1.) Circle T for true and F for false.
[4] 1a.) Suppose $f(x)=\Sigma a_{n}(x-3)^{n}$ has a radius of convergence $=r$ about 3 . Then we can define the domain of f to be $(3-r, 3+r)$.
[4] 1b.) If $b^{2}-4 a c<0$, then the solution to the initial value problem $a y^{\prime \prime}+b y^{\prime}+c y=0, y(0)=2$, $y^{\prime}(0)=1$ is a complex valued function.

T F
[4] 1c.) If $b^{2}-4 a c<0$, then the solution to the characteristic equation $a r^{2}+b r+c=0$ is complex valued.
[4] 1d.) $D(f)=f^{\prime}$ is a linear function.
[4] 1e.) There is a unique solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=1, y(1)=0$
[7] 2.) The eigenvalues of $\left(\begin{array}{cc}3 & -2 \\ 1 & 5\end{array}\right)$ are \qquad
[7] 3.) Suppose $A\left[\begin{array}{c}4 \\ 12\end{array}\right]=\left[\begin{array}{c}-3 \\ 11\end{array}\right], A\left[\begin{array}{l}1 \\ 7\end{array}\right]=\left[\begin{array}{c}3 \\ 21\end{array}\right], A\left[\begin{array}{c}-2 \\ 2\end{array}\right]=\left[\begin{array}{c}9 \\ 31\end{array}\right], A\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{c}-6 \\ -10\end{array}\right]$

State the 2 eigenvalues of A :

State 5 eigenvectors of A :
[20] 4.) Using power series, find a degree 5 polynomial approximation for the solution to $y^{\prime \prime}-y=4 x$ for x near 0

Approximation:
[22] 5.) Solve $y^{\prime \prime}-y=e^{t}+2, \quad y(0)=1, y^{\prime}(0)=2$

Solution:
$[24]$ 6.) Solve two of the following (from this page and the next page). If you solve all 4, I will grade your best 2 and will give 1 (or 2) points extra credit for 3 (or 4) correct problems):

6a.) If $y=\psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=g(t)$, show that $y=2 \psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=2 g(t)$. Hint use linearity OR plug in.

6b.) Use your work in problem 5 to solve $y^{\prime \prime}-y=3 e^{t}+10$ for the general solution.

6c.) Given a_{0}, a_{1} and $a_{n+2}=2 a_{n+1}-a_{n}$, determine a_{n} in terms of a_{0} and a_{1}.

6 d .) Use the ratio test to determine the radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1} x^{n}$. For what values of x does this series converge?

