1.) Circle T for true and F for false.
[4] 1a.) Suppose $f(x)=\Sigma a_{n}(x-3)^{n}$ has a radius of convergence $=r$ about 3 . Then we can define the domain of f to be $(3-r, 3+r)$.
[4] 1b.) If $b^{2}-4 a c<0$, then the solution to the initial value problem $a y^{\prime \prime}+b y^{\prime}+c y=0, y(0)=2$, $y^{\prime}(0)=1$ is a complex valued function.
[4] 1c.) If $b^{2}-4 a c<0$, then the solution to the characteristic equation $a r^{2}+b r+c=0$ is complex valued. T
[4] 1d.) $D(f)=f^{\prime}$ is a linear function. T
[4] 1e.) There is a unique solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=1, y(1)=0$
[7] 2.) The eigenvalues of $\left(\begin{array}{cc}3 & -2 \\ 1 & 5\end{array}\right)$ are $\underline{4 \pm i}$
$\left|\begin{array}{cc}3-\lambda & -2 \\ 1 & 5-\lambda\end{array}\right|=(3-\lambda)(5-\lambda)+2=15-8 \lambda+\lambda^{2}+2=\lambda^{2}-8 \lambda+17$
$\lambda=\frac{8 \pm \sqrt{8^{2}-4(17)}}{2}=\frac{8 \pm 2 \sqrt{2(8)-17}}{2}=4 \pm \sqrt{-1}=4 \pm i$
[7] 3.) Suppose $A\left[\begin{array}{c}4 \\ 12\end{array}\right]=\left[\begin{array}{c}-3 \\ 11\end{array}\right], A\left[\begin{array}{l}1 \\ 7\end{array}\right]=\left[\begin{array}{c}3 \\ 21\end{array}\right], A\left[\begin{array}{c}-2 \\ 2\end{array}\right]=\left[\begin{array}{c}9 \\ 31\end{array}\right], A\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{c}-6 \\ -10\end{array}\right]$
$A\left[\begin{array}{l}1 \\ 7\end{array}\right]=\left[\begin{array}{c}3 \\ 21\end{array}\right]=3\left[\begin{array}{l}1 \\ 7\end{array}\right]$,
$A\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{c}-6 \\ -10\end{array}\right]=-2\left[\begin{array}{l}3 \\ 5\end{array}\right]$
State the 2 eigenvalues of A :
3, -2

State 5 eigenvectors of A :
$\left[\begin{array}{l}1 \\ 7\end{array}\right],\left[\begin{array}{c}2 \\ 14\end{array}\right],\left[\begin{array}{l}-1 \\ -7\end{array}\right],\left[\begin{array}{c}-3 \\ -21\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]$, etc.
[20] 4.) Using power series, find a degree 5 polynomial approximation for the solution to $y^{\prime \prime}-y=4 x$ for x near 0
$y=\sum_{n=0}^{\infty} a_{n} x^{n}, y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}$.
$\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n}=4 x$
$\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n}=4 x$
$\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=4 x$
$\sum_{n=0}^{\infty}\left[a_{n+2}(n+2)(n+1)-a_{n}\right] x^{n}=4 x$
For $n=1:\left[a_{3}(3)(2)-a_{1}\right] x=4 x$. Thus $a_{3}=\frac{a_{1}+4}{6}$
For $n \neq 1, a_{n+2}(n+2)(n+1)-a_{n}=0$. Thus $a_{n+2}=\frac{a_{n}}{(n+2)(n+1)}$
For $n=0: \quad a_{2}=\frac{a_{0}}{(2)(1)}$
For $n=2: \quad a_{4}=\frac{a_{2}}{(4)(3)}=\frac{a_{0}}{(4)(3)(2)(1)}$
For $n=3: \quad a_{5}=\frac{a_{3}}{(5)(4)}=\frac{a_{1}+4}{6(5)(4)}$

$$
\text { Approximation: } y=a_{0}+a_{1} x+\frac{a_{0}}{2} x^{2}+\frac{a_{1}+4}{6} x^{3}+\frac{a_{0}}{4!} x^{4}+\frac{a_{1}+4}{120} x^{5}
$$

[22] 5.) Solve $y^{\prime \prime}-y=e^{t}+2, \quad y(0)=1, y^{\prime}(0)=2$
Solve homogeneous: Guess $y=e^{r t}$ and plug into $y^{\prime \prime}-y=0: r^{2} e^{r t}-e^{r t}=0$.
Thus $r^{2}-1=(r+1)(r-1)=0$. Thus $r=1,-1$.
Homogeneous solution: $c_{1} e^{t}+c_{2} e^{-t}$
Solve $y^{\prime \prime}-y=e^{t}$
$y=e^{t}$ is a homogeneous solution, so guess $y=A t e^{t}$. Then $y^{\prime}=A e^{t}+A t e^{t}$ and $y^{\prime \prime}=A e^{t}+A e^{t}+$ $A t e^{t}=2 A e^{t}+A t e^{t}$.

