

r2 − r + 3 = 0 implies r =
1±
√

1−4(3)
2 = 1±

√
11

2 = 1±i
√
11

2 .

Answer: y = c1e
t
2 cos(

√
11
2 t) + c2e

t
2 sin(

√
11
2 t)



[15] 5.) Let y = y1(t) be a solution of y′ + p(t)y = 0 and let y = y2(t) be a solution of
y′ + p(t)y = g(t). Show that y = y1(t) + y2(t) is a solution of y′ + p(t)y = g(t).

Proof: Since y = y1(t) is a solution of y′ + p(t)y = 0, we know that y′1 + p(t)y1 = 0.

Since y = y2(t) is a solution of y′ + p(t)y = g(t), y′2 + p(t)y2 = g(t)

Claim: y = y1(t) + y2(t) is a solution of y′ + p(t)y = g(t).

We will plug y = y1(t) + y2(t) into the LHS to determine that the LHS = RHS:

(y1(t) + y2(t))′ + p(t)(y1(t) + y2(t)) = y′1(t) + y′2(t) + p(t)y1(t) + p(t)y2(t)

= [y′1(t) + p(t)y1(t)] + [y′2(t) + p(t)y2(t)] = 0 + g(t) = g(t)

Hence y = y1(t) + y2(t) is a solution of y′ + p(t)y = g(t).

Alternate proof: Since y = y1(t) is a solution of y′ + p(t)y = 0, we know that

y′1 + p(t)y1 = 0 (1).

Since y = y2(t) is a solution of y′ + p(t)y = g(t).

y′2 + p(t)y2 = g(t) (2).

If we add equations (1) and (2), we obtain:

[y′1(t) + p(t)y1(t)] + [y′2(t) + p(t)y2(t)] = 0 + g(t)

Thus y′1(t) + y′2(t) + p(t)y1(t) + p(t)y2(t) = g(t)

and (y1(t) + y2(t))′ + p(t)(y1(t) + y2(t)) = g(t)

Hence y = y1(t) + y2(t) is a solution of y′ + p(t)y = g(t).

Alternate proof:
Claim: L(f) = f ′ + pf is a linear function where f and p are functions of t.

Proof of claim: Let a, b be constants and f, g be functions of t.

L(af + bg) = (af + bg)′ + p(af + bg) = af ′ + bg′ + paf + pbg = af ′ + paf + bg′ + pbg =
[a(f ′ + pf)] + [b(g′ + pg)] = L(f) + L(g)

We will now show that y = y1(t) + y2(t) is a solution of y′ + p(t)y = g(t):



Since y = y1(t) is a solution of y′ + p(t)y = 0, L(y1) = 0.

Since y = y2(t) is a solution of y′ + p(t)y = g(t), L(y2) = g(t)

L(y1 + y2) = L(y1) + L(y2) = 0 + g(t) = g(t). Thus y = y1(t) + y2(t) is a solution of
y′ + p(t)y = g(t).

Note similar proofs would show that y = cy1(t) + y2(t) is a solution of y′ + p(t)y = g(t)
for any constant c.