Plug into $y^{\prime \prime}-y=e^{t}$:
$2 A e^{t}+A t e^{t}-A t e^{t}=e^{t}$ implies $2 A e^{t}=e^{t}$. Thus $2 A=1$ and $A=\frac{1}{2}$.
Thus $y=\frac{1}{2} t e^{t}$ is one solution to $y^{\prime \prime}-y=e^{t}$
Solve $y^{\prime \prime}-y=2$
Guess $y=B$, then $y^{\prime}=0, y^{\prime \prime}=0$.
Plug in: $0-B=2$. Thus $B=-2$.
Thus $y=-2$ is one solution to $y^{\prime \prime}-y=2$
Hence general solution to $y^{\prime \prime}-y=e^{t}+2$ is $y=c_{1} e^{t}+c_{2} e^{-t}+\frac{1}{2} t e^{t}-2$
Solve IVP: $y(0)=1, y^{\prime}(0)=2$.
$y=c_{1} e^{t}+c_{2} e^{-t}+\frac{1}{2} t e^{t}-2$
$y^{\prime}=c_{1} e^{t}-c_{2} e^{-t}+\frac{1}{2} t e^{t}+\frac{1}{2} e^{t}$
$y(0)=1: 1=c_{1}+c_{2}-2$ implies $3=c_{1}+c_{2}$
$y^{\prime}(0)=2: 2=c_{1}-c_{2}+\frac{1}{2}$ implies $\frac{3}{2}=c_{1}-c_{2}$
Add equations: $\frac{9}{2}=2 c_{1}$. Thus $c_{1}=\frac{9}{4}$
Subtract equations: $\frac{3}{2}=2 c_{2}$. Thus $c_{2}=\frac{3}{4}$

$$
\text { Solution: } \quad y=\frac{9}{4} e^{t}+\frac{3}{4} e^{-t}+\frac{1}{2} t e^{t}-2
$$

$[24]$ 6.) Solve two of the following (from this page and the next page). If you solve all 4, I will grade your best 2 and will give 1 (or 2) points extra credit for 3 (or 4) correct problems):

6a.) If $y=\psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=g(t)$, show that $y=2 \psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=2 g(t)$. Hint use linearity OR plug in.

Using linearity: Recall that $L(y)=p y^{\prime \prime}+q y^{\prime}+r y$ is a linear function.
Since $y=\psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=g(t), \quad L(\psi(t))=g(t)$. Since L is a linear function, $L(2 \psi(t))=2 L(\psi(t))=2 g(t)$. Thus $y=2 \psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=2 g(t)$.

Plugging in: Since $y=\psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=g(t), \quad p \psi^{\prime \prime}(t)+q \psi^{\prime}(t)+r \psi(t)=g(t)$.
Thus $p\left[2 \psi^{\prime \prime}(t)\right]+q\left[2 \psi^{\prime}(t)\right]+r[2 \psi(t)]=2\left[p \psi^{\prime \prime}(t)+q \psi^{\prime}(t)+r \psi(t)\right]=2 g(t)$.
Thus $y=2 \psi(t)$ is a solution to $p y^{\prime \prime}+q y^{\prime}+r y=2 g(t)$.
6b.) Use your work in problem 5 to solve $y^{\prime \prime}-y=3 e^{t}+10$ for the general solution.
Homogeneous solution: $c_{1} e^{t}+c_{2} e^{-t}$
Since $y=\frac{1}{2} t e^{t}$ is one solution to $y^{\prime \prime}-y=e^{t}, y=\frac{3}{2} t e^{t}$ is one solution to $y^{\prime \prime}-y=3 e^{t}$
Since $y=-2$ is one solution to $y^{\prime \prime}-y=2, \quad y=-10$ is one solution to $y^{\prime \prime}-y=10$
Thus general solution to $y^{\prime \prime}-y=3 e^{t}+10$ is $y=c_{1} e^{t}+c_{2} e^{-t}+\frac{3}{2} t e^{t}-10$
6 c.) Given a_{0}, a_{1} and $a_{n+2}=2 a_{n+1}-a_{n}$, determine a_{n} in terms of a_{0} and a_{1}.
$a_{2}=2 a_{1}-a_{0}$
$a_{3}=2 a_{2}-a_{1}=2\left(2 a_{1}-a_{0}\right)-a_{1}=3 a_{1}-2 a_{0}$
$a_{4}=2 a_{3}-a_{2}=2\left(3 a_{1}-2 a_{0}\right)-\left(2 a_{1}-a_{0}\right)=4 a_{1}-3 a_{0}$
$a_{5}=2 a_{4}-a_{3}=2\left(4 a_{1}-3 a_{0}\right)-\left(3 a_{1}-2 a_{0}\right)=5 a_{1}-4 a_{0}$
Answer: $\quad a_{n}=n a_{1}-(n-1) a_{0}$
$6 d$.$) Use the ratio test to determine the radius of convergence for the power series \sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1} x^{n}$. For what values of x does this series converge?
$\lim _{n \rightarrow \infty}\left|\left(\frac{3^{n+1} x^{n+1}}{2(n+1)-1}\right)\left(\frac{2 n-1}{3^{n} x^{n}}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{3(2 n-1) x}{2(n+1)-1}\right|=\lim _{n \rightarrow \infty}\left|\frac{3(2 n-1) x}{2 n+1}\right|=|3 x| \lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1}=|3 x|<1$
Thus $|x|<\frac{1}{3}$. Thus radius of convergence is $\frac{1}{3}$ and the series converges for all $x \in\left(-\frac{1}{3}, \frac{1}{3}\right)$ and the series diverges if $|x|>\frac{1}{3}$

If $x=\frac{1}{3}: \sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1} x^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{2 n-1}>\sum_{n=0}^{\infty} \frac{1}{2 n}=\frac{1}{n} \sum_{n=0}^{\infty} \frac{1}{n}$
Since $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1}\left(\frac{1}{3}\right)^{n}$ diverges.
If $x=-\frac{1}{3}: \sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1} x^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1}\left(-\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n-1}$. Since $\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=0$ and $\frac{1}{2 n-1}$ is a decreasing sequence, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n-1}$ converges by the alternating series test.
Thus the series $\sum_{n=0}^{\infty} \frac{3^{n}}{2 n-1} x^{n}$ converges for all $x \in\left[-\frac{1}{3}, \frac{1}{3}\right)$.

